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Tyre/road contact is the main source of car noise at speeds greater than 50 km/h. In
this context, we have developed a new approach for modelling tyre vibrations and
contact with rigid road surfaces during rolling. For tyres, a periodic model is used
to compute Green’s functions. The response of tyres can, thus, be modelled over a
large frequency range. Then, a fast convolution and a new contact model are devel-
oped and examples of computations of contact stress are given for real road textures.
Spectra of stress for different tyre velocities are also computed.
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1. Introduction

The prediction of tyre road noise needs both a tyre vibration model and a method for
computing the contact forces between a tyre and a road.

For the tyre vibrations, the simplest approach is the circular ring model as in Huang
and Soedel (1987). However, for complex geometrical or material properties of the tyre,
a finite element model is much more appropriate. To avoid heavy three-dimensional
(3D) computations of Brinkmeier, Nackenhorst, Petersen, and vonEstorff (2008),
several efficient models have been proposed, such as the wave finite element approach
in Waki, Mace, and Brennan (2009) or the recursive method presented in Duhamel,
Erlicher, and Nguyen (2011), McIntire, Schumacher, and Woodhouse (1983).

Here, the dynamic response of the tyre is calculated by convolution of the contact
forces with the Green’s functions of the tyre. The convolution technique for contact
problems is used by many authors: McIntire, Schumacher, and Woodhouse (1983) have
applied the approach to the string/bow contact to study large-amplitude instruments.
Wang and Kim (1996, 1997) and Nordborg (2002) have used the same approach for a
thin beam impacting against a stop, A. Nordborg (2002) for the wheel/rail contact
problem and many other authors have used this technique in the tyre/road contact
(Andersson & Kroop, 2008; Hamet, 2001; Wullens, 2004).

For orthotropic plates such Green’s functions were analytically found in Duhamel
(2009), but here they are found from the recursive model (Duhamel et al., 2011).
However, the computation of the convolution can be time consuming. In this work,
we have used a different method. First, it consists in the modal expansion of the
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pre-calculated Green’s functions. The modal parameters are then used to construct a
new convolution which allows quicker calculations than the traditional convolution.
Then, modal convolution is adapted to dynamic contact problems by using a kinematic
contact condition.

The outline of the paper is, thus, the following. In Section 2, the contact model,
including the fast convolution and the kinematic contact condition is described. Then,
in Section 3, a simple one-dimensional (1D) model is used as an example to illustrate
the advantages of this contact model. Then, a 3D finite element model of the tyre is
presented and its Green’s functions are computed. Finally, Section 4 gives the numeri-
cal results of displacements and contact stress for two road textures.

2. Contact model

A linear discretised dynamic problem can be generally expressed by a second-order dif-
ferential equation in the time domain:

M€uðtÞ þ C _uðtÞ þKuðtÞ ¼ qðtÞ (1)

where M, C, K, u and q are the mass matrix, the damping matrix, the stiffness matrix,
displacement and force, respectively. In the frequency domain, the problem can be writ-
ten as:

ûðxÞ ¼ ĝðxÞq̂ðxÞ (2)

where ĝ is the Green’s function:

ĝðxÞ ¼ ½�x2Mþ jxCþK��1 (3)

The traditional method when the time Green’s function g(t) is known is to calculate the
dynamic response of the system by convolving the force with the Green’s function:

uðtÞ ¼
Z t

0
gðt � sÞqðsÞds (4)

For a unilateral contact between a dynamic system (tyre) and a rigid body (road), both
force q(t) and displacement u(t) are unknown. In addition to the convolution equation
(4), the following contact conditions must be verified:

uðtÞ ¼ urðtÞ ; qðtÞ[ 0 (5)

uðtÞ[ urðtÞ ; qðtÞ ¼ 0 (6)

where ur is the vertical road position (only vertical displacements are considered here).

2.1. Fast convolution

The computation of the response of the tyre by a standard convolution requires a large
number of coefficients. Here, we try to reduce the computing time by simplifying the
Green’s function which can be approximated by a linear combination of Nm modes (not
necessarily the true modes) as:

ĝijðxÞ ¼
Xk¼Nm

k¼1

Ak
ij

�x2 þ 2
ffiffiffiffiffiffiffi�1

p
nkijx

k
ijxþ xk2

ij

(7)
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Knowing ĝijðxÞ by a finite element model or by measurements, we must identify the
residues Ak

ij, the dampings nkij and the resonance frequencies xk
ij. There are several

methods to solve this problem. In this study the LSCE (least squares complex exponen-
tial) is used. The principle of this algorithm is detailed in Appendix 1.

