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In this paper, we consider the inverse problem of simultaneous determination of an
additive space- and time-dependent heat source together with the temperature in the
heat equation, with Dirichlet boundary conditions and two over-determination condi-
tions. These latter ones consist of a specified temperature measurement at an internal
point and a time-average temperature condition. The mathematical problem is linear
but ill-posed since the continuous dependence on the input data is violated. In dis-
cretised form, the problem reduces to solving an ill-conditioned system of linear
equations. We investigate the performances of several regularisation methods and
examine their stability with respect to noise in the input data. The boundary element
method combined with either the truncated singular value decomposition, or the
Tikhonov regularisation, using various methods for choosing regularisation
parameters, e.g. the L-curve method, the generalised cross-validation criterion, the
discrepancy principle and the L-surface method, are utilised in order to obtain
accurate and stable numerical solutions.

Keywords: boundary element method; heat equation; heat source; inverse problem;
regularisation; singular value decomposition

1. Introduction

Consider, for example, a practical situation in which a fertiliser from a field is carried
into a stream by rain in the form of run-off which in turn affects aquatic life. Then in
this application of water pollution, the unknown inhomogeneous source forcing term in
the governing equation model needs to be determined.

Inverse source problems for the heat equation have recently attracted considerable
interest, see (Ahmadabadi, Arab, & Maalek-Ghaini, 2009; Hazanee, Ismailov, Lesnic, &
Kerimov, 2013; Ismailov, Kanca, & Lesnic, 2011; Xiong, Yan, & Wang, 2011; Yang,
Dehghan, Yua, & Luoa, 2011; Yan, Yang, & Fu, 2009) to name just a few. These
studies have sought a coefficient source function depending on either space- or time-
dependent variables using various techniques. Aside from this, in recent years, the
inverse heat source problem in multi-variables has been investigated by Yang, Yu, Luo,
and Deng (2012) who determined an unknown source function, which depends on both
space and time variables, from finite measurement data.

The objective of this study is to determine inverse heat source functions depending
on both space and time, but which are additively separated into two unknown
coefficient source functions, namely, one component dependent on space and another
component dependent on time. The additional measurement/overspecified conditions
are one temperature measurement, as a function of time, at one specified interior loca-
tion and a time-average temperature throughout the space solution domain. The unique
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solvability of this inverse source problem was already established by Ivanchov
(Ivanchov, 2001) and it is the objective of this paper to obtain a stable numerical
solution of this still ill-posed problem.

Since the governing partial differential equation is the linear heat equation with con-
stant coefficients, the preferred method of discretisation is the boundary element
method (BEM). Through the employment of the Green’s formula and fundamental solu-
tion, the BEM naturally reduces the dimensionality of the problem by one, although
domain integrals are still present due to the initial condition and the heat source.

Even though the inverse heat source problem is uniquely solvable, it is still
ill-posed since small errors which inherently occur in any practical measurement cause
largely oscillating solutions. To overcome this instability, regularisation such as the
truncated singular value decomposition (TSVD), or the Tikhonov regularisation method
needs to be employed. Prior to this study, the authors have experienced the use of these
standard methods for solving related inverse source problems, see, for example (Farcas &
Lesnic, 2006; Hazanee et al., 2013; Hazanee & Lesnic, 2013). An issue here is how
to select an appropriate regularisation parameter. However, there exist many methods
such as the L-curve method, the generalised cross-validation (GCV) criterion and the
discrepancy principle which are all popular and successful methods for choosing the
regularisation parameter. Moreover, the selection of multiple regularisation parameters
based on the L-hypersurface (the L-surface for two parameters), has been introduced in
(Belge, Kilmer, & Miller, 2002), as a natural extension of the L-curve method used for
the selection of a single regularisation parameter. Hence, in this paper, the BEM is
combined with either the TSVD or the Tikhonov regularisation in order to obtain stable
solutions. Moreover, the L-curve method, the GCV criterion, the discrepancy principle
and the L-surface criterion are employed for the selection of the regularisation
parameter(s).

This paper is organised as follows. In Section 2, the mathematical inverse formula-
tion is described and the numerical discretisation of the problem using the BEM is pre-
sented in Section 3. The TSVD and the Tikhonov regularisation are described in
Section 4, as procedures for overcoming the instability of the solution. Finally, Sections
5 and 6 discuss the numerical results and highlight the conclusions of this research.

2. Mathematical formulation

Let L > 0 and T > 0 be fixed numbers and consider the inverse problem of finding the tem-
perature uðx; tÞ 2 H2þc;1þc=2ðDT Þ, with γ ∊ (0, 1), and DT: = (0, L) × (0, T ), the time-
dependent heat source r(t) ∊ H γ/2[0, T ] and the space-dependent heat source s(x) ∊ H γ[0, L]
satisfying the heat conduction equation

ut ¼ uxx þ rðtÞf ðx; tÞ þ sðxÞgðx; tÞ þ hðx; tÞ; ðx; tÞ 2 DT ; (1)

subject to the initial condition

uðx; 0Þ ¼ uðxÞ; x 2 ½0; L�; (2)

the Dirichlet boundary conditions

uð0; tÞ ¼ l0ðtÞ; uðL; tÞ ¼ lLðtÞ; t 2 ½0; T �; (3)
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and the over-determination conditions

uðX0; tÞ ¼ vðtÞ; t 2 ½0; T �; (4)

Z T

0
uðx; tÞ dt ¼ wðxÞ; x 2 ½0; L�; (5)

sðX0Þ ¼ S0; (6)

when f(x, t), g(x, t), h(x, t), φ(x), μ0(t), μL(t), χ(t), ψ(x) are given functions, X0 is a given
sensor location within the interval (0, L), and S0 is a given value of the source function
s at the given point X0. In the above, the Hölder spaces of functions are defined in
Ladyženskaja, Solonnikov, and Ural’ceva (1968, p.7).

One can remark that the time-overage temperature measurement (5) represents a
non-local condition/measurement. It is convenient to use in practical situations where a
local measurement of the temperature at a fixed time T 2 ð0; T �, namely,

uðx; TÞ ¼ :wT ðxÞ; x 2 ½0; L�

contains a large amount of noise. This may be due to harsh external conditions, or to
the fact that many space measurements can, in fact, never be recorded at a fixed instant
instantaneously. If this is the case, one can have a selection of such large noise local
temperature measurements, but which on average produce a less noisy non-local mea-
surement (5).

