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In this paper, a crack diagnosis method based on an improved two-dimensional
(2-D) finite element (FE) with an embedded edge crack, and micro genetic algorithm
(μ-GA) is proposed. The crack is not physically modelled within the element, but
instead, its influence on the local flexibility of the structure is accounted for by the
reduction of the element stiffness as a function of the crack length. The components
of the stiffness matrix for the cracked element are determined from the Castigliano’s
first principle. The element was implemented in the commercial FE code ABAQUS
as a user element subroutine. The accuracy of the proposed improved cracked
element is verified by comparing the predicted first natural frequency with the avail-
able experimental data. Subsequently, a methodology to detect the crack location
and size in conjunction with the proposed improved cracked element is formulated
as an optimisation problem, and μ-GA is used to find the optimal location and depth
by minimising the cost function based on the difference of measured and calculated
natural frequencies. The proposed crack detection procedure using the improved 2-D
FE with an embedded edge crack, and μ-GA is validated using the available experi-
mental and FE modal analysis data reported in the existing literature. The predicted
crack locations and crack sizes demonstrate that this approach is capable of detecting
small crack location and depth with small errors.

Keywords: cracked finite element; micro genetic algorithm; user element; ABAQUS;
natural frequency; crack diagnosis

1. Introduction

There is considerable interest in various damage detection methods for the quantitative
diagnosis of structural crack through non-destructive testing. Quantitative diagnosis of
cracks is an important part of predicting structural integrity and reliability of compo-
nents, for a wide range of civil, mechanical and aeronautical engineering applications.
Due to the practical importance of an early detection of cracks, the crack identification
problem in structures has been extensively investigated and has led to the development
of various methods. The presence of a crack in a structural member reduces the
stiffness and increases the damping of the structure. As a consequence, there is a
decrease in natural frequencies and modification of the modes of vibration. Therefore, it
is possible to predict the location and the depth of a crack by measuring changes in
the vibration parameters. The most useful damage localisation methods based on
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vibration measurements are probably those based on examination of changes in natural
frequencies, mode shapes or mode-shape curvatures. Changes in the natural frequencies
are used more often than deviation of mode shapes, since frequencies can be measured
more easily than mode shapes, and they are less seriously affected by experimental
errors (Morassi, 2001). Many researchers have used the above characteristics to
detect and locate cracks and a plethora of vibration-based methods for crack detection
has been developed (Chaudhari & Maiti, 2000; Chinchalkar, 2001; Dado, 1997;
Lee, 2009; Lele & Maiti, 2002; Liang, Choy, & Hu, 1991; Liang & Hu, 1993;
Morassi, 2001; Nandwana & Maiti, 1997a, 1997b; Narkis, 1994; Nikolakopoulos,
Katsareas, & Papadopoulos, 1997; Patil & Maiti, 2003; Rus, Lee, Chang, & Wooh,
2006; Rus, Lee, & Gallego, 2005; Shifrin & Ruotolo, 1999).

Reviews of research works dealing with the problem of crack detection based on
changes in modal parameters can be found in the published literature (Doebling, Farrar,
Prime, & Shevitz, 1996; Montalvao, Maia, & Ribeiro, 2006; Salawu, 1997; Sohn et al.,
2003). Messina, Williams, and Contursi (1998) presented a sensitivity and statistical-
based method for structural damage detection. Kosmatka and Ricles (1999) proposed a
modal vibration characterisation method using vibratory residual forces and weighted
sensitivity analysis. Ratcliffe (2000) performed frequency and curvature-based experi-
ments. Vestroni and Capecchi (2000) presented a method for concentrated damage
detection based on natural frequency measurement. Gawronski and Sawicki (2000)
adopted a method based on modal and sensor norms. Hu et al. (2001) presented a
method using quadratic programming. Law, Chan, and Wu (2001) presented a method
for large-scale structures using super-elements with the concept of damage detection
orientation modelling. Sahin and Shenoi (2003) presented a damage detection algorithm
using a combination of global and local vibration-based data as input to Artificial
Neural Networks to predict the location and severity of the damage. Out of various
vibration-based damage detection methods summarised, those based on updating
structural model parameters can be reduced to the solution of constrained optimisation
problems. Comparisons of the updated model parameters with the original correlated
model parameters provide an indication of damage and can be used to quantify the
location and the extent of the damage. However, for optimisation problems in which
the objective function has many local maxima and minima, or when the variables are
combinations of many discrete and continuous variables, it is difficult to use conven-
tional optimisation algorithms such as the conjugate gradient method to obtain the
global optimum.

In recent years, Genetic Algorithms (GAs) (Goldberg, 1989a, 1989b; Haupt &
Haupt, 2004) have been recognised as promising intelligent search techniques for
difficult optimization problems. GAs are search algorithms based on the mechanics of
natural selection and natural genetics. They combine survival of the fittest among string
structures with a structured yet randomised information exchange to form a search
algorithm with some of the innovative flair of human search. While heuristic search
methods such as simulated annealing or taboo search use one solution on their process
to find the optimum point, GAs use the population of solutions to find the optimum
point. It is known that with mathematical optimisation methods which use a gradient
vector and Hessian, it is difficult to find the optimum point if there are a lot of local
optima around the optimum point and a steep gradient around the optimum point
(Goldberg, 1989a). GAs do not use a gradient vector and Hessian, but use object
function value during their search. In its standard form, application of a GA requires
the representation of design variables in terms of bit strings that are counterparts of
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natural chromosomes, made up of a string of genes. GAs have actually found their
applications in structural damage identification (Chou & Ghaboussi, 2001; Friswell,
Penny, & Garvey, 1998; Harrison & Butler, 2001; Mares & Surace, 1996; Xia & Hao,
2001). Mares and Surace (1996) adopted GA to identify damage in elastic structures by
defining a modified version of residual force vectors in terms of the stiffness matrix of
the damaged structure as an objective function to be minimised while choosing stiffness
reduction factors of all the elements as variables. However, this damage detection
procedure is time consuming as the number of variables is equal to that of the elements
in the finite element (FE) model. Krawczuk (2002) presented the wave propagation
approach combined with GA for damage detection in beam-like structures. Sahoo and
Maity (2007) trained a neural network (NN) considering the frequency and strain as the
input parameters and the location and amount of the damage as the output parameters.
They used a GA to select the NN parameters. The number of total runs, the number of
GA generations, population size, and the NN training iterations are reported to be
around 5, 100, 40, and 2000, respectively, so the number of mean square error evalua-
tions is 5� 100� 40� 2000 = 4� 107 for a clamped free beam. However, their results
are quite encouraging, but the NN training phase is very time consuming. Peimani,
Vakil-Baghmisheh, Sadeghi, and Ettefagh (2005) used multilayer perceptron networks
for estimating the crack location.

It is recommended that more than 30 individuals should be used in GAs in order to
prevent genetic drift (Mitchell, 1996). As the population size increases, chances of
locating optimal solution increases and the GAs find a better solution. A bigger
population size, however, requires more computational time to find the optimum solu-
tion (Goldberg, 1989a) and leads to slower convergence of the GA. For this reason,
Goldberg (1989a, 1989b) proposed Serial Genetic Algorithms (SGAs) which use a
small population size compared to conventional GAs. Based on SGAs, Krishnakumar
(1989) proposed micro genetic algorithms (μ-GAs). μ-GAs use a relatively smaller
population size than SGAs, resulting in less computational time. Moreover, μ-GAs use
elitism and convergence checking with reinitialisation to obtain the optimal or near
optimal solutions.