By taking the analytical inverse Fourier transform, the Green’s function in the time
domain can be found by:

gijðtÞ ¼
Xk¼N

k¼1

Ak
ij

xdk
ij

e�nkijx
k
ij HðtÞ (8)

with:

xdk
ij ¼ xk

ij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� nk

2

ij

q
and H(t) is the Heaviside step function:

HðtÞ ¼ 0 for t\0 (9)

HðtÞ ¼ 1 for t > 0

The displacement u(t) is obtained from the contact force q(t) by the convolution:

uðtÞ ¼
Z t

0
gðsÞqðt � sÞds ¼

Z t

0
gðt � sÞqðsÞds (10)

Inserting expression (8) for gij(t) in Equation (10) yields to the displacement at point i:

uiðtÞ ¼
Xj¼Np

j¼1

Z t

0

Xk¼N

k¼1

Ak
ij

xdk
ij

e�nkijx
k
ijðt�sÞ½sinðxdk

ij ðt � sÞÞ�qjðsÞds (11)

where Np is the size of displacements u.
Separating the t and τ variables and rearranging, the displacement can be written as:

uiðtÞ ¼
Xj¼Np

j¼1

Xk¼N

k¼1

Ak
ij

xdk
ij

e�nkijx
k
ij t½sinðxdk

ij tÞakijðtÞ � cosðxdk
ij tÞbkijðtÞ� (12)

where akijðtÞ and bkijðtÞ are computed by:

akijðtÞ ¼
Z t

0
en

k
ijx

k
ijscosðxdk

ij sÞqjðsÞds (13)

bkijðtÞ ¼
Z t

0
en

k
ijx

k
ijssinðxdk

ij sÞqjðsÞds (14)

The parameters akijðt þ DtÞ and bkijðt þ DtÞ can be computed by the discrete versions of
Equation (14) as:

akijððnþ 1ÞDtÞ ¼ akijðnDtÞ þ en
k
ijx

k
ijnDtcosðxkd

ij nDtÞqjðnDtÞDt

bkijððnþ 1ÞDtÞ ¼ bkijðnDtÞ þ en
k
ijx

k
ijnDtsinðxkd

ij nDtÞqjðnDtÞDt (15)
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2.2. Kinematic contact conditions

When there is no contact, the contact force equals zero and the displacement can be
computed by fast convolution. When there is contact, conditions must be written to find
the contact force. We propose here to write two conditions, one for the displacement
and the other for the velocity.

Equation (10) can be separated into a term depending on the past history of forces
uh(t) and another term depending only on the present time step:

uðtÞ ¼
Z t�Dt

0
gðt � sÞqðsÞds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
uhðtÞ

þ
Z Dt

0
gðsÞqðt � sÞds (16)

The displacement in point i is:

uiðtÞ ¼
Xj¼Np

j¼1

Z t�Dt

0
gijðt � sÞqjðsÞds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
uhijðtÞ

þ
Z Dt

0
gijðsÞqjðt � sÞds

2
666664

3
777775 (17)

In the same way, taking the derivative of Eq. (17) leads to an equation in terms of the
velocity v(t):

viðtÞ ¼
Xj¼Np

j¼1

Z t�Dt

0
g0ijðt � sÞqjðsÞds|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
vhijðtÞ

þ
Z Dt

0
g0ijðsÞqjðt � sÞds

2
666664

3
777775 (18)

Denoting:

YðtÞ ¼

u1ðtÞ
v1ðtÞ
..
.

uNpðtÞ
vNpðtÞ

2
666664

3
777775; Yh

j ¼

uh1jðtÞ
vh1jðtÞ
..
.

uhNpj
ðtÞ

vhNpj
ðtÞ

2
6666664

3
7777775 (19)

leads to:

YðtÞ ¼
Xj¼Np

j¼1

Yh
j ðtÞ þWðqðtÞÞ (20)

where Ψ is an integral operator giving the influence of the contact force at the present
time on the displacement and the velocity. So, the contact conditions are:

Y ¼ Yr ¼ ur1ðtÞ
dur1ðtÞ
dt

� � � urNp
ðtÞ

durNp
ðtÞ

dt

" #T
(21)
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where uri ðtÞ and duri ðtÞ
dt are the position of the road and its velocity at point i as seen in

the tyre reference system. Using the modal decomposition for the displacement, Equa-
tion (12) yields to the following expression:

viðtÞ ¼ �
Xj¼Np

j¼1

Xk¼N

k¼1

Ak
ijn

k
ijx

k
ij

xdk
ij

e�nkijx
k
ij t½sinðxdk

ij tÞakijðtÞ � cosðxdk
ij tÞbkijðtÞ�

þ
Xj¼Np

j¼1

Xk¼N

k¼1

Ak
ije

�nkijx
k
ijt½cosðxdk

ij tÞakijðtÞ þ sinðxdk
ij tÞbkijðtÞ� ð22Þ

uh(t) and vh(t) are obtained from Equation (12) and (22) by computing α and β with
q = 0 at the present time. The real value of this force q(t) at present time is such that:

DY ¼ Yr � Yh ¼
Xj¼Np

j¼1

Z t

t�Dt

Xk¼N

k¼1

Ak
1j

xdk
1j

e�nk1jx
k
1jðt�sÞ½sinðxdk

1j ðt � sÞÞ�qjðsÞdsZ t

t�Dt

Xk¼N

k¼1

Ak
1j

xdk
1j

e�nk1jx
k
1jðt�sÞ½�nk1jx

k
1jsinðxdk

1j ðt � sÞÞ þ xdk
1j cosðxdk

1j ðt � sÞÞ�qjðsÞds

..

.Z t

t�Dt

Xk¼N

k¼1

Ak
Npj

xdk
Npj

e�nkNp jx
k
Np j

ðt�sÞ½sinðxdk
Npj ðt � sÞÞ�qjðsÞdsZ t

t�Dt

Xk¼N

k¼1

Ak
Npj

xdk
Npj

e�nkNp jx
k
Np j

ðt�sÞ½�nkNpj
xk

Npj
sinðxdk

Npj
ðt � sÞÞ þ xdk

Npj
cosðxdk

Npj
ðt � sÞÞ�qjðsÞds

2
666666666666666664

3
777777777777777775

The integrals can be computed by Gauss quadratures with two points. The values of
the forces at these two Gauss points are obtained by:

q ¼

q11
q21
..
.

q1Np

q2Np

2
6666664

3
7777775 ¼

Xk¼N

k¼1

Wk
11 � � � Wk

1Np

..

. ..
. ..

.

..

. ..
. ..

.

Wk
Np1

� � � Wk
NpNp

2
66664

3
77775

0
BBBB@

1
CCCCA

�1 du1
dv1
..
.

duNp

dvNp

2
666664

3
777775 (23)

with Ψ a 2 × 2 matrix defined by:

Wk11
ij ¼ Ak

ij

xkd
ij

en
k
ijx

k
ijðt�t1Þsinðxkd

ij ðt � t1ÞÞ Dt
2

(24)

Wk12
ij ¼ Ak

ij

xkd
ij

en
k
ijx

k
ijðt�t2Þsinðxkd

ij ðt � t2ÞÞ Dt
2

(25)

Wk21
ij ¼ Ak

ij

xdk
ij

e�nkijx
k
ijðt�t1Þ �nkijx

k
ijsinðxdk

ij ðt � t1ÞÞ þ xdk
ij cosðxdk

ij ðt � t1ÞÞ
h iDt

2
(26)

Wk22
ij ¼ Ak

ij

xdk
ij

e�nkijx
k
ijðt�t2Þ �nkijx

k
ijsinðxdk

ij ðt � t2ÞÞ þ xdk
ij cosðxdk

ij ðt � t2ÞÞ
h iDt

2
(27)
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with

t1 ¼ t þ 1� 1ffiffiffi
3

p
� �

Dt
2

t2 ¼ t þ 1þ 1ffiffiffi
3

p
� �

Dt
2

(28)

From the knowledge of the contact forces at times t1 and t2, the parameters akijðt þ DtÞ
and bkijðt þ DtÞ can be computed by Equation (15). The number of contact points can
change with time. The contact occurs when uh(t) ≤ ur(t) for each point in the contact
zone. Equation (21) for the points where the contact happens allows to determine the
contact forces at these points.