The individual separate cases concerning the identification of a single time-depen-
dent heat source r(t), when s(x) is known, or the identification of a single space-depen-
dent heat source s(x), when r(t) is known, have been theoretically investigated in
Prilepko and Solov’ev (1988) and Prilepko and Tkachenko (2003), respectively.

For the inverse problem (1)–(6) we have the following local unique solvability
result.

Theorem 1. (Ivanchov, 2001) Assume that the following conditions are satisfied:

(1) uðxÞ;wðxÞ 2 H2þc½0; L�; l0ðtÞ; lLðtÞ; vðtÞ 2 H1þc=2½0; T �; hðx; tÞ 2 H c;c=2ðDT Þ,
f independent of t and f(x) ∊ H γ[0, L], g independent of x and g(t) ∊ H γ/2[0, T];

(2) f(X0) ≠ 0,
R T
0 gðtÞ dt 6¼ 0, gðtÞR T

0
gðsÞ ds

� 0, ∀t ∊ [0, T ];

(3) φ(0) = μ0(0), φ(L) = μL(0), φ(X0) = χ(0),R T
0 vðtÞ dt ¼ wðX0Þ, wð0Þ ¼

R T
0 l0ðtÞ dt, wðLÞ ¼

R T
0 lLðtÞ dt.

Then for sufficiently small T > 0 there exists a unique solution of the inverse prob-
lem (1)–(6).

Note that condition (6) was omitted in (Ivanchov, 2001), but it should be included
in order to avoid the following non-uniqueness counterexample.

Counter Example 1 (non-uniqueness of solution of problem (1)–(5))
For an arbitrary constant c, the identity

rðtÞf ðxÞ þ sðxÞgðtÞ ¼ ðrðtÞ þ cgðtÞÞf ðxÞ þ ðsðxÞ � cf ðxÞÞgðtÞ
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means that the heat Equation (1) is satisfied by both sets of solutions (r(t), s(x)) and
(r(t) + cg(t), s(x) - cf(x)). This shows the non-uniqueness of the solution of the incom-
pletely formulated inverse source problem (1)–(5). According to this, Equation (6)
needs to be imposed in order to specify a particular solution.

We also note that Theorem 1 holds in higher dimensions. Although the inverse
problem (1)–(6) is uniquely solvable, the problem is still ill-posed because the continu-
ous dependence on the input data (4) and (5) is violated. This instability can be seen
from the following counterexample.

Counter Example 2 (instability of problem (1)–(6))
Let L = π, X0 = π/2 and

unðx; tÞ ¼ ð1� e�4n2tÞ sinð2nxÞ
n3=2

þ xðp� xÞ sinðntÞ
n1=2

; (7)

for n positive integer. Then the initial and boundary conditions (2) and (3) are all
homogeneous. The over-determination conditions (4) and (5) are given by

uðp
2
; tÞ ¼ vðtÞ ¼ p2 sinðntÞ

4n1=2
; t 2 ½0; T �; (8)

Z T

0
uðx; tÞ dt ¼ wðxÞ ¼ sinð2nxÞ

n3=2
T þ e�4n2T � 1

4n2

" #
þ xðp� xÞð1� cosðnTÞÞ

n3=2
;

x 2 ½0; p�: ð9Þ

One can observe that the input data (8) and (9) tend to zero as n → ∞. We also take

f ðx; tÞ ¼ xðp� xÞ; gðx; tÞ ¼ 1; hðx; tÞ ¼ 2 sinðntÞ
n1=2

; s p
2

� �
¼ S0 ¼ 0: (10)

One can also observe that h tends to zero as n → ∞. The above input satisfies the
hypotheses of Theorem 1 and therefore the inverse problem (1)–(6) is locally uniquely
solvable. In fact, one can easily check that it has the unique (global) solution

rnðtÞ ¼ n1=2 cosðntÞ; snðxÞ ¼ �4n1=2 sinð2nxÞ; (11)

and un(x, t) given by (7). However, one can observe that the solution (11) is unstable
since it becomes unbounded as n → ∞ in any reasonable norm. □

As in (Rundell, 1980), we believe that the stability of solution can be restored
under stronger assumptions, e.g. if k v kH1½0;T �! 0, k w kH2½0;L�! 0 then, k s kL2½0;1�! 0
and k r kL2½0;T �! 0.

In the next Sections 3 and 4, we will demonstrate how to solve this inverse heat
source problem (1)–(6) using a regularised BEM.

3. The boundary element method

Let us consider the fundamental solution G of the one-dimensional heat equation,
namely
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Gðx; t; y; sÞ ¼ Hðt � sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pðt � sÞp exp �ðx� yÞ2

4ðt � sÞ

 !
;

where H is the Heaviside step function. By the means of this fundamental solution and
the Green’s formula, we obtain the following boundary integral equation, see e.g.
(Farcas & Lesnic, 2006; Hazanee et al., 2013; Hazanee & Lesnic, 2013),

gðxÞuðx; tÞ ¼
Z t

0
Gðx; t; n; sÞ @u

@nðnÞ ðn; sÞ � uðn; sÞ @G

@nðnÞ ðx; t; n; sÞ
� �

n2f0;Lg
ds

þ
Z L

0
Gðx; t; y; 0Þuðy; 0Þ dyþ

Z L

0

Z T

0
Gðx; t; y; sÞrðsÞf ðy; sÞ dsdy

þ
Z L

0

Z T

0
Gðx; t; y; sÞsðyÞgðy; sÞ dsdy

þ
Z L

0

Z T

0
Gðx; t; y; sÞhðy; sÞ dsdy; ðx; tÞ 2 ½0; L� � ð0; TÞ; ð12Þ

where gð0Þ ¼ gðLÞ ¼ 1
2, η(x) = 1 for x ∊ (0, L) and n is the outward normal to the space

boundary {0, L}, i.e. @
@nðnÞ ¼

� @
@n if n ¼ 0
@
@n if n ¼ L

�
. We divide the boundaries {0} × (0, T ]

and {L} × [0, T ] into N small time-intervals ½tj�1; tj�; j ¼ 1;N , with

tj ¼ jT
N ; j ¼ 0;N , whilst the initial domain [0, L] × {0} is divided into N0 small cells

[xk-1, xk], k ¼ 1;N0 with xk ¼ k
N0
; k ¼ 0;N0. The boundary temperature u and the flux @u

@n

are assumed to be constant over each boundary element [tj-1, tj] and take their values at

the midpoint ~tj ¼ tj�1þtj
2 , i.e.