To model the problem of a cracked beam using the FE method, several approaches
have been used by various researchers. One-dimensional cracked beam FEs for
vibration studies have been developed previously by other researchers (Chondros,
Dimarogonas, & Yao 1998, 2001; Gounaris, Papadopoulos, & Dimarogonas, 1996;
Krawczuk, Palacz, & Ostachowicz, 2003; Mahmoud, Abu Zaid, & Al Harashani, 1999;
Papadopoulos & Dimarogonas, 1987). With an aim to simulate the crack presence with-
out actually modelling the crack, more recently a two-dimensional (2-D) cracked FE
was developed by Potirniche et al. (2008) for fatigue and fracture applications. In this
approach, the influence of the additional flexibility of the element due to the crack
presence was derived from the Castigliano’s first theorem using fracture mechanics
concepts. However, the accuracy of the predicted natural frequency using the cracked
FE developed by Potirniche et al. (2008) for higher values of crack depth ratios is less.
While deriving the components of the stiffness matrix for the cracked element
Potirniche et al. (2008) assumed that the applied shear forces result only in mode II
stress intensity factors (SIFs), and accordingly adopted the geometrical factor (for the
effect of boundary conditions at free edge) corresponding to pure shear for infinite
boundary conditions given in Tada, Paris, and Irwin (2000). It should be noted that the
pure shear condition can be reproduced only when the shear force acting along an edge
of the cracked element is accompanied by shear forces acting on three other faces.
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However, when the applied shear force acts along an edge of the cracked element, as
considered in Potirniche et al. (2008), mixed-mode conditions prevail, and not the pure
shear condition, which results in both mode I and mode II SIFs. In addition, the
adopted geometrical factor should take into account both the effect of finite size of the
cracked element and the effect of boundary conditions at free edge.

This paper presents a crack diagnosis method based on an improved 2-D FE with
an embedded edge crack, and μ-GA. The crack is not physically modelled within the
element, but instead, its influence on the local flexibility of the structure is accounted
for by the reduction of the element stiffness as a function of the crack length. The
components of the stiffness matrix for the cracked element are determined from the
Castigliano’s first principle. The element was implemented in the commercial FE code
ABAQUS (2004) as a user element (UEL) subroutine. The accuracy of the UEL is veri-
fied by comparing the frequency response of various beams with an edge crack under
bending. Later, a methodology to detect the crack location and size in conjunction with
the proposed improved cracked element is formulated as an optimisation problem, and
μ-GA is used to find the optimal location and depth by minimising the cost function
based on the difference of the measured and calculated natural frequencies. The organi-
sation of the paper is as follows: Sections 2 and 3, respectively, present improved 2-D
FE with an embedded edge crack and its validation. Section 4 outlines μ-GA and
μ-GA-based crack identification procedure. Section 5 presents validation of μ-GA-based
crack identification technique using the available experimental and FE modal analysis
data reported in the existing literature. Section 6 presents conclusions.

2. Improved cracked FE model

For predicting the natural frequency of a cracked beam more accurately, in this section,
the following improvements to the cracked FE originally developed by Potirniche et al.
(2008) are presented: (a) to handle crack depth ratios ranging up to .9; and (b) the
additional flexibility of the cracked element due to the applied shear forces. Consider
the cracked FE with the node numbering and the degrees of freedom per node as shown
in Figure 1(a), the mathematical definition details of which are given in Potirniche et al.
(2008).

In Figure 1(b), the tensile force at node 3 gives a force and a moment, both of
which contribute to an opening of the crack. Hence, the contribution KIF3 of the nodal
force F3 at node 3 is summation of the SIFs given by the force and the resulting
bending moment F3h=2 (h is the element depth), which can be written as

KIF3 ¼ Kf
IF3

þ Km
IF3
; ð1Þ

where

Kf
IF3

¼ Ff
F3

ht

ffiffiffiffiffiffi
pa

p
and Km

IF3
¼ Fm

3F3

ht

ffiffiffiffiffiffi
pa

p
; ð2Þ

with the geometrical factors Ff and Fm for the cracked element under tensile and
bending loading, respectively, and t being the element thickness.

The FRANC2DL FE code (Gondhalekar, 1992; James and Swenson, 1999;
Wawrzynek & Ingraffea, 1987, 1994) is used with the J-integral option to extract the
SIFs from stress–strain fields around the crack tip location. 2-D, FE models having
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w=h ¼ 2 with degrees of freedom ranging from 3510 (for the case a=h ¼ :1) to 4258
(for the case a=h ¼ :9), along with a ring of six-noded quarter-point elements around
the crack tip and eight-noded elements elsewhere are used under plane stress conditions.
The minimum element size at the crack tip location is :0025w. Crack length to depth
ratios (a=h) are varied from .1 to .9 with nodal forces applied at various locations on
the cracked element. Using the SIFs values obtained from FRANC2DL for a=h ranging
from .1 to .9, and Equation 2, the geometrical factors Ff and Fm are obtained by curve
fitting techniques as a function of a=h as follows:

Ff
a
h

� �
¼ 2:6233� 51:173

a
h

þ 551:45
a
h

� �2

� 2563:7
a
h

� �3

þ 5883:6
a
h

� �4

� 6472:2
a
h

� �5

þ 2750:4
a
h

� �6

; ð3Þ

and,

Fm
a
h

� �
¼ 1:6426� 18:687

a
h

þ 192:08
a
h

� �2

� 883:57
a
h

� �3

þ 2018:3
a
h

� �4

� 2213:7
a
h

� �5

þ 939
a
h

� �6

: ð4Þ

The above given geometrical factors Ff and Fm are validated for other cases with
w=h[2:0 by comparing the SIFs values obtained from FRANC2DL with those values
obtained using Equation 2 in conjunction with Equations 3 and 4. The effect of w=h is
found to be practically negligible for w=h P 2:0.

(a) (b)

(c) (d)

Figure 1. 2-D cracked FE; (a) Node numbering and degrees of freedom at all nodes; (b) Nodal
force F3 at node 3; (c) Nodal force F2 at node 2; and (d) Nodal force F6 at node 2.
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Contrary to the tensile force acting at node 3 (in Figure 1(b)) as discussed above, in
Figure 1(c), the nodal force F2 acting at node 2 results in a force that leads to an
opening of the crack and a resolved bending moment that leads to the closing of the
crack. Hence, the contribution KIF2 of the nodal force F2 at node 2 can be written as

KIF2 ¼ Kf
IF2

� Km
IF2
; ð5Þ

where

Kf
IF2

¼ Ff
F2

ht

ffiffiffiffiffiffi
pa

p
and Km

IF2
¼ Fm

3F2

ht

ffiffiffiffiffiffi
pa

p
; ð6Þ

with the geometrical factors Ff and Fm defined in Equations 3 and 4.
Following the procedure based on Castigliano’s first theorem, outlined by Potirniche

et al. (2008), the stiffness components K2j and K3j can be obtained using the
geometrical factors Ff and Fm defined in Equations 3 and 4. The stiffness components
K1j and K4j can also be obtained following the same procedure as that for the stiffness
components K2j and K3j.

