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Abstract

Present paper deals on the free vibration investigation of carbon nanotube-
reinforced composite (CNTs) beams, based on refined third order shear
deformation finite element beam theory. The particularity of this model is
that, it can capture shear deformation effect without using of any shear
correction factor by satisfying shear stress free at free edges. The carbon nan-
otubes are supposed to be immersed in a polymeric matrix with functionally
graded pattern across the thickness direction of the beam, and their material
properties are evaluated using the rule of mixture. The differential equations
of motion and related boundary conditions are extracted using Lagrange’s
principle and solved employing a robust numerical tool called, Differential
Quadrature Finite Element Method (DQFEM) for the first time, with high
convergence speed, fast calculus performance as well as a good numerical
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stability. The obtained results have been validated with those available in
literature, in order to show the correctness of the present model. Afterwards,
a deep parametric study is performed to examine the effects of various
geometrical and material parameters on the vibration behavior of FG-CNTs
beams.

Keywords: FG-CNTs beam, dynamic analysis, refined third order theory,
differential quadrature finite elements method, enriched beam element.

1 Introduction

In modern engineering sectors, the use of fiber reinforced composite (FRC)
to reinforce structural elements such as beams and plates has become a
necessity, given the paramount importance that they provide, such as out-
standing mechanical performance, sustainability, optical and low density.
Among the new reinforcement methods are nano-composite materials, such
as carbon nanotube-reinforced (CNTs) (Ijima 1991; Thostenson et al. 2001),
which are considered as a new emerging nano composite materials because
of the extreme benefit when using them as reinforcing elements, providing
exceptional mechanical, thermal, electrical properties, and size dependency
Kiang et al. (1998). To deal with several problems such as, delamination
in laminated composite structures especially when using CNTs uniformly
dispersed in the polymer matrix, the concept of functionally graded carbon
nanotubes (FG-CTNs) has been proposed by Shen (2009) for designing the
distributions of GPLs immersed in a polymer matrix by providing more
performance. Based on this idea, various researches have been provided in
the literature. Ke et al. (Ke et al. 2010, Ke et al. 2013) investigated the
FGCNT volume fraction effects on dynamic stability of nonlinear vibration
and of composite beams. Wang and Shen (Wang and Shen 2011) showed that
the CNTRC plates with symmetrical form of CNTs provide lower natural
frequencies compared to unsymmetrical or uniform distribution of CNTs,
when the FG-CNTs plates are in a thermal environment. Wattanasakulpong
and Ungbhakorn (2013) presented a deep study on the bending, buckling
and vibration behaviors of carbon nanotube reinforced composite (CNTRC)
beams, considering various higher-order shear deformation beam theories.
Shen and Xiang (2013) investigated the thermal postbuckling response of
FG-CNTRC beams considering both edges simply supported, employing
perturbation method. The element-free kp-Ritz method has been used by
Lei et al. (2013), to investigate the free vibration of FG-CNT reinforced
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composite rectangular plates in a thermal environment. Lin and Xiang (2014)
used both first and third order beam theories in conjunction with p-Ritz
method, for investigating free vibration response of aligned and graded
CNTs composite beams. Yang et al. 2015 researched the dynamic buckling
behaviors of FG nanocomposite beams strengthened by CNT as a core and
integrated with two surface bonded piezoelectric layers. Wu et al. 2015
examined the free vibration and buckling performance of sandwich beams
strengthened with FGCNTRCs face sheets employing the Timoshenko beam
model. Tagrara et al. 2015 provided an original trigonometric beam theory to
study the bending, buckling and vibration responses of functionally graded
carbon nanotube-reinforced composite beams. The shear buckling behaviour
of FG-CNTRC composite plates has been explored by Kiani Y (2016), taking
into account various types of boundary conditions employing the Chebychev–
Ritz technique. Jam and Kiani (2015) studied the behavior of FG-CNTRC
reinforced beam subjected to a low velocity impact due to a single mass in
thermal environment. Ebrahimi and Karimiasl (2018) presented an analytical
approach to explore the surface and flexoelectric effects on the buckling
characteristics of an embedded piezoelectric sandwich nanobeam. Kiani Y
(2018) examined the thermal post-buckling response of a sandwich beam
made with CNTRC face sheets and resting on a Pasternak foundation. They
showed that the properties of CNTs are important factors on thermal buckling
and postbuckling characteristics of the sandwich beam with FG-CNTRC
face sheets. VO-DUY et al. (2019) employed a linear two-node element
with six degrees of freedom combined with the first-order shear deformation
theory, to study the free vibration of laminated functionally graded carbon
nanotube reinforced composite beams. Babaei et al. (2021) contributed on the
vibrational behavior investigation of thermally pre-/post buckled FG-CNTRC
beams resting on a nonlinear elastic foundation using a two-step perturbation
procedure.