uð0; tÞ ¼ uð0;~tjÞ ¼ l0ð~tjÞ ¼ : l0j; uðL; tÞ ¼ uðL;~tjÞ ¼ lLð~tjÞ ¼ : lLj; t 2 ðtj�1; tj�;

@u

@n
ð0; tÞ ¼ @u

@n
ð0;~tjÞ ¼ : q0j;

@u

@n
ðL; tÞ ¼ @u

@n
ðL;~tjÞ ¼ : qLj; t 2 ðtj�1; tj�:

Similarly, the initial temperature is assumed to be constant over each cell [xk-1, xk] and
takes its value at the midpoint ~xk ¼ xk�1þxk

2 , i.e.

uðx; 0Þ ¼ uð~xk ; 0Þ ¼ uð~xkÞ ¼ : uk ; x 2 ½xk�1; xk �:
Nevertheless, higher-order, e.g. linear boundary element approximations will be more
accurate than constant boundary elements. This improvement in accuracy will be signif-
icant in higher-dimension, see e.g. (Skerget & Brebbia, 1985), but in our one-dimen-
sional time-dependent setting the use of the constant BEM approximation was found
sufficiently accurate.

With the approximations above, the integral Equation (12) can be approximated as

gðxÞuðx; tÞ ¼
XN
j¼1

A0jðx; tÞq0j þ ALjðx; tÞqLj � B0jðx; tÞl0j � BLjðx; tÞlLj
� 	

þ
XN0

k¼1

Ckðx; tÞuk þ d1ðx; tÞ þ d2ðx; tÞ þ d0ðx; tÞ; ðx; tÞ 2 ½0; L� � ð0; TÞ;

ð13Þ
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where the coefficients are given by

An jðx; tÞ ¼
Z tj

tj�1

Gðx; t; n; sÞ ds for n ¼ f0; Lg; (14)

Bn jðx; tÞ ¼
Z tj

tj�1

@G

@nðnÞ ðx; t; n; sÞ ds for n ¼ f0; Lg; (15)

Ckðx; tÞ ¼
Z xk

xk�1

Gðx; t; y; 0Þ dy; (16)

and the double integral source terms are given by

d1ðx; tÞ ¼
Z L

0

Z T

0
Gðx; t; y; sÞrðsÞf ðy; sÞ dsdy; (17)

d2ðx; tÞ ¼
Z L

0

Z T

0
Gðx; t; y; sÞsðyÞgðy; sÞ dsdy; (18)

d0ðx; tÞ ¼
Z L

0

Z T

0
Gðx; t; y; sÞhðy; sÞ dsdy: (19)

The integrals (14)–(16) can be evaluated numerically analytically, (Farcas & Lesnic,
2006), whereas integrals (17)–(19) are calculated by applying the piecewise constant
approximations to the functions f(x, t), g(x, t), h(x, t), r(t) and s(x), as

f ðx; tÞ ¼ f ðx;~tjÞ; gðx; tÞ ¼ gð~xk ; tÞ; hðx; tÞ ¼ hðx;~tjÞ;

rðtÞ ¼ rð~tjÞ ¼ : rj; sðxÞ ¼ sð~xkÞ ¼ : sk ;

where t ∊ (tj-1, tj], x ∊ (xk-1, xk] for j ¼ 1;N , k ¼ 1;N0. Then the integrals (17)–(19)
can be approximated as

d1ðx; tÞ ¼
Z T

0
rðsÞ

Z L

0
Gðx; t; y; sÞ f ðy; sÞ dyds ¼

XN
j¼1

D1; jðx; tÞrj;

d2ðx; tÞ ¼
Z L

0
sðyÞ

Z T

0
Gðx; t; y; sÞ gðy; sÞ dsdy ¼

XN0

k¼1

D2;kðx; tÞsk ;

d0ðx; tÞ ¼
Z T

0

Z L

0
Gðx; t; y; sÞ hðy; sÞ dyds ¼

XN
j¼1

D0; jðx; tÞ;

where

D1; �ðx; tÞ ¼
Z L

0
f ðy;~tjÞAyjðx; tÞ dy;

European Journal of Computational Mechanics 309



D2;kðx; tÞ ¼ 1

2

Z T

0
gð~xk ; tÞHðt � sÞ erf

x� xk�1

2
ffiffiffiffiffiffiffiffiffiffi
t � s

p
� 


� erf
x� xk
2
ffiffiffiffiffiffiffiffiffiffi
t � s

p
� 
� �

ds;

D0; jðx; tÞ ¼
Z L

0
hðy;~tjÞAyjðx; tÞ dy:

These integrals are evaluated using Simpson’s rule for numerical integration. With these
approximations, the integral Equation (13) becomes

gðxÞuðx; tÞ ¼
XN
j¼1

A0jðx; tÞq0j þ ALjðx; tÞqLj � B0jðx; tÞl0j � BLjðx; tÞlLj
� 	

þ
XN0

k¼1

Ckðx; tÞuk þ
XN
j¼1

D1; jðx; tÞrj þ
XN0

k¼1

D2;kðx; tÞsk

þ
XN
j¼1

D0; jðx; tÞ; ðx; tÞ 2 ½0; L� � ð0; TÞ: ð20Þ

Applying the Equation (20) at the boundary nodes ð0;~tiÞ and ðL;~tiÞ for i ¼ 1;N yields
the system of 2N linear equations

Aq� Blþ Cuþ D1r þ D2sþ d ¼ 0; (21)

where

A ¼ A0jð0;~tiÞ ALjð0;~tiÞ
A0jðL;~tiÞ ALjðL;~tiÞ
� �

2N�2N

; B ¼ B0jð0;~tiÞ þ 1
2dij BLjð0;~tiÞ

B0jðL;~tiÞ BLjðL;~tiÞ þ 1
2dij

� �
2N�2N

;

C ¼ Ckð0;~tiÞ
CkðL;~tiÞ
� �

2N�N0

; D1 ¼ D1; jð0;~tiÞ
D1; jðL;~tiÞ
� �

2N�N

; D2 ¼ D2;kð0;~tiÞ
D2;kðL;~tiÞ
� �

2N�N0

;

d ¼
PN

j¼1 D0; jð0;~tiÞPN
j¼1 D0; jðL;~tiÞ

" #
2N

; q ¼ q0j
qLj

� �
2N

; l ¼ l0j
lLj

� �
2N

; u ¼ uk½ �N0
; r ¼ rj½ �N ; s ¼ sk½ �N0

;

and δij is the Kronecker delta symbol.
To determine r and s, the conditions (4)–(6) are imposed. To impose (4), we apply

the Equation (20) at the interior points ðX0;~tiÞ for i ¼ 1;N giving rise to the following
linear system of N equations:

AIq� BIlþ CIuþ DI
1r þ DI

2sþ dI ¼ v; (22)

where

AI ¼ A0jðX0;~tiÞ ALjðX0;~tiÞ
� 	

N�2N ; BI ¼ B0jðX0;~tiÞ BLjðX0;~tiÞ
� 	

N�2N ;

CI ¼ CkðX0;~tiÞ½ �N�N0
; DI

1 ¼ D1; jðX0;~tiÞ
� 	

N�N
; DI

2 ¼ D2;kðX0;~tiÞ
� 	

N�N0
;
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dI ¼ PN
j¼1 D0; jðX0;~tiÞ

h i
N
; v ¼ vi½ �N ; where vi: ¼ v ~tið Þ ¼ u X0;~tið Þ; i ¼ 1;N :

The time-integral condition (5) is approximated by the midpoint numerical integration
as follows:

wðxÞ ¼
Z T

0
uðx; tÞ dt ¼ T

N

XN
i¼1

uðx;~tiÞ; x 2 ½0; L�:

Applying this equation at the midpoint ~xk for k ¼ 1;N0 gives

T

N

XN
i¼1

uð~xk ;~tiÞ ¼ wð~xkÞ ¼ :wk : (23)

Using (20), Equation (23) yields

T

N

XN
i¼1

AII
i q� BII

i lþ CII
i uþ DII

1;ir þ DII
2;isþ dIIi

h i
¼ w; (24)

where

AII
i ¼ A0jð~xk ;~tiÞ ALjð~xk ;~tiÞ

� 	
N0�2N ; BII

i ¼ B0jð~xk ;~tiÞ BLjð~xk ;~tiÞ
� 	

N0�2N ;

CII
i ¼ Ckð~xk ;~tiÞ½ �N0�N0

; DII
1;i ¼ D1;jð~xk ;~tiÞ

� 	
N0�N

; DII
2;i ¼ D2;kð~xk ;~tiÞ

� 	
N0�N0

;

dIIi ¼ ½PN
j¼1 D0; jð~xk ;~tiÞ �N0

; w ¼ ½wk �N0
; where wk : ¼ wð~xkÞ; k ¼ 1;N0:

Finally, we consider the condition (6). Since we have used the space midpoint discreti-
sation, we then approximate S0 at the given point X0 ∊ (0, L) as

S0 ¼ sðX0Þ � sð~xk� Þ þ sð~xk�þ1Þ
2

; (25)

where k* is the number in {1, …, N0 – 1} which satisfies ~xk� �X0\~xk�þ1.
Now the approximate solutions r and s can be found by eliminating q from (21)

and combining expressions (22), (24) and (25), to obtain, after some manipulations, a
linear system of (N + N0 + 1) equations with (N + N0) unknowns as follows:

Xw ¼ y; (26)

where

X ¼
AIA�1D1 � DI

1 AIA�1D2 � DI
2

T
N

PN
i¼1ðAII

i A
�1D1 � DII

1;iÞ T
N

PN
i¼1ðAII

i A
�1D2 � DII

2;iÞ
0. . .0 0. . .01

2
1
20. . .0

2
4

3
5
ðNþN0þ1Þ�ðNþN0Þ

;
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w ¼ r
s

� �
NþN0

;

y ¼
�vþ AIA�1ðBl� Cu� dÞ � BIlþ CIuþ dI

�wþ T
N

PN
i¼1

ðAII
i A

�1ðBl� Cu� dÞ � BII
i lþ CII

i uþ dIIi Þ
S0

2
664

3
775
NþN0þ1

:

Since the problem is ill-posed the system of Equations (26) is ill-conditioned. In the
next section, we will deal with this ill-conditioning using regularisation in order to
obtain a stable solution.

4. Regularisation

In practice, the measured data is unavoidably contaminated by unplanned error. In order
to model this, we add noise in the input functions χ(t) and ψ(x) representing the over-
determination conditions (4) and (5) as follows:

vp ¼ vþ randomð0Normal0; 0; rv; 1;NÞ; (27)

and

wp ¼ wþ randomð0Normal0; 0; rw; 1;N0Þ; (28)

where the randomð0Normal0; 0; rv; 1;NÞ is a command in MATLAB which generates N
random variables from a normal distribution with zero mean and standard deviation σχ,
whilst the randomð0Normal0; 0;rw; 1;N0Þ generates N0 random variables with zero mean
and standard deviation σψ. Here, the standard deviations σχ and σψ are taken as

rv ¼ p� max
t2½0;T �

jvðtÞj; and rw ¼ p� max
x2½0;L�

jwðxÞj; (29)

where p represents the percentage of noise. Note that the measurement (6) is already
contaminated by error due to the approximation made in (25).

If we consider the contamination of the right-hand side of Equation (26) as
k y� � y k� �, then the direct least-squares solution w ¼ ðX trX Þ�1X try� will be unstable.
To overcome this instability, regularisation methods need to be utilised. In this study, we
employ the TSVD and the Tikhonov regularisation methods.

4.1. The truncation singular value decomposition

To employ the TSVD, we first consider the decomposition of the matrix X,

X ¼ URV tr; (30)

where U ¼ ½U 1;U 2; . . .;UNþN0
� and V ¼ ½V 1;V 2; . . .;VNþN0

� are (N + N0 + 1) × (N + N0)

matrices with columns, Uj and V j for j ¼ 1; ðN þ N0Þ, such that UtrU = I = V trV, and
R ¼ diagðr1; r2; . . .; rNþN0Þ is an ðN þ N0Þ � ðN þ N0Þ diagonal matrix containing the

singular values of the matrix X, σj for j ¼ 1; ðN þ N0Þ, in decreasing order
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r1 � r2 � 	 	 	 � rNþN0 � 0:

Then the matrix system (26) can be reformed to obtain the solution as follows:

w ¼
XNþN0

j¼1

1

rj
V j 	 Utr

j

 !
y�: (31)