In Figure 1(d), the nodal force F6 acting at node 2 gives a shear force and a
moment (Fw), both of which contribute to mode I and II SIFs, which can be written as

KIF6 ¼ FI
6Fw

h2t

ffiffiffiffiffiffi
pa

p
and KIIF6 ¼ FII

F

ht

ffiffiffiffiffiffi
pa

p
: ð7Þ

Using the SIFs values obtained from FRANC2DL for a=h ranging from .1 to .9,
and Equation 7, the geometrical factors for the cracked element FI and FII , respectively,
are obtained by curve-fitting techniques as a function of a=h as follows:

FI
a
h

� �
¼ :821� 9:344

a
h

þ 96:04
a
h

� �2

� 441:78
a
h

� �3

þ 1009:15
a
h

� �4

� 1106:85
a
h

� �5

þ 469:5
a
h

� �6

; ð8Þ

and

FII
a
h

� �
¼ 1:018� 17:794

a
h

þ 162:7
a
h

� �2

þ 596:45
a
h

� �3

þ 1098:3
a
h

� �4

� 994:94
a
h

� �5

þ 353:26
a
h

� �6

: ð9Þ

The stiffness components K6j can be obtained adopting the following procedure.
Using Castigliano’s first theorem, the difference between the nodal forces in the cracked
(Fi) and undamaged (F0

i ) cases can be obtained by taking the partial derivatives of the
SIFs with respect to the corresponding displacements (ui) by the relation (Tada et al.,
2000),

F0
6 � F6 ¼ 2t

E0

Z a

0

KI
@KI

@u6
daþ

Z a

0

KII
@KII

@u6
da

� �
ð10Þ
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where E0 ¼ E for plane stress, E0 ¼ E=ð1� m2Þ for plane strain and E and m are the
modulus of elasticity and Poisson’s ratio, respectively. Replacing the SIFs in the above
equation with their respective formulas in Equation 7 and after some simplifications,
one obtains

F0
6 � F6 ¼ 2p

E0h2t
36w2

h2

Z a

0

aF2
I daþ

Z a

0

aF2
II da

� �
F6

@F6

@u6
: ð11Þ

Defining A66 as,

A66 ¼ 2p
E0h2t

36w2

h2

Z a

0

aF2
I daþ

Z a

0

aF2
II da

� �
; ð12Þ

and noting that

@F6

@u6
¼ K66; ð13Þ

the relation between the two nodal forces for the undamaged and cracked elements
becomes

F0
6 ¼ ð1þ A66K66ÞF6: ð14Þ

Using fF0g ¼ ½K0�fug which corresponds to the undamaged element, Equation 14
can be written as

X8

j¼1

K0
6juj ¼

X8

j¼1

ð1þ A66K66ÞK6juj; ð15Þ

which is valid only if the coefficients multiplying the independent variables uj on both
sides of the above equation are equal.

K0
6j ¼ ð1þ A66K66ÞK6j for j ¼ 1; 2; . . . ; 8: ð16Þ

Solving Equation 16 for K6j, the solution is found to be

K66 ¼ �1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A66K0

66

p
2A66

; ð17Þ

and

K6j ¼
2K0

6j

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A66K0

66

p for j ¼ 1; 2; . . . ; 8 and j–6: ð18Þ

Similar formulas can be obtained for all the components K5j, K7j and K8j .
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3. Validation of cracked FE

The proposed improved 2-D FE with an embedded edge crack is implemented in the
commercial FE code ABAQUS (2004) as a User Element Fortran subroutine (UEL.f).
The performance of the proposed improved FE is demonstrated by comparing the
frequency ratio (xc=x) (ratio of the natural frequency of the cracked beam to that of
the uncracked beam) vs. the crack depth ratio (a=H) (the ratio of the crack depth (a) to
the beam height (H)) results obtained using UEL, with the reported results in the
literature, for the bending mode, for various crack location ratios (c=L) (ratio of the
crack location to the beam length). The following beam cases are considered: (1) simply
supported beam with a double-edge surface crack at mid span; (2) cantilever beam with
a surface crack at 20% of the beam span from fixed end; and (3) simply supported
beam with a surface crack at mid span. In the numerical study, the crack depth ratio
(a=H) is varied from 0 to .5.

3.1. Simply supported beam with a double edge surface crack

In this numerical example, a steel beam (Chondros et al., 1998) having the length
L ¼ :575 m, the height H ¼ :03175 m, the thickness t ¼ :00952 m with
E ¼ 2:06� 1011N=m2 and q ¼ 7800 kg=m3 is considered. Figure 2 shows typical FEM
discretisation with 36 standard four-node ABAQUS (2004) elements and one UEL each
at the top and the bottom at the top of the beam for c=L ¼ :5. Figure 3 shows the first
natural frequency ratio (xc=x) vs. the crack depth ratio (a=H) for simply supported
beam with two surface cracks, at the top and bottom edges of the beam at mid span.

UEL 

UEL 

Figure 2. Discretisation of simply supported beam with double-edge surface crack using 36
standard four-node ABAQUS elements and two UELs.

Figure 3. First natural frequency ratio vs. the crack depth ratio for simply supported beam with
double-edge surface crack at mid span.
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Compared with the predictions obtained using the damaged FE by Potirniche et al.
(2008), the first natural frequency reduction predicted by the proposed improved 2-D
FE matches very well with the experiments results by Chondros et al. (1998).

3.2. Cantilever beam with a surface crack

In this numerical example, a steel cantilever beam (Wendtland, 1972) with all the
geometric and material properties same as that of simply supported beam with a
double-edge surface crack, except having the height H ¼ :0242m, is considered. Typical
FEM discretisation with 22 standard four-node ABAQUS (2004) elements and one
UEL for c=L ¼ :2 measured from fixed end is shown in Figure 4. Figure 5 shows the
first natural frequency ratio (xc=x) vs. the crack depth ratio (a=H) for steel cantilever
beam with crack located at a distance of 20% of the beam length from the fixed end.
Compared with the predictions obtained using the damaged FE by Potirniche et al.
(2008), the first natural frequency reduction predicted by the proposed improved 2-D
FE matches very well with the experiments results (Wendtland, 1972). Contrary to the

UEL

Figure 4. Discretisation of cantilever beam with surface crack using 22 standard four-node
ABAQUS elements and one UEL.

Figure 5. First natural frequency ratio vs. the crack depth ratio for cantilever beam with surface
crack with crack at 20% of beam length from fixed end.

UEL 

Figure 6. Discretisation of simply supported beam with surface crack using eight standard
four-node ABAQUS elements and one UEL.
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reported results (Potirniche et al., 2008), the current study showed much deviation in
the predictions obtained using the damaged FE by Potirniche et al. (2008), when
compared with the experimental results (Wendtland, 1972).