3. A simple 1D model

3.1. Description of the model

To illustrate the approach presented above, let us consider a simple dynamic contact
problem. The purpose of this example is to test the fast convolution method, to com-
pare it with the traditional convolution and to test the kinematic contact conditions.
The simplest dynamic system considered in vibration problems is the Single Degree of
Freedom (SDoF) oscillator. In this example, the system moves through a profile ur(x)
with a constant speed V0 ¼ 0:1 m:s �1. It is supposed that the displacement occurs
without slipping as shown in Figure 1.

Consider a sinusoidal profile for the road:

ur ¼ A0 sinðkxÞ ¼ A0 sin
2p
kr

V0t

� �
(29)

where kr ¼ 10 mm is the wavelength of the profile and A0 ¼ 5 mm its amplitude.

Figure 1. SDOF mass-spring system on a sinusoidal surface.
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The system verifies the equations:

M€uþ C _uþ Ku ¼ �Mg þ Fc (30)

uðtÞ > urðtÞ (31)

Fc > 0 (32)

with the initial conditions:

u0 ¼ uð0Þ ¼ urð0Þ (33)

v0 ¼ duðtÞ
dt

����
t¼0

¼ 0 (34)

The displacement u(t) at time t depends on the contact forces’ history Fc(t) imposed by
the texture of the surface. Two situations arise: there is a contact between the system
and the surface and the displacement of the system equals the height of the surface
ur(t) and the velocities are also equal, or there is no contact and in this case the contact
force is null and the displacement of the system is strictly higher than that of the sur-
face.

If there is no contact, the displacement and contact forces are given by :

uðtÞ ¼ e�nx0ðt�tcÞ uc cosðxdðt � tcÞÞ þ vc þ nx0uc
xd

sinðxdðt � tcÞÞ
� �

(35)

FcðtÞ ¼ 0 (36)

where uc and vc are, respectively, the displacement and velocity at the last contact
instant tc.

The result will also be compared with the case where a contact stiffness is included.
In this case, if there is contact, the contact force is computed by (37):

FcðtÞ ¼ kcDx ¼ kc½urðtÞ � uhðtÞ� (37)

where kc is the contact stiffness.

3.2. Comparison with standard convolutions

The traditional method when the time Green’s function g(t) is known is to calculate the
dynamic response of the system by convolving the contact forces with the Green’s
function:

uðtÞ ¼
Z t

0
gðt � sÞqðsÞ ds (38)

Equation (38) can be discretised as follows:

uk ¼
Xk
m¼0

gk�mqm (39)

where uk is the displacement at time kΔt.
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Let us note Nt, the number of time steps used to calculate the displacement, and
Ng, the number of time steps for the influencing Green’s function. The effect of the
Green’s function is neglected when the amplitudes of oscillation at time greater than
NgΔt are hundred times smaller than the maximum of the Green’s function g(t) (in this
example, the maximum amplitude is 2:5� 10�4 mN�1:).

Equation (39) is reduced to :

uk ¼
Xminðk;NgÞ

m¼0

gk�mqm (40)

The parameters used in the model for the simulations are given in Table 1.
Using standard convolution is costly in terms of computing time, especially with a

small time step. Indeed, from equations (40) and (12), we can see that in the case of a
classical convolution the number of calculation operations is proportional to the number
of time steps Nt and to the size of the Green’s functions Ng, while in the modal decom-
position it is proportional to Nt and to the approximation order Nm. Table 2 shows a
comparison of computing times between both methods.

3.3. Comparison with penalty methods

Figures 2–4 show the displacements u(t) and the contact forces Fc(t) calculated by the
penalty method and the present method for different values of the contact stiffness kc.
In the figures, we observe that the result obtained with the penalty method depends on
the choice of the contact stiffness. If we use a low value of kc, we obtain an unphysical
solution (interpenetration phenomena), and if we use a high value numerical
instabilities appear. Finally, if we use a suitable value the results converge to those of
the present method. In other words, the drawback of the penalty method is its
instability due to the arbitrary choice of the contact stiffness, while the present method
that only uses a kinematic condition is always stable in this case. For a multi point
contact, the matrix Ψ in equation 20 can be sometimes ill-conditioned.