In MATLAB, this decomposition is operated using the command svdsðX ;N þ N0Þ. For
obtaining the solution of the ill-posed problem, the truncation of decomposition matrix
X in (30) is needed to be considered as a regularisation method, by omitting its last
(N + N0) - Nt small singular values, where Nt denotes the truncation level. This way,
the regularised solution is given by

wNt
¼

XNt

j¼1

1

rj
V j 	 Utr

j

 !
y�: (32)

In order to indicate the appropriate truncation level Nt, the L-curve criterion, the GCV
method and the discrepancy principle are utilised. The L-curve method is analysed by
the L-shape obtained by plotting the residual k XwNt

� y� k versus the norm of the
solution k wNt

k, for various values of Nt, (Hansen, 2001; Lesnic et al., 1998). Whilst
the GCV method estimates the truncation number Nt by minimising the following GCV
function, see e.g. (Bazán, 2003; Musase et al., 2004),

GCV ðNtÞ ¼
k XwNt

� y� k2
½traceðI � XX �Þ�2 ¼

k XX �y� � y� k2
½traceðI � XX �Þ�2 ; (33)

where X � ¼ VR�
Nt
U tr is an inverse of the matrix X and R�

Nt
¼ diagð 1

r1
; 1
r2
; . . .; 1

rNt
Þ. Finally,

the discrepancy principle indicates the truncation number based on the knowledge of
noise level

� ¼k y� � y k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k vp � v k2 þ k wp � w k2

q
; (34)

by selecting the truncation number Nt such that the residual is at the same level as the
noise input �, i.e.

k XwNt
� y� k� �: (35)

4.2. The Tikhonov regularisation

Alternatively, the Tikhonov regularisation is another way of obtaining a stable solution
of the ill-conditioned system of Equations (26). This method is based on minimising
the regularised linear least-squares objective function

k Xw� y� k2 þk1 k R1r k2 þk2 k R2s k2 (36)
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where R} is a (differential) regularisation matrix corresponding to a regularisation
parameter k} > 0; } 2 f1; 2g. Solving (36) one obtains the regularised solution

wk1;k2 ¼ ðX trX þ RtrRÞ�1X try�: (37)

where the matrix R represents a block matrix of upper-left subblock k1R1 and
lower-right subblock k2R2. Here, let us call this regularisation as the block Tikhonov
regularisation and choose the regularisation matrix given by either of the following
expressions, (Twomey, 1963),

R} ¼
1 0 0 :
0 1 0 :
0 0 1 :
: : : :

2
664

3
775; the zeroth� order regularisation,

R} ¼
1 �1 0 0 :
0 1 �1 0 :
0 0 1 �1 :
: : : : :

2
664

3
775; the first� order regularisation,

R} ¼
1 �2 1 0 0 :
0 1 �2 1 0 :
0 0 1 �2 1 :
: : : : : :

2
664

3
775; the second� order regularisation,

where } 2 f1; 2g.
Initially, we take k :¼ k1 ¼ k2 and consider the L-curve criterion, the GCV method

and the discrepancy principle as choices for indicating the single regularisation parame-
ter k. The L-curve method is based on plotting the graph of the residual k Xwk � y� k
versus the solution norm k wk k for a range of values of k, (Hansen, 2001), whereas
the GCV method suggests choosing the parameter k by minimising the following GCV
function, (Yan et al., 2008),

GCV ðkÞ ¼ k Xwk � y� k2
½traceðI � X ðX trX þ kRtrRÞ�1X trÞ�2 ¼

k X ðX trX þ kRtrRÞ�1X try� � y� k2
½traceðI � X ðX trX þ kRtrRÞ�1X trÞ�2 :

(38)

Note that both the L-curve and the GCV are heuristic methods because they do not
require the knowledge of the level of noise �. More rigorously, one can use the discrep-
ancy principle, (Morozov, 1966), which selects k such that

k Xwk � y� k� �: (39)

If we allow for general multiple regularisation parameters k1 and k2 in (36) then, for
their selection one could employ the L-surface criterion, (Belge et al., 2002), which
plots the residual k Xwk1;k2 � y� k versus k R1r k and k R2s k for various values of k1
and k2.
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5. Numerical examples and discussion

To test the accuracy of the approximate solutions, let us introduce the root mean square
error (RMSE) defined as

RMSEðrðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T

N

XN
i¼1

ðrexactð~tiÞ � rnumericalð~tiÞÞ2
vuut ; (40)

and

RMSEðsðxÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

N0

XN0

k¼1

ðsexactð~xkÞ � snumericalð~xkÞÞ2
vuut : (41)

5.1. Example 1

In the first example, we consider a smooth benchmark test with T = L = 1, X0 ¼ 1
2 and

the input data

uðxÞ ¼ uðx; 0Þ ¼ x2; l0ðtÞ ¼ uð0; tÞ ¼ 0; l1ðtÞ ¼ uð1; tÞ ¼ et;
vðtÞ ¼ uð12; tÞ ¼ et

4 ; wðxÞ ¼ R 10 uðx; tÞ dt ¼ x2ðe� 1Þ; S0 ¼ sð12Þ ¼ 1;
f ðx; tÞ ¼ ex; gðx; tÞ ¼ t þ 1; hðx; tÞ ¼ ðx2 � 2Þet � t2ex � ðt þ 1Þ sinðpxÞ:

8<
: (42)

One can check that the conditions of Theorem 1 are satisfied hence the inverse source
problem (1)–(6) with the data (42) has a unique solution. It can easily be verified
through direct substitution that this solution is given by

uðx; tÞ ¼ x2et; rðtÞ ¼ t2; sðxÞ ¼ sinðpxÞ: (43)

As mentioned in Section 2, the inverse heat source problem (1)–(6) is ill-posed since
small errors in the measured data (4)–(6) cause large errors in the solution. In order to
quantify the degree of ill-conditioning, we calculate the condition number of the matrix
X. The condition numbers for N = N0 ∊ {20, 40, 80} and X0 2 f1

4;
1
2;

3
4g are shown in

Table 1. In addition, the normalised singular values of the matrix X are displayed in
Figure 1, and the rapidly decreasing values indicate that the system of Equations (26)
is ill-conditioned. Looking at the columns of Table 1 it can be seen that the condition
number only slightly decreases as X0 increase, hence we do not expect the numerical
results to be significantly influenced by the choice of X0 within some interval ½14; 34� away

Table 1. The condition numbers of the matrix X in Equation (26) for various N = N0 ∊ {20, 40, 80}
and X0 2 f1

4;
1
2;

3
4g.