3.3. Simply supported beam with a surface crack

An aluminium beam (Chondros et al., 1998) having the length L ¼ :235m, the
height H ¼ :0254m and the thickness t ¼ :006m with the elastic modulus

Figure 7. Variation in natural frequency reduction of simply supported beam with surface crack
at mid span; (a) First mode with surface crack at mid span; (b) Second mode with surface crack
at mid-span; and (c) Third mode with surface crack at c=L ¼ 1=3:
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E ¼ 7:2� 1010 N=m2 and the density q ¼ 2800 kg=m3, is considered. Typical FEM
discretisation with 8 standard four-node ABAQUS (2004) elements and one UEL for
c=L ¼ :5 is shown in Figure 6. Figure 7(a) shows the first natural frequency ratio
(xc=x) vs. the crack depth ratio (a=H) for simply supported beam with a surface crack
at mid span. Compared with the predictions obtained using the damaged FE by
Potirniche et al. (2008), the first natural frequency reduction predicted by the proposed
improved 2-D FE matches very well with the experimental results by Chondros et al.
(1998).

For the simply supported beam case considered above, FEM discretisation with the
height of UEL equal to the beam height is adopted. In the following, the effect of the
number of elements along the direction of the beam height on the accuracy in
predicting the reduction in the natural frequencies of higher modes is studied.

Noting that if the crack location coincides with the vibration node of one of the
modes, the frequency for that mode remains almost unchanged, Figure 7(b) shows
variation in the natural frequency reduction of second mode of simply supported beam
with a surface crack at mid span with respect to the number of elements along the
direction of the beam height, predicted by the proposed improved 2-D FE for various
values of the crack depth ratios (a=H). Similarly, Figure 7(c) shows the variation in the
natural frequencies reduction of the third mode of simply supported beam with a
surface crack at c=L ¼ 1=3 measured from the support, with respect to the number of
elements along the direction of the beam height. It can be observed from Figures 7(b)
and (c) that by adopting two elements along the direction of the beam height, better
accuracy can be obtained in the prediction of reduction in the natural frequencies of
higher modes, which are essential for predicting the crack location and size. Hence, in
the crack identification technique presented in the subsequent sections, two elements
along the direction of the beam height are adopted and when the crack depth is equal
to the height of UEL, the element stiffness is assumed to be zero.

4. Crack identification technique

The improved 2-D FE with an embedded edge crack is implemented in the commercial
FE code ABAQUS (2004) as a UEL.f to evaluate the natural frequencies.

4.1. Micro genetic algorithm

To estimate the location and depth of a crack in a structure using natural frequency
information, GA is adopted. The inputs to the proposed crack detection system are the
natural frequency ratios (xc=x) (ratio of the natural frequency of the cracked beam to
that of the uncracked beam). The identification of the crack location and depth is
formulated as an optimisation problem that is solved to find the optimal crack location
and depth by minimising the objective/fitness function which is based on the difference
of measured and calculated frequencies. Conventional optimisation techniques have
difficulty in finding the global minimum unless the starting point is in the immediate
vicinity of it. GAs and μ-GAs are popular methods for global search (Goldberg, 1989a,
1989b; Krishnakumar, 1989). The constrained optimisation problem is typically
converted into an unconstrained problem by penalising vectors that violate constraints
(Osyczka & Kundu, 1996; Pezeshk, Camp, & Chen, 2000). The efficiency of the
conventional optimisation techniques can be further improved by adopting the
qualitative construction of a reliable initial guesses within non-iterative computational
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frameworks (Amstutz, Horchani, & Masmoudi, 2005; Cakoni & Colton, 2003; Garreau,
Guillaume, & Masmoudi, 2000).

In the present study, the μ-GA based on Carroll’s work (Carroll, 1996) is adopted
with tournament selection, uniform crossover and an elitism scheme. The GA driver
initialises a random sample of individual solutions upon the initiation of the algorithm.
Binary encoding is adopted for individual solutions in the population. Carroll (1996)
and Lee, Kim, Park, and Woo (2005) suggested using μ-GAs with a population size of
5 or 10. In the present study, the μ-GAs with the various population sizes of 5, 8, 10,
12 and 15 individuals are examined and similar convergence histories are observed. A
tournament selection method is used to select parent genes on which the uniform
crossover operation (that replaces the discarded chromosomes in a population by new
chromosomes) is applied with a crossover rate of 1.0. One important attribute of
uniform crossover is that this technique tends to preserve variety in the genetic group.
In the μ-GA, there are two convergence criteria called inner and outer criteria. Due to
the lack of adequate diversity in the small population, it is unlikely that the process
converges into a true value in the inner loop operations. In the inner loop, if the entire
population is converged to a nominal value with the other individuals being sufficiently
similar to the best individual solution in the population (with less than a total of
5% difference), then the process goes out of the inner loop (Carroll, 1996). The outer
loop is performed until the total number of generations reaches a prescribed value.
Therefore, the number of inner loops varies from generation to generation, but the total
number of generations is fixed. In order to prevent the possibility of losing good genes,
an elitism scheme (that makes a copy of the best chromosomes of a population into the
new population) is used so that the best members of a population are guaranteed to
survive in each generation.

The μ-GA differs from a classical GA in that the former uses a very small
population (5–10), while the latter uses a larger population with hundreds or even
thousands of individuals. Another difference between the μ-GA and a classical GA is in
the way to maintain diversity. Classical GAs usually uses large populations along with
mutation operations to achieve diversity upon convergence. In contrast, the μ-GA
adopts a small population to achieve a relatively fast convergence in the inner loop as
compared to a classical GA. The μ-GA does not have mutation operations, because
diversifying a small population will not give a good representation of the solution space
anyway and it will slow down the convergence as well. The diversity of the solutions
is achieved by starting with a new, randomly generated population (which is called a
“restart” operation in Figure 8) while keeping the best previously obtained solutions
(elitism). Note that it is important to keep the best solution from each inner loop
convergence to avoid the possibility of extinction of the best members of a population.
The global algorithm stops when the prescribed number of generations (200 in this
study) is reached (outer loop).

As the μ-GA uses binary encoding to represent design variables, along with the
range of a design variable, the number of bits to encode the same should also be given
as an input. The number of bits needed is determined by the required precision for a
design variable.