Table 1. SDoF parameters used in the simulations.

M (kg) K (N/m) ξ kc (N/m)

1 4 × 105 0.02 107

Table 2. Comparison of the computing times between standard convolutions and fast convolu-
tions.

Time step (ms) Nt

Standard convolution Modal decomposition

Ng Computing time (s) Nm Computing time (s)

0.1 2000 1900 0.06 1 0.02
0.1 20,000 1900 1.01 1 0.10
0.01 20,000 19,000 5.50 1 0.15
0.01 200,000 19,000 105.14 1 1.50
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Figure 2. Displacement (a) and contact force (b) obtained by penalty (low contact stiffness kc=
106 m/N.) and kinematic methods : — road profile, penalty method, kinematic method.
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Figure 3. Displacement (a) and contact force (b) obtained by penalty (high contact stiffness
kc = 108 m/N.) and kinematic methods : — road profile, penalty method, kinematic
method.

0 0.05 0.1 0.15
−5
−4
−3
−2
−1
0
1
2
3
4
5

D
is

pl
ac

em
en

t [
m

]

Time [s]
0 0.05 0.1 0.15

0
200
400
600
800

1000
1200
1400
1600
1800
2000

Fo
rc

e 
[N

]

Time [s]

x 10−3(a) (b)

Figure 4. Displacement (a) and contact force (b) obtained by penalty (suitable contact stiffness
kc= 107 m/N.) and kinematic methods : — road profile, penalty method, kinematic
method.
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4. Tyre model

4.1. Tyre section

The first step is to have a model for the vibrations of the tyre. Here, a periodic model
has been developed. It consists in modelling a short cell of the tyre as in Figure 5 and
using calculations on this cell for computing Green’s functions as described below.
Stiffness and mass matrices of a cell are obtained from commercial finite element soft-
ware. In the first step, they are obtained in a cartesian coordinate system and then they
are transformed in a cylindrical coordinate system in which the whole structure is
periodic.

The tyre is also inflated with an internal pressure P. So, its vibrations are consid-
ered as a small perturbation of the prestressed static state shown in Figure 5. This pre-
stress generates an additional stiffness matrix denoted KP. So, the full dynamic stiffness
matrix is given by:

D0ðxÞ ¼ ½K0 þKP þ jxC0 � x2M0� (41)

The tyre studied here is of type Michelin 165/65/R13 77T. Its geometric properties are
given in Table 3. The mechanical properties of the different parts of the tyre are given
in Table 4.

Figure 5. Section of the tyre and displacements for an inflation pressure of 2 bars.

Figure 6. Geometric transformation.
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4.2. Reference cell

Consider a periodic structure consisting of N cells. Let us denote t for the geometric
transformation that connects the real cell and the reference cell (see Figure 3). Denoting
xi0 for the coordinates of node i of the real cell and xi for the coordinates of node i of
the reference cell yields :

x1

..

.

xi

..

.

xL

2
666664

3
777775 ¼

t1 0 0 0 0
..
. . .

. ..
.

0 0 ti 0 0
..
. . .

. ..
.

0 0 0 0 tL

2
666664

3
777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
T

x10
..
.

xi0
..
.

xL0

2
6666664

3
7777775 (42)

where ti is the local transformation matrix of the node i and L is the number of nodes.
Therefore, the mass matrix M and the stiffness matrix K are calculated in the reference
frame from the mass matrices (M0) and stiffness (K0) of the real cell by:

M ¼ TM0T�1 (43)

K ¼ TðK0 þKpÞT�1 (44)

The dynamic stiffness matrix is calculated from the matrices and the damping matrix C

D ¼ DðxÞ ¼ K þ jxC� x2M (45)

Table 4. Mechanical properties of the tyre.

Part Material Property Value

Tread pattern Rubber ρ 1000 kg/m3

E 7Mpa
ν 0.49

Bead Steel ρ 7850 kg/m3

E 162.6 Gpa
ν 0.33

Sidewall Rubber + nylon belt ρ 1000 kg/m3

E 109Mpa
ν 0.48

Tread Rubber + steel belt ρ 2014 kg/m3

Er 663Mpa
Ex 624Mpa
ν 0.4
Gry 330Mpa

Table 3. Properties of tyre Michelin 165/65/R13 77T.