N = N0 20 40 80

X0 = 1/4 1.94E+3 9.07E+3 5.04E+4
X0 = 1/2 1.97E+3 7.51E+3 4.06E+4
X0 = 3/4 1.93E+3 6.50E+3 3.33E+4
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from the end points x = 0 and x = L = 1. Of course, as X0 gets closer to the boundary
point x = 0 or x = L then the specification of the interval temperature measurement (4)
resembles a heat flux prescription, namely

uxð0; tÞ ¼ lim
X0&0

uðX0; tÞ � uð0; tÞ
X0

; or uxðL; tÞ ¼ lim
X0%L

uðX0; tÞ � uðL; tÞ
X0 � L

:

However, this newly generated inverse problem in which Cauchy data are specified at
x = 0 or x = L is not addressed herein and it is deferred to a future work.

In what follows, the numerical results are illustrated for a fixed discretisation
N = N0 = 40 and X0 ¼ 1

2.

5.1.1. Exact data

We consider first the case of exact data, i.e. p = 0 in (29). We directly solve the linear
system of Equations (26) with the untruncated SVD method, and display the numerical
solutions for r(t), s(x), ux(0, t) and ux(1, t) in Figures 2(a)–2(d), respectively.

From these figures, it can be seen that the solutions for r(t) and s(x) are inaccurate,
but the fluxes ux(0, t) and ux(1, t) are stable and accurate with small RMSEs of 9.32E-3
and 4.58E-2, respectively, see Table 2. This is somewhat to be expected since the inverse
problem is ill-posed. Hence, regularisation is required to overcome this instability.

For this, we utilise the TSVD and the Tikhonov regularisation of orders zero, one
and two. The selection method of the regularisation parameters is first considered. The
L-curves of the TSVD and the Tikhonov regularisations are presented in Figures 3(a)
and 4(a), respectively. It can be seen that there is no L-shape obtained for either
the TSVD, the zeroth-, or the first-order Tikhonov regularisations, whereas the
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Figure 1. The normalised singular values of matrix X for N = N0 ∊ {20, 40, 80} and
X0 2 f1

4ð� 	 �Þ; 12ð	 	 	Þ; 34ð� � �Þ}, for Example 1.
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second-order Tikhonov regularisation shows more clearly an L-corner at k = 1E-1.
Alternatively, the GCV method is utilised as another choice for the regularisation
parameter, as shown in Figure 3(b). The minimum of the GCV function suggests Nt = 56
to be the truncation number for the TSVD, whilst for the Tikhonov regularisation
which is displayed in Figure 4(b), the minima indicate the parameters k = 1.0E-7,
1.2E-7 and 4.5E-8 for orders zero, one and two, respectively. Note that for the exact
data, � ≈ 0 and the discrepancy principle cannot be employed.

With the GCV selection for the regularisation parameters determined from Figures
3(b) and 4(b), the TSVD and the Tikhonov regularisation results are shown in Figure 5.
Compared to Figure 2, one can see that the instability of the numerical solutions is not
alleviated. We then employ another choice of the regularisation parameter based on the
L-curve method. This suggests k = 1E-1 for the second-order Tikhonov regularisation
displayed in Figure 4(b). Then with this choice for k we obtain the stable and accurate
numerical results shown in Figure 6 and Table 2.

5.1.2. Noisy data

Next, the case of noise contamination with percentage p = 1% is considered by adding
random noise into the input functions χ(t) and ψ(x) in (42), as in (27) and (28),
respectively. It is of crucial importance to utilise the regularisation in this case, and
selecting the regularisation parameters is the first step of the regularisation process.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1
−0.02

−0.015

−0.01

−0.005

0

0.005

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

5

5.5

(a) (b)

(c) (d)

Figure 2. The analytical (—) and numerical results (– ⋅ –) of (a) r(t), (b) s(x), (c) ux(0, t), and
(d) ux(1, t) obtained using the SVD for exact data, for Example 1.
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Here, the L-curve method and the discrepancy principle are employed as criteria for
choosing the regularisation parameters. These are displayed in Figures 7 and 8 using
the TSVD and the Tikhonov regularisation, respectively. The suggested parameters are
given in Table 2. Figure 9 presents all results obtained using the TSVD and the Tikho-
nov regularisation of orders zero, one and two with the regularisation parameters sug-
gested by the discrepancy principle, see Table 2. Looking more closely at Figure 9(a),
it can be seen that the approximate solutions for r(t) obtained by the first- and the sec-
ond-order Tikhonov regularisation are reasonably stable, whereas the numerical solution
for s(x), as shown in Figure 9(b) is rather inaccurate.

We consider the second-order Tikhonov regularisation with the regularisation
parameter suggested by the L-curve method k = 10 and obtain the results shown in
Figure 11. After analysing this numerical solution, it can be clearly observed that we
cannot obtain accurate solutions for both r and s using k1 ¼ k2. Therefore, the case

Table 2. The RMSE for r(t), s(x), ux(0, t), and ux(1, t) obtained using the SVD, the TSVD and
the Tikhonov regularisation of orders zero, one, and two, for p ∊ {0, 1}%, for Example 1.

Method p Parameter

RMSE

r(t) s(x) ux(0, t) ux(1, t)