Numerical and semi-numerical methods, such as the popular finite ele-
ment method (FEM) and differential quadrature have found wide usage in
recent decades, due to their efficiency, flexibility and adaptability in solving
differential equations related to structural elements with complicated effects,
related to geometries, shapes, interactions, boundary conditions, etc. with
precise results. Since then, several studies have been provided lately based on
these numerical methods. Vo and Thai (2012) and Vo et al. (2014) developed
a two-noded C1 beam element with five degree-of-freedom per node, to
investigate the static deflection, vibration and buckling behaviour of com-
posite and functionally graded (FG) beams with refined shear deformation
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theory. In another study, a quasi-3D theory was applied by Vo et al. (2017)
for studying the free vibration of axially loaded composite beams, based on
two-noded C1 with six degrees of freedom. Yarasca et al. (2016) presented
a Hermitian–Lagrangian finite element formulation of a generalized quasi-
3D hybrid type HSDT considering 7DOF, for static analysis of functionally
graded single and sandwich beams. Forced Vibration of was studied by
Barati and Shahverdi (2020) employing the refined shear deformation beam
theory in conjunction with two-noded C1 finite beam element, which contains
ten degrees of freedom, for inspecting forced vibration of a nanocomposite
beam reinforced with different distributions of graphene platelets (GPLs) in
thermal environments. Karamanli and Vo (2021) presented Finite elements
solutions based on normal and shear deformation beam theory, to analyze the
bending, buckling and free vibration of CNTRC/GPLRC beams. Azimi et al.
(2018) analyzed the vibration of rotating, functionally graded Timoshenko
nano-beams under an in-plane nonlinear thermal loading, via the differential
quadrature method. The GDQM was used by Lal and Dangi (2019), to
explore the effect of linear and nonlinear thermal environment on vibra-
tion characteristic of temperature dependent BD-FG non-uniform nanobeam
on the basis of Timoshenko beam theory together with Eringen’s nonlocal
elasticity theory. Lei et al. (2019) researched the postbuckling response of bi-
directional FG beams with porosities based on a novel third-order shear defor-
mation theory. Even and uneven distributions of porosities were considered in
their investigation. Abdollahi and Yas (2020) studied free vibration response
of boron nitride nanotubes (BNNTs) reinforced Timoshenko beams on an
elastic foundation. The orientation of nanotubes in the matrix was considered
to be unidirectional or randomly oriented. Natural frequencies were gained
by introducing (GDQM). Bensaid and Saimi (2022) explored the dynamic
behavior of functionally graded porous beams resting on viscoelastic founda-
tion, employing the generalized differential quadrature method. Eltaher et al.
(2020) performed a study on the static stability response and mode-shapes of
laminated composite beams and undergoing varying axial inplane loads with
differential quadrature method (DQM). The nonlinear thermal buckling and
postbuckling of bidirectional functionally graded non-uniform microbeams
were inspected by Attia and Mohamed (2020) employing Reddy beam model
and generalized differential quadrature method (GDQM). It is well known
that the coupling between numerical methods has an extreme advantage,
and it has attracted the attention of several researchers thanks to the great
advantages it provides such as, improved numerical stability, high compu-
tation efficiency, fast convergence, complex geometries, etc. Besides, works
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on the combination between the finite element method and the generalized
differential quadrature method is somewhat limited in the literature. One can
cite among the first works provided by Xing and Liu, (2009), which presented
a Differential Quadrature Finite Element Method (DQFEM) to facilitate the
complexity of imposing boundary conditions in DQM with high accuracy
and results convergence in application to free vibrations of thin plate with
curvilinear domain. Liu C et al. (2016) proposed a differential quadrature
hierarchical finite element method (DQHFEM) that introduce interpolation
basis on the boundary of hierarchical finite element method elements, to
study the vibration and bending of Mindlin plates with curvilinear domains.
Yan et al. (2021) developed a novel unified quasi-3D solution based on
combination between Carrera Unified Formulation (CUF) and differential
quadrature finite element method (DQFEM), to explore Free vibration anal-
ysis of variable stiffness composite laminated beams and plates. Recently,
Saimi et al. (2021) extended the differential quadrature finite element method
(DQFEM) and hierarchical finite element method (DQHFEM) to examine
the dynamic behavior of on-board shaft, for the first time. As we can see
previously, there was no reported work done on free vibration of refined
higher order shear deformation beams reinforced with a functionally graded
carbon nanotube using (FGCNTs). This paper aims to investigate for the first
time within the framework of refined higher order shear deformation beam
theory (RSHBT) strengthened with functionally graded carbon nanotubes.
The material properties of carbon nanotubes are assumed to vary in the
thickness direction in an FG pattern. Differential quadrature coupled with
finite element method (DQFEM) as a power numerical tool is employed
to solve the differential governing equations of composite beams for the
first time. After that, a parametric investigation is conducted to explore the
impacts of length thickness ratios, carbon nanotube volume fraction and their
distribution forms, combined physical and geometrical parameters in three-
dimension, various boundary conditions on the free vibration behaviors of
FG-CNTRC composite beams.