4.2. Overall μ-GA based crack identification procedure

The overall μ-GAs-based crack identification procedure is shown in Figure 8 and
explained as follows:
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4.2.1. Selection of variables and objective/fitness function

The μ-GA begins by defining a chromosome, i.e. an array of variables whose values
are to be optimised. In our case study, the chromosome has two variables, the crack
depth ratio (a=H) (the ratio of the crack depth (a) to the beam height (H)) and crack
location ratio (c=L) (the ratio of the crack location (c) to the beam length (L)). In this
study, the crack location is defined by the element number, i.e. cracked element number
in the FE mesh and the crack is modelled by inserting the improved 2-D FE into the
mesh coinciding with the crack location. Thus, we have:

Chromosome ¼ ½Cracked element number; Crack depth ratio�: ð19Þ

Restart             
(use elitism) 

Yes 

START

Generate random initial population                    
Chromosome = [Crack location, crack size ratio] 

Fitness evaluation for 
each individual 

Selection and crossover   
(use elitism) 

Convergence
(inner Loop) 

Convergence 
(outer loop) STOP

Yes 

No 

No 

ABAQUS analysis                                           
for each individual to obtain natural frequency 

ratios c i
ω ω  of the corresponding cracked 

beam model 

Input – Experimental natural 

frequency ratios *
c i

ω ω of cracked 

beam

Define GA parameters 

Figure 8. Flowchart of Micro-GA-based crack detection method.
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Once a particular chromosome is defined, using the decoded values of the cracked
element number and crack depth ratio (a=H), the ABAQUS (2004) input file for modal
analysis is generated by inserting the improved 2-D FE into the mesh at the location
defined by cracked element number. Based on the computed natural frequencies from
modal analysis using ABAQUS (2004), the objective/fitness function to be minimised
is defined as follows:

FðCracked element number; a=HÞ ¼
Xn

i¼1

jxc=xi � xc=x
�
i j; ð20Þ

where n is the number of frequency ratios being considered, xc=xi are the natural
frequency ratios, which are functions of the cracked element number and crack depth
ratio (a=H), and are calculated using the improved 2-D FE, and xc=x

�
i are the natural

frequency ratios determined through modal analysis experiments, which are applied to
the crack detection system as inputs (see Figure 8). An objective/fitness function value
of zero indicates an exact match between the values of frequencies.

4.2.2. Chromosome size and encoding

Instead of the standard uniform discretisation of the possible interval of the cracked
element number and crack depth ratio (a=H), they will be assumed to take one value
among a discrete set of values in the possible interval. This is done in order to reduce
the search space and also to bias the search away from regions of the search space
where they assume unrealistic values.

Crack location and crack depth parameters can be an integer in the range 1� 2n

and 1� 2m, respectively, with n and m being the number of bits used to encode each
possible value of the cracked element number and crack depth ratio (a=H). Crack
location and crack depth parameters correspond to an entry in the tables of possible val-
ues for the cracked element number and crack depth ratio (a=H). The tables are built
preserving an ordering of increasing crack location ratio (c=L) and crack depth ratio
(a=H), e.g. integer 1 represents less crack location ratio/crack depth ratio than integer 2
and so on. The tables are built according to a recurrent formula. In this way, one fixes
the crack location ratio (c=L) and crack depth ratio (a=H) for the first integer and the
next values are increased as follows:

c

L
ðiÞ ¼ c

L
ði� 1Þ þ D

c

L
; i ¼ 2; . . . ; 2m; ð21Þ

a
H
ðiÞ ¼ a

H
ði� 1Þ þ D

a
H
; i ¼ 2; . . . ; 2n; ð22Þ

where Dc=L and Da=H are the increments of crack location ratio (c=L) and crack depth
ratio (a=H), respectively, for each element of the tables. The values of Dc=L and Da=H
are chosen by the user according to the characteristics of the problem at hand, the avail-
able prior information (such as the maximum expected level of the crack location ratio
(c=L) and crack depth ratio (a=H)), and the values n and m adopted. If the exact value
of the real crack location ratio (c=L) and crack depth ratio (a=H) occurring in the struc-
ture is not represented in the tables, the c=L and a=H should go to the closest value of
the respective tables. During the search, if the crack location and crack depth parameter
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values falls out of the respective possible entry values in the tables, their values need to
be adjusted or reassigned to an entry in the tables corresponding to INT (possible
range� a uniform random number generated between 0 and 1). An individual chromo-
some is thus a vector of integers (binary encoded) representing a candidate solution that
corresponds to a cracked element number and crack depth ratio (a=H).

In practice, the crack identification problem is subject to uncertainties originating in
the discrete model as well as in the measurements that are made in the cracked struc-
ture. The proposed encoding reduces the search space to be explored, maintains flexibil-
ity and allows for the introduction of any available domain knowledge. For instance,
one can refine the values in the tables for the cracked element number and crack depth
ratio and in any given desired region in the interval of possible values.

4.2.3. Initial population

In order to determine the appropriate population size in this study, the various
population sizes of 5, 8, 10, 12 and 15 individuals, each represented by a vector gener-
ated at random, are tested, in numerical Example 1 presented in the subsequent section.
The experience gained in the convergence study of Example 1 is used to analyse the
problems presented in other numerical examples.

4.2.4. Objective/fitness function evaluation

Natural frequencies are obtained through ABAQUS (2004) modal analysis in
conjunction with the improved 2-D FE, and the objective/fitness function is evaluated
for each chromosome, decoded values of which represent the cracked element number
and crack depth ratio (a=H).

4.2.5. Convergence criterion

The overall convergence criterion is checked. If the criterion is satisfied, the whole
iteration process is stopped; otherwise, it is continued to the next step. In this study, the
total prescribed number of generations (= 200) is the overall convergence criterion, and
the global algorithm stops when the prescribed number of generations is reached (outer
loop).

4.2.6. Reproduction and iterating the algorithm

The population for the next generation is obtained through tournament selection and
uniform crossover with a crossover rate of 1.0. The elitism strategy is applied to
preserve the best members. Inner loop nominal convergence is checked. If the inner
loop does not converge, repeat steps (iv) – (vi). Otherwise, restart and regenerate
(replacing the discarded chromosomes in the population by new chromosomes) a new
population randomly while keeping the best individual from the previous generation.
This replacement of the entire population is for searching the overall space for better
solutions in μ-GA. Repeat steps (iv) – (vi).

4.3. Reducing computational time required for overall crack identification
procedure

Evaluation of the objective/fitness function for each chromosome in the population
using the natural frequencies obtained through ABAQUS (2004) modal analysis, in
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conjunction with the improved 2-D FE, is the most computationally intensive operation
in the overall μ-GA-based crack identification procedure. In the present study, decoded
values of the crack depth ratio (a=H) and cracked element number along with the
objective/fitness function value for each chromosome in the population, is saved. In the
global algorithm, after going through the crossover operation and elitism scheme
process, if a particular chromosome remains intact, then the corresponding saved
information is used to avoid repetition of the objective/fitness evaluation function using
the natural frequencies obtained through ABAQUS (2004) modal analysis, thereby
saving the computational time required for the overall μ-GA-based crack identification
procedure.

5. Validation of crack identification technique

The μ-GA-based crack detection procedure outlined above in conjunction with the
improved 2-D FE is validated both for cases of single crack and multiple cracks in a
beam. For single crack detection, validation is performed using the experimental data
reported by Silva and Gomes (1990), who performed an extensive set of modal analysis
experiments on free–free beams with the goal of providing objective data to validate
the proposed techniques for damage detection. For single crack detection, validation is
performed using (a) the experimental data reported by Silva and Gomes (1990), who
performed an extensive set of modal analysis experiments on free–free beams with the
goal of providing objective data to validate the proposed techniques for damage
detection; and (b) the experimental data on fixed–fixed and simply supported beams
reported by Owolabi, Swamidas, and Seshadri (2003).

The proposed μ-GA-based crack detection procedure in conjunction with the
improved 2-D FE has the following advantages, which enable its easy extension to the
case of beams with multiple cracks: (a) the UEL can be inserted into the FE model at
the crack location without any additional mesh refinement in the vicinity of crack,
making it possible to model any number of cracks; (b) μ-GA avoids some of the
weaknesses of conventional gradient-based analytical search methods, including the
difficulty in constructing well-defined mathematical models directly from practical
inverse problems and is capable of solving an optimisation problem with a large
number of variables. While estimating the location and depth of additional cracks in a
structure, μ-GA just treats them as additional variables.