SVD 0 – 1.47E–1 2.55E–1 9.32E–3 4.58E–2
TSVD 0 Nt = 56 1.17E–1 2.03E–1 2.94E–3 3.57E–2
Zeroth 0 k = 1.0E–7 1.20E–1 2.02E–1 3.53E–3 3.65E–2
First 0 k = 1.2E–7 7.62E–2 1.70E–1 3.68E–3 4.35E–2
Second 0 k = 4.5E–8 7.96E–2 1.85E–1 6.48E–3 4.70E–2
Second 0 k = 1.0E–1 8.70E–3 2.81E–2 1.27E–2 3.09E–3
SVD 1% – 1.62E+1 1.01E+2 2.84 2.48E–1
TSVD 1% Nt = 14 2.04E–1 1.77E–1 2.29E–2 5.83E–2
Zeroth 1% k = 1.3E–3 1.87E–1 1.83E–1 2.32E–2 4.87E–2
First 1% k = 2.8E–2 1.28E–1 3.50E–1 1.05E–1 7.91E–2
Second 1% k = 1.5 9.72E–2 2.65E–1 8.05E–2 5.58E–2
Second 1% k = 10 1.61E–1 4.23E–1 1.20E–1 9.36E–2
Second 1% k1 = 10, k2 = 1 7.93E–2 2.18E–1 6.81E–2 4.40E–2
Second 1% k1 = 8,k2 = 5.2E–2 1.92E–3 5.34E–2 1.00E–2 6.39E–3
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Figure 3. (a) The L-curve and (b) the GCV function obtained by the TSVD for exact data, for
Example 1.
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k1 6¼ k2 is considered and the L-surfaces are shown in Figure 10. On the plane of
logarithm of residual norm, log k Xwk � ye k, versus logarithm of the second-order
derivative of r, log k R1rk1 k, there is an L-shaped corner at k1 = 1E + 1, while k2 = 1
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Figure 4. (a) The L-curve, and (b) the GCV function, obtained by the Tikhonov regularisation
of order zero (– ⋅ –), one (⋯) and two (– – –) for exact data, with k ¼ k1 ¼ k2, for Example 1.
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Figure 5. The analytical (—) and numerical results of (a) r(t), (b) s(x), (c) ux(0, t), and (d)
ux(1, t) obtained using the TSVD (– + –), and the Tikhonov regularisation of orders zero (– ⋅ –),
one (⋯), and two (– – –) with regularisation parameters suggested by the GCV function of Fig-
ure 3(b) and 4(b) for exact data, for Example 1.
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is based around the area of the L-corner on the plane of log k Xwk � y� k versus
log k R2rk2 k. However, the numerical solution for s(x) obtained using the parameters
k1 ¼ 10, k2 ¼ 1 suggested by the L-surface method, is still inaccurate. We finally use
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Figure 6. The analytical (—) and numerical results (– ⋅ –) of (a) r(t), (b) s(x), (c) ux(0, t), and
(d) ux(1, t) obtained using the second-order Tikhonov regularisation with the regularisation
parameter k1 ¼ k2 ¼ k ¼ 1E � 1 suggested by the L-curve of Figure 4(a) for exact data, for
Example 1.
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Figure 7. (a) The L-curve and (b) the discrepancy principle obtained using the TSVD for noisy
input p = 1%, for Example 1.
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Figure 8. (a) The L-curve and (b) the discrepancy principle obtained using the Tikhonov regu-
larisation of order zero (– ⋅ –), one (⋯), and two (– – –) for noisy input p = 1%, with
k ¼ k1 ¼ k2, for Example 1.
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Figure 9. The analytical (—) and numerical results of (a) r(t), (b) s(x), (c) ux(0, t), and (d)
ux(1, t) obtained using the TSVD (– + –) with Nt = 14, and the Tikhonov regularisation of orders
zero (– ⋅ –), one (⋯), and two (– – –) with regularisation parameters suggested by the discrep-
ancy principle of Figure 8(b) for noisy input p = 1%, for Example 1.
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the trial and error process to seek out the appropriated regularisation parameters, and
found that regularisation parameters k1 = 8 and k2 = 5.2E-2 can yield an accurate and
stable numerical solution, see Figure 11. Nevertheless, more research has to be under-
taken in the future for the selection of appropriate multiple regularisation parameters,
(Chen, Lu, Xu, & Yang, 2008).

The RMSE of all results which we have mentioned so far are detailed in Table 2.

5.2. Example 2

Let T = L = 1, X0 ¼ 1
2 and the input data

uðxÞ ¼ l0ðtÞ ¼ l1ðtÞ ¼ 0; S0 ¼ sð12Þ ¼ 1
4 ; vðtÞ ¼ uð12; tÞ ¼ t2 sinð14Þ;

wðxÞ ¼ R 10 uðx; tÞ dt ¼ sinðx�x2Þ
3 ; f ðx; tÞ ¼ x; gðx; tÞ ¼ et;

hðx; tÞ ¼ ð2t þ t2ð1� 2xÞ2Þ sinðx� x2Þ þ 2t2 cosðx� x2Þ � xjt � 1
2j � etjx� 3

4j:

8><
>: (44)

Note that the input data (44) satisfy the conditions of Theorem 1 to ensure the exis-
tence and uniqueness of solution of the inverse problem (1)–(6). In fact, the exact solu-
tion is given by
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Figure 10. The L-surface on (a) a three-dimensional plot, (b) plane of log k Xwk � ye k versus
log k R1rk k, and (c) plane of log k Xwk � ye k versus log k R2sk k, obtained using the second-
order Tikhonov regularisation for noisy input p = 1%, for Example 1.
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uðx; tÞ ¼ t2 sinðx� x2Þ; rðtÞ ¼ jt � 1

2
j; sðxÞ ¼ jx� 3

4
j:

This is a more severe test example than Example 1 since the source components r(t)
and s(x) are not smooth functions.

We have calculated the condition numbers of the matrix X and obtained the condi-
tion numbers 3.46E+3, 1.54E+4 and 8.69E+4 for N = N0 = 20, 40 and 80, respec-
tively. Moreover, the corresponding normalised singular values are shown in Figure 12.

In Example 2, the condition numbers of the matrix X are not much different from
the condition numbers for Example 1. Then we expect to solve this inverse problem by
using the TSVD, or the Tikhonov regularisation as means to reduce the instability of
the solution. We fix N = N0 = 40 and X0 ¼ 1

2.

5.2.1. Exact data

First, we have tried the TSVD and the Tikhonov regularisation of orders zero, one and
two with the regularisation parameter given by the GCV function. This yields Nt = 65,
k = 2.9E-8, 3.2E-8 and 8.3E-9, respectively. But we have found that the numerical
solutions for r(t) and s(x) are not so accurate. We then considered the L-curve method
for choosing the regularisation parameter. Figures 13(a) and 13(b) display the L-curves
for the TSVD and the Tikhonov regularisation, respectively. The same as the L-curve
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Figure 11. The analytical (—) and numerical results of (a) r(t), (b) s(x), (c) ux(0, t), and (d)
ux(1, t) obtained using the second-order Tikhonov regularisation with regularisation parameters
suggested by the L-curve criterion k ¼ k1 ¼ k2 = 10 (– – –), the L-surface method ðk1; k2Þ=
(10,1) (– + –), and the trial and error ðk1; k2Þ=(8,5.2E-2) (– ∗ –), for noisy input p = 1%, for
Example 1.
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in Example 1, an L-shape is obtained only when using the second-order Tikhonov
regularisation. This suggests an L-corner around k = 1E-4 to 1E-3. In particular, for
k = 1E-4, we obtain the stable solutions presented in Figure 14 and Table 3. The
untruncated SVD, i.e. Nt = 80, whose numerical results are also included is not so
accurate and stable in retrieving the functions r(t) and s(x).