2 FG-CNRC Beams

In this study, we consider a straight composite beam made with a mixture
of isotropic polymer matrix and SWCNTs (10,10) armchair dispersed in it.
Figure 1(a) shows a CNTRC beam, having length (L) and thickness (h). In the
present investigation, four different patterns of reinforcement through the
cross sections are considered as shown in Figure 1(b).
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Figure 1(a) A geometry of FG-CNTs composite beam.
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Figure 1(b) Different patterns of CNTs reinforcement through a beam section.

The material properties of CNTRC beams are evaluated employing the
extended rule of mixture which provides the effective Young’s modulus and
shear modulus of CNTRC beams as (Shen 2009, Wattanasakulpong and
Ungbhakorn 2013).

E11 = η1VcntE
cnt
11 + VpE

p (1a)

η2
E22

=
Vcnt
Ecnt

22

+
Vp
Ep

(1b)

η3
G12

=
Vcnt
Gcnt

12

+
Vp
Gp

(1c)

in which, Ecnt
11 ; Ecnt

22 and Gcnt
12 represent the Young’s modulus and shear

modulus of SWCNT, correspondingly and Ep and Gp are the corresponding
material properties of the polymer matrix. Also, Vcnt and Vp are the volume
fractions for carbon nanotube and the polymer matrix, respectively, with the
relation of Vcnt+Vp = 1. To consider the size-dependency material properties
of SWCNT, the CNT efficiency parameters, ηi (i = 1, 2, 3), are selected.
Theses parameters have been obtained by matching the elastic moduli of
CNTRCs assessed by the MD simulation by the numerical results determined
by the rule of mixture (Han and Elliott 2007). Utilizing the same rule,
Poisson’s ratio (v) and mass density (ρ) of the CNTRC beams are expressed as

ν = Vcntν
cnt + Vpν

p; ρ = Vcntρ
cnt + Vpρ

p (2)
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where νcnt, νp and ρcnt, ρp are the Poisson’s ratios and densities of the
CNT and polymer matrix respectively. Explicit mathematical term of CNTs
volume fraction in every case of distribution is given in Table 1.

Table 1 Volume fraction of CNTs as a function of thickness coordinate for various cases of
CNTs distribution

CNTs distribution Vcn

UD CNTRC V ∗
cn

FG-V CNTRC V ∗
cn

(
1 + 2

z

h

)
FG-O CNTRC 2V ∗

cn

(
1− 2

|z|
h

)
FG-X CNTRC 4V ∗

cn
|z|
h

where V ∗cnt represents the volume fraction of CNTs, which can be evaluated
from thefollowing equation

V ∗cnt =
Wcnt

Wcnt + (ρcnt/ρm)(1−Wcnt)
(3)

In which Wcnt is the mass fraction of CNTs related to the compos-
ite beam. From the above table, one can observe that the V-, O-and X-Beams
are sorts of functionally graded shapes in which their material components are
changed continuously across their thicknesses; while, the UD-Beam has uni-
formly distributed CNT reinforcement. The parameter (ηi) cited previously
has the following numerical values η1 = 1.2833 and η2 = η3 = 1.0566 for
the case of V ∗cnt ;= 0.12; η1 = 34.14 and η2 = η3 = 1.7101 for the case of
V ∗cnt ;= 0.17; η1 = 1.3238 and η2 = η3 = 1.7380 for the case of V ∗cnt = 0.28
(Yas and Samadi 2012).