For multiple cracks detection, validation is performed using (a) the experimental
data reported by Patil and Maiti (2005), who tested cantilever beams with two normal-
edge cracks of different sizes at different locations starting from the fixed end; and (b)
the natural frequencies obtained by FE analysis of uniform beams with two cracks on
three pin supports reported by Patil and Maiti (2003). In the numerical results presented
below for each test point, the algorithm is run from five different initial random points
and it is observed that the answer obtained with different runs converged to the same
optimal solution.

5.1. Example 1: Single crack in free–free beam

Test specimens adopted by Silva and Gomes (1990) were steel beams with
:032� :016 m2 rectangular cross-section and :72 m long. The corresponding material
properties were: E ¼ 2:06� 1011N=m2; m ¼ :29; and q ¼ 7650kg=m3. In the current
study, the same beam is modelled with 89 standard four-node ABAQUS (2004)
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elements and one UEL at the location defined by cracked element number. Typical
discretisation of free–free beam is shown in Figure 9. Since the beam is edge-cracked,
all elements in the top layer are considered to be candidate-cracked elements, even
though being a free–free beam top layer or bottom layer is insignificant. Noting that the
free–free beam is symmetric with respect to geometry, only half the beam needs to be
considered for modal analysis and hence, for the discretisation shown in Figure 9, the
possible values of the cracked element number is 23, i.e. the possible value of the
cracked element number is between 46 and 68. For the crack depth ratio (a=H), 25

possible values in the interval 0\a=H\:5 with an increment of Da=H ¼ :5=32 are
considered. So the cracked element number requires five bits, and the crack depth ratio
(a=H) requires five bits, and thus every individual chromosome contains 10 bits.

In order to determine the appropriate population size in this study, the various
population sizes of 5, 8, 10, 12 and 15 individuals are tested, respectively, for the crack
case c=L ¼ a=H ¼ :25 using the proposed μ-GA-based crack detection procedure. It
can be observed from Figure 10 that all the five population sets show similar conver-
gence rate with different number of generations/computational time. Accordingly, the
population size of 10 individuals is selected for the subsequent numerical study. Table 1
presents, for a typical population size of 10 individuals, the decoded values of the
cracked element number, crack location ratio (c=L), crack depth ratio (a=H) and
objective/fitness function.

The method for crack identification is verified for several combinations of crack
locations and crack sizes listed in Table 2. The first four natural frequencies measured
by Silva and Gomes (1990) are used as input in this case. Figures 11 and 12 show the
evolution of the objective/fitness function with generations for the crack case
c=L ¼ a=H ¼ :25 obtained using μ-GA and classical GA, respectively. For the classical
GA, the population size is taken as 30, the minimum recommended to prevent genetic
drift. For the classical GA, the optimal solution is identified at 34th generation (No. of

Figure 10. μ-GA convergence history (free–free beam).

46 47 66 76 86 69 70 89 90 

Figure 9. Discretisation of free–free beam with candidate cracked elements in top layer.
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fitness evaluation required would be 34� 30 = 1020), whereas using μ-GA, the optimal
solution is identified at 60th generation (No. of fitness evaluation required would be
60� 10 = 600). Typical convergence plots for μ-GA for the crack case
c=L ¼ a=H ¼ :25 are shown in Figures 13 and 14. From these figures, it can be
observed that the damaged site is located at the 22nd generation and the damage extent
is correctly evaluated at the 60th generation. The predicted crack location ratio (c=L)
and crack depth ratio (a=H) are .256 and .266, respectively.

Table 2 compares the predicted crack locations and crack sizes with the correspond-
ing actual values. The predicted values are in good agreement with the corresponding
actual values. It is worth noting that the average error in the crack location predictions
is .90 and the average error in the crack size predictions is 2.73, which is less when
compared to the predictions reported by Li, Chen, Ma, and He (2005).

Table 1. Population of 10 random chromosomes along with the corresponding decoded values
and objective/fitness function.

Chromosome Cracked element no.

Crack

Objective/fitness functionLocation c=L Size a=H

0,001,111,011 49 .0778 .4375 .0861
0,011,100,101 53 .1667 .0938 .0691
0,111,111,001 61 .3444 .4062 .1234
0,110,000,001 58 .2778 .0312 .0695
0,010,010,000 50 .1000 .2656 .077
0,111,011,000 60 .3222 .3906 .0903
0,000,001,110 46 .0111 .2344 .0679
1,000,110,111 63 .3889 .375 .1047
0,011,010,001 52 .1444 .2812 .0827
1,001,111,110 65 .4333 .4844 .1637

Table 2. Comparison of predicted crack positions and sizes of free–free beam with
corresponding actual values (example 1).

Crack case

Actual crack (Silva &
Gomes, 1990) Predicted crack Predicted error (%)

Location c=L Size a=H Location c=L Size a=H Location c=L Size a=H

1 .125 .125 .144 .078 1.94 4.69
2 .125 .250 .122 .281 .28 3.13
3 .125 .375 .122 .422 .28 4.69
4 .125 .500 .122 .500 .28 .00
5 .250 .125 .233 .094 1.67 3.12
6 .250 .250 .256 .266 .56 1.56
7 .250 .375 .256 .422 .56 4.69
8 .250 .500 .256 .500 .56 .00
9 .375 .125 .433 .078 5.83 4.69
10 .375 .250 .367 .266 .83 1.56
11 .375 .375 .367 .422 .83 4.69
12 .375 .500 .367 .500 .83 .00
13 .500 .125 .500 .109 .00 1.56
14 .500 .250 .500 .297 .00 4.69
15 .500 .375 .500 .422 .00 4.69
16 .500 .500 .500 .500 .00 .00
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Figure 11. Evolution of mean population fitness and best fitness with generations using μ-GA
(free–free beam).

Figure 12. Evolution of mean population fitness and best fitness with generations using classical
GA (free–free beam).

Figure 13. Crack location ratio (c=L) as function of generation number (free–free beam).
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5.2. Example 2: Single crack in simply supported beam

Owolabi, Swamidas, & Seshadri (2003) tested seven simply supported beam models
with cracks at seven different locations, starting from a location nearer to one of the
simply supported ends. The crack depth was varied from :1H to :7H (the depth of the
beam, H ¼ :0254m) with an increment of :1H at each crack location. Each beam model
was made of an aluminium bar of cross-sectional area :0254 m� :0254 m with a length
of :650m. It had the following material properties: Young’s modulus
E ¼ 7� 1010 N=m2, density q ¼ 2696kg=m3 and the Poisson ratio m ¼ :35 .