5.2.2. Noisy data

When noise is present in the measured data χ(t) and ψ(x), the regularisation with an
appropriate parameter has to be carefully considered. Here, we have tried solving the
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Figure 12. The normalised singular values of matrix X for N = N0 = 20 (– ⋅ –), N = N0 = 40
(⋯), and N = N0 = 80 (– – –), for Example 2.
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Figure 13. The L-curve obtained using (a) the TSVD and (b) the Tikhonov regularisation of
orders zero (– ⋅ –), one (⋯) and two (– – –) with k ¼ k1 ¼ k2, for exact data, for Example 2.
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Figure 14. The analytical (—) and numerical results of (a) r(t), (b) s(x), (c) ux(0, t), and (d)
ux(1, t) obtained using the SVD (– ⋅ –) and the second-order Tikhonov regularisation ð�o�Þ with
the regularisation parameter k1 ¼ k2 ¼ k = 1E-4 suggested by the L-curve of Figure 13(b) for
exact data, for Example 2.

Table 3. The RMSE for r(t), s(x), ux(0, t), and ux(1, t) obtained using the SVD, the TSVD, and
the Tikhonov regularisation of orders zero, and two, for p ∊ {0, 1}%, for Example 2.

Method p Parameter

RMSE

r(t) s(x) ux(0, t) ux(1, t)

SVD 0 – 1.15E–1 4.12E–2 2.05E–3 6.95E–4
TSVD 0 Nt = 65 1.17E–1 7.92E–2 1.15E–1 4.12E–2
Zeroth 0 k = 2.9E–8 1.67E–1 6.63E–2 5.21E–3 2.19E–3
First 0 k = 3.2E–8 8.94E–2 2.99E–2 2.12E–3 6.01E–4
Second 0 k = 8.3E–9 9.20E–2 3.13E–2 2.10E–3 7.61E–4
Second 0 k = 1.0E–4 5.88E–3 8.94E–3 2.39E–3 1.04E–3
SVD 1% - 5.31E+1 8.91E+1 2.88 2.42E–1
TSVD 1% Nt = 10 2.16E–1 2.37E–1 1.15E–1 9.05E–2
Zeroth 1% k = 7.3E–4 1.20E–1 2.12E–1 1.15E–1 4.72E–2
First 1% k = 3.2E–2 1.66E–1 6.77E–2 2.21E–2 2.51E–2
Second 1% k = 2.3 5.78E–2 7.90E–2 9.98E–3 4.95E–2
Second 1% k = 1 9.24E–2 6.63E–2 1.55E–2 4.04E–2
Second 1% k1 = 1,k2 = 10 3.96E–2 1.13E–1 4.67E–3 6.40E–2
Second 1% k1 = 2.2,k2 = 5.9 2.37E–2 1.01E–1 3.42E–3 5.98E–2
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perturbed problem with p = 1% noisy input by using the TSVD and the Tikhonov reg-
ularisation of orders zero, one, and two with the regularisation parameter given by the
discrepancy principle. This yields Nt = 10, k = 7.3E-4, 3.2E-2 and 2.3, respectively.
Although the discrepancy principle is a rigorous method which uses the knowledge of
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Figure 15. The L-curve obtained using (a) the TSVD and (b) the Tikhonov regularisation of
orders zero (– ⋅ – ), one (⋯), and two (– – –) with k ¼ k1 ¼ k2, for noisy input p = 1%, for
Example 2.
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noise, the RMSE errors displayed in Table 3 are quite large. Alternatively, we consider
the L-curve method for the choice of regularisation parameter displayed in Figure 15.
This suggests the appropriate parameters as Nt ∊ {5, …, 30}, k = 1E-4, 1E-2, and 1 for
the TSVD and the Tikhonov regularisation of orders zero, one and two, respectively.
We then solved the inverse problem with these parameters and found that the numerical
results obtained using the TSVD, zero- and first-order Tikhonov regularisation are not
so accurate. Whereas the second-order Tikhonov regularisation yields an accurate solu-
tion, as shown in Figure 17 with dashed line. Hence, as in Example 1, the case of
k1 6¼ k2 needs to be considered by using the L-surface method for choosing the appro-
priate regularisation parameters. Figures 16 displays the L-surface which selects
k1 = 10 and k2 = 1 and the results obtained using the second-order Tikhonov regulari-
sation with these parameters are shown in Figure 17. Furthermore, the regularisation
parameters selected by the trial and error have also been considered and these results
have also been included in Figure 17. The accurate and stable retrieval of r(t) is
possible, but for s(x) this is less accurate.

6 Conclusions

This paper has presented a numerical approach to the simultaneous numerical determi-
nation of the space- and the time-dependent coefficient source functions of an inverse
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Figure 17 The analytical (—) and numerical results of (a) r(t), (b) s(x), (c) ux(0, t), and (d)
ux(1, t) obtained using the second-order Tikhonov regularisation with regularisation parameters
suggested by the L-curve criterion k ¼ k1 ¼ k2 = 1 (– – –), the L-surface method ðk1; k2Þ=(1,10)
(– + –), and the trial and error ðk1; k2Þ=(2.2,5.9) (– ∗ –), for noisy input p = 1%, for Example 2.
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heat conduction problem with Dirichlet boundary conditions together with specified
interior temperature measurement and time-integral condition, as the over-determination
conditions.

The numerical discretisation was based on the BEM together with either the TSVD,
or the Tikhonov regularisation. Additionally, various methods for choosing the regulari-
sation parameters have been utilised. The numerical results presented show that accu-
rate and stable numerical solutions can be achieved provided that the regularisation
parameters are appropriately selected. The two-parameter selection has proved to be
difficult, as some of our numerical results obtained using several criteria, e.g. discrep-
ancy principle, GCV, L-curve, L-surface, have shown. Nevertheless, more research has
to be undertaken in the future for the selection of multiple regularisation parameters,
(Chen et al., 2008). At present, we are investigating an iterative process of regularisa-
tion, (Hào, Thanh, Lesnic, & Kerimov, 2013), whose stopping criterion based on the
single choice of the iteration number does not involve the choice of two Tikhonov reg-
ularisation parameters.

Future work will also consist of constructing multiplicative space- and time-
dependent heat sources, (Savateev, 1995).
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