3 Basic Mathematical Modeling

3.1 Kinematics and Equations of Motion

The general equations of motion related to this investigation for investigat-
ing the dynamic behavior of FG-CNTs composite beam are extracted from
refined shear deformation beam theory (RSDBT) without the need to use a
shear correction factor (SCF). The displacement field of any arbitrary point in
the mid plan of the beams alongside the x- and z-axes can be given as follows
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(Thai and Vo 2012; Vo et al. 2014; Bekhadda et al. 2019):

u(x, z, t) = u0(x, t)− z
dwb

dx
− f(z)

dws

dx
(4a)

v(x, z, t) = 0 (4b)

w(x, z, t) = wb(x, t) + ws(x, t) (4c)

By which, u0(x, t), wb(x, t) and ws(x, t) are successively, the in-plane
displacement in x-ways, bending and shear components of the transverse
displacement of points on the neutral axis of the beam; and f(z) is a shape
function determining the distribution of the transverse shear strain and shear
stress over the depth of the composite beam.

The expression of normal and shear strain components associated with
the displacement field in Equation (2) are given by

εxx =
du0
dx
− z d

2wb

dx2
− f(z)

d2ws

dx2

γxz = g(z)
dws

dx
(5)

Where f(z) = z − h

dx
sin

πz

h
, g(z) = 1− df(z)

dz
.

By assuming that the material of CNTs beam follows Hooke’s law, the
stresses in the composite beam become

Q11(z) =
E11(z)

1− ν2
(6a)

Q11(z) = G12(z) (6b)

3.2 Equations of Motion

In order to derive the general equations of motion, Lagrange’s principle is
used here in (Saimi, Bensaid et al. 2021) as follows:

d

dt

(
∂Π

∂q̇i

)
+
∂Π

∂qi
= 0 (7)

where qi represents the unknown coefficients (Ui, Wbi and Wsi), and (Π) is
total energy functional, the over-dot denotes the partial derivative with respect
to time.
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The variation of the strain energy of the beam is of the form

UB
e =

1

2

∫
Ve

{
σx
τxz

}T { εx
γxz

}
dV

UB
e =

1

2

∫
Ve

{
εx
τγxz

}T [E
0

0

G

]{
εx
γxz

}
dV

UB
e =

1

2
b

∫ l

0





du0
dx

d2wb

dx2

d2ws

dx2



T

I1 I2 I3
I2 I5 I4
I3 I4 I6




du0
dx

d2wb

dx2

d2ws

dx2


+
dws

dx
I7
dws

dx


dx

(8)

Ue
B =

1

2
b

∫ l

0

[(
I1
d2u0
dx2

+ 2I2
du0
dx

d2wb

dx2
+ 2I3

du0
dx

d2ws

dx2
+ 2I4

d2wb

dx2
d2ws

dx2

+ I5
d2wb

dx2
d2wb

dx2
+ I6

d2ws

dx2
d2ws

dx2
+ I7

dws

dx

dws

dx

)]
dx (9)

where Ve is the volume of the element; I1, I2, I3, I4, I5, I6, I7 are the beam
rigidities, defined as

(I1, I2, I3, I4, I5, I6) = b

∫ h/2

−h/2
Q11(1, z, f, zf, z

2, f2) (10)

I7 = b

∫ h/2

−h/2
Q55(g

2) (11)

The variation of kinetic energy of the beam can be expressed as

Te =
1

2

∫
Ve

ρf (u̇2 + ẇ2)dV

Te =
1

2

∫
Ve

ρf

[{
u̇0 − zẇb − f(z)

dẇs

dx

}2

+
(
ẇ2
b + ẇ2

s

)]
dV
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Te =
1

2
b

∫ l

0


u̇0ẇb

ẇs

T J1 J2 J3
J2 J5 J4
J3 J4 J6

u̇0ẇb

ẇs

+

[
ẇb

ẇs

]T [
J1 J1
J1 J1

] [
ẇb

ẇs

] dx

(12)