In the current study, the same beam is modelled with 101 standard four-node
ABAQUS (2004) elements and one UEL at the top of the beam. Typical discretisation
of simply supported beam is shown in Figure 15. Similar to free–free beam, as the
simply supported beam is symmetric with respect to geometry, only half the beam
needs to be considered for modal analysis and hence, for the discretisation shown in
Figure 15, the possible values of the cracked element number is 26, i.e. the possible
value of the cracked element number is between 52 and 77. For the crack depth ratio
(a=H), 25 possible values in the interval 0\a=H\:5 with an increment of
Da=H ¼ :5=32 are considered. So the cracked element number requires five bits, and
the crack depth ratio (a=H) requires five bits, and thus every individual chromosome
contains 10 bits.

Similar to that for free–free beam case, the method for crack identification is
verified for several combinations of crack locations and crack sizes listed in Table 3.
The first three natural frequencies measured by Owolabi et al. (2003) are used as input
in this case. The predicted crack locations and crack sizes are compared with the corre-
sponding actual values in Table 3. The predicted crack locations and crack sizes are in

Figure 14. Crack depth ratio (a=H ) as function of generation number (free–free beam).

52 53 57 67 77 78 79 101 102 

Figure 15. Discretisation of simply supported beam with candidate cracked elements in top
layer.

European Journal of Computational Mechanics 273



good agreement with the actual values with the average error in the crack location and
crack size predictions equal to 3.50 and 2.83, respectively.

5.3. Example 3: Single crack in fixed–fixed beam

Similar to simply supported beam models, Owolabi et al. (2003) also tested seven
fixed–fixed beam models having the same geometrical and material properties with
cracks at seven different locations, starting from a location nearer to one of the clamped
end. In the current study, the fixed–fixed beam is modelled with the same discretisation
as shown in Figure 15 (except that the support ends are fixed–fixed, instead of simply
supported), and hence every individual chromosome contains 10 bits.

Similar to that for simply supported beam case, using the first three natural frequen-
cies measured by Owolabi et al. (2003) are used as input, the method for crack identifi-
cation is verified for several combinations of crack locations and crack sizes listed in
Table 4. The comparison of the predicted crack locations and crack sizes with the corre-
sponding actual values in Table 4 shows that the predicted values are in good agree-
ment with the actual values. The average error in the crack location predictions is 2.46
and the average error in the crack size predictions is 2.63.

5.4. Example 4: Two cracks in cantilever beam

Patil and Maiti (2005) tested cantilever beams with two normal edge cracks of different
sizes at different locations, starting from the fixed end. The crack depth was varied from
:1H to :65H (the depth of the beam, H ¼ :0191 m). Each beam model was made of an

Table 3. Comparison of predicted crack positions and sizes of simply supported beam with
corresponding actual values (Example 2).

Crack case

Actual crack (Owolabi
et al., 2003) Predicted crack Predicted error (%)

Location c=L Size a=H Location c=L Size a=H Location c=L Size a=H

1 .1875 .10 .2451 .0469 5.76 5.31
2 .1875 .20 .2843 .1562 9.68 4.38
3 .1875 .30 .2255 .2969 3.80 .31
4 .1875 .40 .2451 .4219 5.76 2.19
5 .1875 .50 .2255 .4688 3.80 3.13
6 .3125 .10 .3627 .1094 5.02 .94
7 .3125 .20 .3039 .1562 .86 4.38
8 .3125 .30 .3235 .3125 1.10 1.25
9 .3125 .40 .3235 .4063 1.10 .62
10 .3125 .50 .3039 .4844 .86 1.56
11 .4375 .10 .4216 .0625 1.59 3.75
12 .4375 .20 .4412 .1875 .37 1.25
13 .4375 .30 .4216 .3281 1.59 2.81
14 .4375 .40 .4216 .4219 1.59 2.19
15 .4375 .50 .4216 .5000 1.59 .00
16 .5000 .10 .4216 .0938 7.84 .62
17 .5000 .20 .5000 .1250 .00 7.50
18 .5000 .30 .4412 .3750 5.88 7.50
19 .5000 .40 .4412 .4688 5.88 6.88
20 .5000 .50 .4412 .5000 5.88 .00
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aluminium alloy bar of cross-sectional area :0191 m� :0064 m with a length of :24 m.
It had the following material properties: Young’s modulus E ¼ 70:06� 109 N=m2,
density q ¼ 2645:19 kg=m3 and the Poisson ratio m ¼ :35.

In the current study, the cantilever beam with two normal edge cracks is modelled
with 50 standard four node elements ABAQUS (2004) elements and two UELs at the
top of the beam. For the typical discretisation of cantilever beam shown in Figure 16,
the possible values of the cracked element number are 26, i.e. the possible value of the
cracked element number is between 27 and 52. For the crack depth ratio (a=H), 25

possible values in the interval 0\a=H\:5 with an increment of Da=H ¼ :5=32 are
considered. So the cracked element number requires five bits, and the crack depth ratio
(a=H) requires five bits, and thus every individual chromosome for cantilever beam
with two normal edge cracks contains 2� 10 = 20 bits.

Figure 17 shows the evolution of the objective/fitness function with generations for
the crack case c1=L ¼ :100, c2=L ¼ :496 and a1=H ¼ a2=H ¼ :450 obtained using
μ-GA. The optimal solution is identified at 102th generation. Typical convergence plots

Table 4. Comparison of predicted crack positions and sizes of fixed–fixed beam with
corresponding actual values (Example 3).

Crack case

Actual crack (Owolabi
et al., 2003) Predicted crack Predicted error (%)

Location c=L Size a=H Location c=L Size a=H Location c=L Size a=H

1 .1875 .10 .2843 .0469 9.68 5.31
2 .1875 .20 .2255 .1562 3.80 4.38
3 .1875 .30 .2451 .2344 5.76 6.56
4 .1875 .40 .2059 .3906 1.84 .94
5 .1875 .50 .2451 .4531 5.76 4.69
6 .3125 .10 .3039 .0469 .86 5.31
7 .3125 .20 .3039 .1562 .86 4.38
8 .3125 .30 .3039 .2813 .86 1.88
9 .3125 .40 .3235 .3906 1.10 .94
10 .3125 .50 .3235 .4844 1.10 1.56
11 .4375 .10 .4608 .1094 2.33 .94
12 .4375 .20 .4608 .2188 2.33 1.88
13 .4375 .30 .4412 .3438 .37 4.38
14 .4375 .40 .4412 .4063 .37 .62
15 .4375 .50 .4412 .5000 .37 .00
16 .5000 .10 .5000 .1094 .00 .94
17 .5000 .20 .5000 .1875 .00 1.25
18 .5000 .30 .4608 .3438 3.92 4.38
19 .5000 .40 .4804 .4219 1.96 2.19
20 .5000 .50 .4412 .5000 5.88 .00

27 28 50 51 52 29 30 

Figure 16. Discretisation of cantilever beam with candidate cracked elements in top layer
(cantilever beam).
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for the same crack case are shown in Figures 18 and 19 and it can be seen that the
damaged sites are located at the 23rd and 102nd generations and the damage extents
are correctly evaluated at the 90th and 88th generations. The predicted crack location
ratio (c=L) and crack depth ratio (a=H) are (.135, .481), and (.469, .469), respectively.