Internal diameter 13′′ (330.2 mm)
Width of the thread 165 mm
Height of the sidewall 65 mm
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4.3. Equivalent matrix

The aim of the periodic model is to build the global dynamic stiffness matrix of the
structure from the dynamic stiffness matrix of a single period. It is obtained by recur-
sively eliminating the internal degrees of freedom between adjacent cells. Consider the
dynamic stiffness matrices D1 and D2 of two neighbouring cells:

D1 ¼
D1

LL D1
LR

D1
RL D1

RR

2
4

3
5; D2 ¼

D2
LL D2

LR

D2
RL D2

RR

2
4

3
5 (46)

The equivalent matrix of the two cells’ structure is obtained by eliminating the internal
degrees of freedom by:

Deq ¼
D1

LL � D1
LRD

�D1
RL �D1

LRD
�D2

LR

�D2
RLD

�D1
RL D2

RR � D2
RLD

�D2
LR

2
4

3
5 (47)

with:

D� ¼ ½D1
RR þ D2

LL��1

This operation is repeated n times with n such as:

N ¼
Xn
i¼1

2pi ; p1 [ p2 [ . . .[ pn (48)

with pi as the position of the ith Figure 1 in the binary representation of the number N
of cells in the tyre.

4.4. Green’s functions

Consider the domain Ω of the tyre. It can be separated into two subdomains Ωl and Ωc.
The number of cells in the domain Ωc where the contact occurs is denoted by Nc. The

theta
X

Y

Z

Nc

Contact surface

Road surface

Figure 7. Contact zone with the road.
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other free part Ωl of the tyre has Nl cells; see Figures 7 and 8. The dynamic stiffness
matrix of domain Ωl, denoted as Deq, is computed by the method presented in
Section 4.3. Then, the full dynamic stiffness matrix of the tyre is computed by a
standard finite element assembling between Deq and the matrices of the Nc cells of Ωc;
see Figure 8 and Equation (49). The matrix of Green’s functions is obtained by solving
a linear system with Equation (49) and different load cases associated to different
points in the contact zone. The number of load cases is limited to the number of dofs
in a section of the tyre.

D11 þ Deq
11 D12 0 . . . Deq

12

D21 D22 þ D11
. .
. . .

. . .
.

0 . .
. . .

. . .
. . .

.

..

. . .
. . .

.
D11 þ D22 D12

Deq
21

. .
. . .

.
D21 D22 þ Deq

22

2
666666666666666664

3
777777777777777775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DT

(49)

Full tyre is modelled using parameters summarised in Tables 3 and 4 with an internal
pressure of 2 bars. Then, Green’s functions are calculated using the finite element soft-
ware Abaqus. Figure 9 shows an example of comparison of Green’s function obtained
by the periodic model and those obtained by Abaqus. The results show a good consis-
tency between the two methods of calculation which confirms the correctness of the

qN+1
qN

q1

q3
q2

Deq

tc

Figure 8. Dofs of the global matrix.
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implementation of the dynamic stiffness matrix in the periodic method. Each Green’s
function is approximated by a modal expansion. Modal parameters are identified by the
LSCE algorithm presented in Appendix 1. For each coefficient of the Green’s matrix,
an optimal number of coefficient Nm is chosen to get the best approximation. To check
the accuracy of the estimated modal data, the Green’s function is regenerated. This
method aims to find the best estimate of the modal data that minimises the error
defined in Equation (50)

E ¼
Rxmax

0 jGðxÞ �Pk¼Nm
k¼1

Ak

�x2þ2jnkxxkþx2
k
jdxRxmax

0 jGðxÞjdx (50)
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Figure 9. Periodic model validation with internal pressure p = 2 bars: – periodic model,
full tyre Abaqus model.

Figure 10. Comparison between a Green’s function – and its approximation in the least
favourable case.
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The error is low, generally below 5%. In Figure 10, a Green’s function and its approxi-
mation are presented for the coefficient with the maximal error (6.5%). One can see
that the approximation is very good. In this example we consider ten sections, each
section contains 1034 nodes, and each Green function is approximated by around fifty
modes (Nm ∼ 50).