Te =
1

2
b

∫ l

0

[
J1(u̇20 + ẇ2

b + ẇ2
s + 2ẇbẇs)− 2J2u̇0

dẇb

dx
− 2J3u̇0

dẇs

dx

+ 2J4
dẇb

dx

dẇs

dx
+ J5

(
dẇb

dx

)2

+ J6

(
dẇs

dx

)2
]
dx

where the over dot denotes the derivative with respect the time variable t, and
the mass moment J1, J2, J3, J4, J5, J6s are defined as

(J1, J2, J3, J4, J5, J6) = b

∫ h/2

−h/2
ρ(1, z, f, zf, z2, f2) (14)

3.3 Solution Procedure Based DQFEM

3.3.1 The reformulated differential quadrature rule
Differential quadrature rules approximate the derivatives of a function using
a weighted linear sum of field variables along a line passing through the
point. For polynomial basis functions DQ, a set of Lagrange polynomials
are employed as the test functions.

Thus, for a field variable f(x) its derivative of order n in a discrete point
xi can be expressed as:

∂nf(x; t)

∂xn
=

N∑
j=1

A
(n)
ij f(xj , t) (i = 1, 2, 3, . . . , N) (15)

Where A(n)
ij is the weighting coefficient related to the derivative of order

n, and the weighting coefficient is obtained as follows if n = 1, so

A
(1)
ij =

M(xi)

(xi − xj)M(xj)
i 6= j, j = 1, 2, . . . , N

A
(1)
ii = −

n∑
j=1, j 6=i

A
(1)
ij i = 1, 2, . . . , N (16)
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where

M(xi) =
N∏

k=1,k 6=i

(xi − xk)

M(xj) =

N∏
k=1,k 6=i

(xj − xk) (17)

If n > 1, secondary and higher order derivatives, the weighting coeffi-
cients are determined using the following simple recurrence relationship:

A
(n)
ij = n

(
A

(1)
ij ∗A

(n−1)
ii −

A
(n−1)
ij

(xi − xj)

)
i 6= j, i, j = 1, 2, . . . , N, n > 1

A
(n)
ii = −

N∑
j=1, j 6=i

A
(n)
ij i = 1, 2, . . . , N (18)

3.3.2 Gauss-Lobatto quadrature rule
The theory of Gauss-Lobatto quadrature rules can be found in the mathemat-
ical literature; The Gauss Lobatto quadrature rule with a degree of accuracy
(2n−3) for the function f(x) defined in [−1; 1] is:∫ 1

−1
f(x)dx =

N∑
j=1

Cjf(xj) (19)

With the weighting coefficient Cj of the Gauss-Lobatto, integration is
given by:

C1 = CN =
2

N(N − 1)
, Cj =

2

N(N − 1)[PN−1(xj)]
2 (j 6= 1, N)

(20)
xj is the (j − 1) zero of the first order derivative of PN−1(x). To solve the
roots of the Legendre polynomials, we will use the recursivity formula as
Equations (21) and (22), it is easy to obtain thousands of roots.

PN+1(x) =
2N + 1

N + 1
xPN (x)− N

N + 1
PN−1(x) (21)
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With P0(x) = 1, P1(x) = x. The nth-order derivation of the Legendre
polynomials can be determined by the following formula:

P
(n)
N+1(x) = xP

(n)
N (x) + (N + n)P

(n)
N (x) (22)

In order to obtain a denser population near the boundaries, sampling
points are selected according to the grid distribution of Gauss–Lobatto nodes.

xj = −cos

(
j − 1

N − 1
π

)
(23)

Gauss-Lobatto nodes are solved with the Newton-Raphson iteration
method.

xiT+1 = xiT − F ′(xiT )
−1
F (xiT ), iT = 0, 1, . . . (24)

in which

x = [x2, x3, . . . , xN−1]
T (25)

F (x) = [f(x2), f(x3), . . . , f(xN−1)]
T (26)

F ′(x) =

[
∂f(xj)

∂xi

]
(N−2)×(N−2)

(27)

f(xj) =

N∑
k−1, k 6=j

1

xj − xk
j = 2, 3, . . . , N − 1 (28)

∂f(xj)

∂xi
=


−

N∑
k=1, k 6=j

1

(xj − xk)2
, (i = j)

1

(xj − xk)2
, (i 6= j)

(29)

Where k is the value of x at it
th

iteration step. This method is less sensitive
to the initial value. The values given by Equation (29) are used as initial
values.