Similar to that for single crack beam cases, the method for crack identification is
verified for several combinations of crack locations and crack sizes listed in Table 5.
The first five natural frequencies measured by Patil and Maiti (2005) are used as input
in this case. The predicted crack locations and crack sizes are compared with the
corresponding actual values in Table 5. The predicted crack locations and crack sizes
are in good agreement with the actual values with the average error in the crack
location and crack size predictions equal to 3.01 and 5.04, respectively.

5.5. Example 5: two cracks in uniform beams on three-pin supports

Patil and Maiti (2003) reported natural frequencies obtained by FE analysis of uniform
beams with two cracks on three-pin supports, starting from one of the simply supported
ends. The crack depth was varied from :1H to :5H (the depth of the beam,
H ¼ :02 m). Uniform beam on three-pin supports model was made of cross-sectional
area :02m� :012 m with a length of each span :3m. It had the following material

Figure 17. Evolution of mean population fitness and best fitness with generations using μ-GA
(cantilever beam).

Figure 18. Crack location ratios (c=L) as function of generation number (cantilever beam).

276 A. Kalanad and B.N. Rao



properties: Young’s modulus E ¼ 210� 109 N=m2, density q ¼ 7860 kg=m3 and the
Poisson ratio m ¼ :3.

Each span of the uniform beam is modelled with 59 standard four-node ABAQUS
(2004) elements and one UEL at the top of the beam. Typical discretisation of uniform
beam is shown in Figure 20. For the discretisation shown in Figure 20, the possible
values of the cracked element number are 60, i.e. considering one crack in each span
the possible value of the cracked element number for the first and second crack is
between 61–90 and 91–120, respectively. For the crack depth ratio (a=H), 25 possible
values in the interval 0\a=H\:5 with an increment of Da=H ¼ :5=32 are considered.
So the cracked element number requires five bits, and the crack depth ratio (a=H)
requires five bits, and thus every individual chromosome for uniform beam with two
normal-edge cracks contains 2� 10 = 20 bits.

Table 5. Comparison of predicted crack positions and sizes of cantilever beam with
corresponding actual values (Example 4).

Crack case

Actual crack (Patil &
Maiti, 2005) Predicted crack Predicted error (%)

Location c=L Size a=H Location c=L Size a=H Location c=L Size a=H

1 Crack 1 .200 .200 .212 .188 1.15 1.25
Crack 2 .498 .430 .481 .500 1.72 7.00

2 Crack 1 .250 .455 .212 .453 3.85 .19
Crack 2 .500 .250 .481 .359 1.92 1.94

3 Crack 1 .100 .450 .135 .469 3.46 1.88
Crack 2 .496 .450 .481 .469 1.52 1.88

4 Crack 1 .250 .460 .212 .438 3.85 2.25
Crack 2 .500 .150 .442 .313 5.77 16.25

5 Crack 1 .150 .300 .173 .313 2.31 1.25
Crack 2 .496 .455 .481 .500 1.52 4.50

6 Crack 1 .250 .434 .212 .391 3.85 4.34
Crack 2 .500 .350 .442 .406 5.77 5.63

7 Crack 1 .250 .420 .212 .359 3.85 6.06
Crack 2 .500 .400 .442 .438 5.77 3.75

8 Crack 1 .250 .150 .250 .234 .00 8.44
Crack 2 .500 .450 .519 .500 1.92 5.00

Figure 19. Crack depth ratios (a=H ) as function of generation number (cantilever beam).
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Figure 21 shows the evolution of the objective/fitness function with generations for
the crack case c1=L ¼ :250, c2=L ¼ :750 and a1=H ¼ :250, a2=H ¼ :150 obtained
using μ-GA. The optimal solution is identified at 103rd generation. Typical convergence
plots for the same crack case are shown in Figures 22 and 23 and it can be seen that
the damaged sites and the damage extents are correctly evaluated at the 103rd
generation. The predicted crack location ratio (c=L) and crack depth ratio (a=H) are
(.242, .742) and (.266, .141), respectively.

Figure 21. Evolution of mean population fitness and best fitness with generations using μ-GA
(uniform beam).

61 62 90 91 191 12089 92 

Figure 20. Discretisation of uniform beam with candidate cracked elements in top layer.

Figure 22. Crack location ratios (c=L) as function of generation number (uniform beam).
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Similar to that for single crack beam cases, the method for crack identification is
verified for several combinations of crack locations and crack sizes listed in Table 6.
The first five natural frequencies reported by Patil and Maiti (2003) are used as input in
this case. The predicted crack locations and crack sizes are compared with the
corresponding actual values in Table 6. The predicted crack locations and crack sizes
are in good agreement with the actual values with the average error in the crack
location and crack size predictions equal to 1.15 and 3.59, respectively.

6. Conclusions

This paper presents an improved 2-D FE with an embedded edge crack for crack depth
ratios ranging up to .9 and for predicting natural frequency of a cracked beam more

Figure 23. Crack depth ratios (a=H ) as function of generation number (uniform beam).

Table 6. Comparison of predicted crack positions and sizes of uniform beam with corresponding
actual values (Example 5).

Crack case

Actual crack (Patil &
Maiti, 2003) Predicted crack Predicted error (%)

Location c=L Size a=H Location c=L Size a=H Location c=L Size a=H

1 Crack 1 .250 .250 .242 .266 .83 1.56
Crack 2 .750 .150 .742 .141 .83 .94

2 Crack 1 .250 .250 .258 .281 .83 3.13
Crack 2 .750 .250 .758 .266 .83 1.56

3 Crack 1 .250 .250 .258 .188 .83 6.25
Crack 2 .750 .350 .758 .422 .83 7.19

4 Crack 1 .250 .250 .258 .328 .83 7.81
Crack 2 .750 .500 .758 .500 .83 .00

5 Crack 1 .300 .150 .325 .141 2.50 .94
Crack 2 .600 .250 .592 .266 .83 1.56

6 Crack 1 .350 .250 .358 .203 .83 4.69
Crack 2 .600 .300 .608 .375 .83 7.50

7 Crack 1 .400 .350 .392 .406 .83 5.63
Crack 2 .700 .350 .708 .375 .83 2.50

8 Crack 1 .450 .150 .475 .094 2.50 5.63
Crack 2 .650 .150 .625 .156 2.50 .63
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accurately. The FRANC2DL FE code is used with the J-integral option to extract the
stress intensity factors from stress–strain fields around the crack tip location. The
geometric factors for various loading cases of the cracked element for crack depth ratios
ranging up to .9 are obtained by means of curve-fitting techniques, and they are subse-
quently used to obtain the components of the stiffness matrix for the cracked element
from the Castigliano’s first theorem using fracture mechanics concepts. The element is
implemented in the commercial FE code ABAQUS as UEL subroutine. The first natural
frequency for the bending mode for several beam cases with different damage locations,
obtained using the proposed improved FE, are in good agreement with the available
experimental data. μ-GA-based crack identification methodology to detect crack location
and size in conjunction with the improved cracked element is also presented for
singularity problems like a cracked beam. The proposed μ-GA-based crack detection
procedure using the improved 2-D FE is validated using the available experimental and
FE modal analysis data reported in the existing literature. The predicted crack locations
and crack sizes are in good agreement with the actual values. Future work will attempt
to extend this approach to account for the influence of the plastic zone ahead of the
crack tip on the flexibility of structures.
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