5. Road contact

5.1. Road textures

We assume that the roads are perfectly rigid and that the contact area remains constant
with time. We consider two road textures which are measured in Deufrako P2RN pro-
ject (2009). The measured area is L = 2 m long and b = 0.35 m wide with a sampling
of dx ¼ dy ¼ 384 m:. Figure 11 presents the samples of two different roads of sizes
0.1 m by 0.1 m; see [15] for other examples. We want to compute the displacements
and forces in the contact zones. The Green’s functions of the tyre are computed as in
Section 4.3 in the frequency range [0, 4000 Hz]. The contact zone is changing as the
tyre is moving during the rolling process. The contact points are moving in the fixed
coordinate system as:

x ¼ x0 þ V0t

y ¼ y0

z ¼ urðx; yÞ (51)

where (x0, y0, z0) are the coordinates in the system moving at constant velocity V0 with
the tyre. The maximal contact area is constant with time while the real contact area and
the number of contact points can change.

Figure 11. 3D texture of two roads: (a) upper figure and (b) lower figure.
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5.2. Numerical results

All simulations are made for a contact length Lc = 6 cm and a width lc = 8 cm. The
number of points is Nx = 10 along X and Ny = 12 along Y. The tyre is rolling over a
length L = 2 m. The tread is discretized with steps dX � dY � 5 mm with an
interpolation of the tyre height between two tread points. Figures 12 and 13 present the
displacements and stress for the two road surfaces of Figure 11. The displacements
have shapes similar to road textures. Losses of contact and high stress are seen at the
maximal heights of asperities. Road (A) generates higher stress than road (B). The
stress level, denoted Lf and computed in decibels relatively to a reference value of
σ0 = 102 N/m, is obtained by:

Lf ¼ 20 log10
jrðxÞj
r0

� �
(52)

Figure 12. Displacements and stress for road (a) and for points such that x0 = 0 with. V0 = 90
km/h.

Figure 13. Displacements and stress for road (b) and for points such that x0 = 0 with V0 = 90
km/h.
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Figures 14 and 15 present the third octave stress spectra for roads (A) and (B) and for
different velocities. When the velocity increases, the spectra are shifted towards higher
frequencies and the maximal level is also increased. The stress level is quite significant
for frequencies between 500 and 5000 Hz. For road (A), the maximum level is obtained
for 4000 Hz while for road (B) it is for 2000 Hz. Globally, the stress level is higher for
road (A) than for road (B). More examples can be found in [15].
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Figure 14. 1/3 octave spectrum of the contact stress at point (x0 = 0, y0 = 0) for road (A) and
for the velocities: V0 = 50 km/h, V0 =70 km/h, V0 = 90 km/h.
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Figure 15. 1/3 octave spectrum of the contact stress at 70 km/h, in point (x0 = 0, y0 = 0):
road (A), road (B).
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6. Conclusion

A new approach of dynamic contact computation is developed to treat a tyre road
contact problem. For the tyre, a periodic model is used to compute the Green’s function
of the tyre in the contact area. The model is validated by comparison to a classical
finite element model. The periodic model leads to significant reduction of time comput-
ing. Then, the contact model developed in this paper consists of the modal expansion
of the pre-calculated Green’s functions. The modal parameters are then used to
construct a new convolution which allows quicker calculations than the traditional con-
volution. The modal convolution is adapted to dynamic contact problems by using a
kinematic contact condition. Contact model is validated in the case of an academic
example by comparison to the penalty method. Both methods give the same result, but
the developed method is more stable and easier to implement. Results of the presented
tyre/road contact model show that the stress levels are highly dependent on the texture
levels and the rolling velocities. Increasing the rolling velocity clearly shifts the stress
levels towards higher frequencies and increases the global level. Stress levels are also
significant between 500 and 5000 Hz.
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Appendix 1. LSCE algorithm
The Green’s function ĝðxÞ is supposed to be known; g(t) is its inverse Fourier transform. The
Green’s function in the frequency domain can be written in the form

ĝðxÞ ¼
Xk¼N

k¼1

Rk

jx� kk
þ R�

k

jx� k�k

� �
(A.1)

Denoting Rnþk ¼ R�
k and knþk ¼ k�k , the Green’s function can be written as:

ĝðxÞ ¼
Xk¼2N

k¼1

Rk

jx� kk
(A.2)

Then, by using an inverse Fourier transform, the Green’s function in the time domain can be
found as:

gðtÞ ¼
Xk¼2N

k¼1

Rke
kk t (A.3)

g(t) is sampled by equally spaced time intervals Δt. At the time nΔt, the discrete Green’s function
can be written as:

gðnDtÞ ¼
Xk¼2N

k¼1

Rke
kknDt (A.4)

By setting zk ¼ ekkDt , the Green’s function can be written as:

gðnDtÞ ¼
Xk¼2N

k¼1

Rkz
n
k (A.5)

We write g(t) for different times mΔt (m = 1, 2 … 2N)

g0 ¼ gð0Þ ¼
Xk¼2N

k¼1

Rk

g1 ¼ gðDtÞ ¼
Xk¼2N

k¼1

Rkzk

g2 ¼ gð2DtÞ ¼
Xk¼2N

k¼1

Rkz
2
k

½. . .�

g2N ¼ gð2NDtÞ ¼
Xk¼2N

k¼1

Rkz
2N
k (A.6)

We assume that zk is the solution of the polynomial equation (A.7).

b0 þ b1zk þ b2z
2
k þ � � � bizik � � � þ b2Nz

2N
k ¼ 0 (A.7)
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This equation is known as the Prony equation and was developed by Gaspard Riche in 1975. So,
by multiplying Equation (A.6) by corresponding βi and taking a sum from i = 1 to 2 N

Xi¼2N

i¼0

bigi ¼
Xi¼2N

i¼0

bi
Xk¼2N

k¼1

Rkz
i
k

 !
¼
Xk¼2N

k¼1

Rk

Xi¼2N

i¼0

biz
i
k

 !
¼ 0 (A.8)

Using Equation (A.7), we can write

b0gð0Þ þ b1gðDtÞ þ b2gð2DtÞ þ . . .bigðiDtÞ. . .þ b2Ngð2NDtÞ ¼ 0 (A.9)

If we know the Green’s function at 4 N time steps, we can build the Hankel matrix; then, the
2 N values of βi can be found by resolving the matrix equation

g0 g1 g2 � � � g2N�1

g1 g2 g3 � � � g2N
� � � � � � � � � � � � � � �

g2N�2 g2N�1 g2N � � � g4N�3

g2N�1 g2N g2Nþ1 � � � g4N�2

2
6666664

3
7777775

b0
b1
� � �

b2N�2

b2N�1

2
6666664

3
7777775 ¼

g2N
g2Nþ1

� � �
g4N�2

g4N�1

2
6666664

3
7777775 (A.10)

The number of rows in the equation (61) can be increased for a least square solution. By setting
H as the Hankel matrix, b ¼ ½b0 b1. . .b2N �T and h = [g2 N … g4 N-1]

T, the 2 N values of βi are
calculated as:

b ¼ ðHTHÞ�1HTh (A.11)

The zk values can be found easily as roots of the polynomial Equation (58). Then, the natural fre-
quencies ωk and the damping ratios ξk are related to the zk coefficients by:

xk ¼ 1

Dt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðzkÞ logðz�kÞ

q
(A.12)

nk ¼
� logðzkz�kÞ

2xrDt
(A.13)

To determine the residue values Ak, the Green’s function can be expressed at different frequencies
(Ω1, Ω2 …),

1

�X2
1 þ 2jn1X1x1 þ x2

1

� � � 1

�X2
1 þ 2jn2NX1x2N þ x2

2N
1

�X2
2 þ 2jn1X2x1 þ x2

1

� � � 1

�X2
2 þ 2jn2NX2x2N þ x2

2N� � � � � � � � �
1

�X2
2N þ 2jn1X2Nx1 þ x2

1

� � � 1

�X2
2N þ 2jn2NX2Nx2N þ x2

2N

2
66666664

3
77777775

A1

A2

� � �
� � �
A2N

2
6666664

3
7777775 ¼

ĝðX1Þ
ĝðX2Þ
� � �
� � �

ĝðX2N Þ

2
66664

3
77775

(A.14)

The solution of this set of linear equations will yield the residues.
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