3.3.3 The differential quadrature finite element method
The finite element method (FEM) is considered as an efficient tool for the
numerical solution, which is used in wide range of engineering problems.
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However, this method sometimes lacks in both convergence and calculation
speed and numerical instability; currently it is necessary to couple this
method with other numerical or semi-numerical methods, in order to make
it more robust, stable and faster in the calculus. The differential quadrature
finite element method was developed by (Xing and Liu, 2009), whose differ-
ential quadrature rules and Gauss-Lobatto quadrature are used to discretize
the system energies.

Assuming that the deflection function is

u(x) =

N∑
i=1

Li(x)ui

w(x) =

N∑
i=1

Li(x)wi (30)

With Li is the Lagrange polynomial, and ui = u(xi), wi = w(xi) are
the displacements of the Gauss Lobatto quadrature points or the DQ nodal
displacements of the beam finite element.

Using DQ rules and Gauss - Lobatto quadrature the expressions of kinetic
energy and strain energy (8–12) can be written as follows:

Te =
1

2
b[J1([Q

−T
CQ

−1
]u̇20 + [Q

−T
CQ

−1
]ẇ2

b + [Q
−T
CQ

−1
]ẇ2

s

+ 2[Q
−T
CQ

−1
]ẇbẇs)− 2J2[Q

−T
CA

(1)
Q
−1

]u̇0ẇb

− 2J3[Q
−T
CA

(1)
Q
−1

]u̇0ẇs + 2J4[Q
−T
A

(1)
CA

(1)
Q
−1

]ẇsẇb

+ J5[Q
−T
A

(1)
CA

(1)
Q
−1

]ẇ2
b + J6[Q

−T
A

(1)
CA

(1)
Q
−1

]ẇ2
s ] (31)

Ue
B =

1

2
bI1[u0

TQ
−T
A

(1)T
CA

(1)
Q
−1
u0]

+ 2I2[u0
TQ
−T
A

(1)T
CA

(2)
Q
−1
wb]

+ 2I3[u0
TQ
−T
A

(1)T
CA

(2)
Q
−1
ws]

+ 2I4[wb
TQ
−T
A

(2)T
CA

(2)
]

+ 2I4[wb
TQ
−T
A

(2)T
CA

(2)
Q
−1
ws]
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+ I5[wb
TQ
−T
A

(2)T
CA

(2)
Q
−1
wb]

+ I6[ws
TQ
−T
A

(2)T
CA

(2)
Q
−1
ws]

+ I7[ws
TQ
−T
A

(1)T
CA

(1)
Q
−1
ws] (32)

With A(1)and A(2) indicates the matrices of the weighting coefficients of
the DQ rules for the first and second order derivatives respectively calculated
with Equations (16–18), with respect to the Gauss Lobatto nodes, and

C = diag [C1C2 . . . CN ] (33)

WhereCj are the weighting coefficients of the Gauss-Lobatto integration.

uT = [u1u2 . . . uN ]

wT = [w1w2 . . . wN ] (34)

In order to construct an element that satisfies the requirements of
continuity between elements, the element displacement vectors must be:

uT = [u1u
′
3u3 . . . uN−2uNu

′
N ]

wT = [w1w
′
3w3 . . . wN−2wNw

′
N ] (35)

The relation between u and w is defined using the DQ rule:

u = Qu, w = Qw (36)

Where

Q =



1 0 0 · · · 0 0

A
(1)
1,1 A

(1)
1,2 A

(1)
1,3 · · · A

(1)
1,N−1 A

(1)
1,N

0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1

A
(1)
N,1 A

(1)
N,2 A

(1)
N,3 · · · A

(1)
N,N−1 A

(1)
1,N


(37)

All forms of node distribution for differentiation and quadrature are
[−1; 1]. Therefore, in order to apply them in practice, the following modi-
fications must be made to the differential and quadrature matrices,

C =
le
2
C, A

(1)
=

2

le
A(1), A

(2)
=

4

le
A(2) (38)
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Where le is the length of the beam element.
The matrices for the entire system are obtained according to the FEM

rules for assembling elementary matrices,

[M ]

ü0(t)ẅb(t)
ẅs(t)

+ [K]

u0(t)wb(t)
ws(t)

 = [0] (39)

The elementary mass matrix obtained with (DQFEM)

[M ] =



J1[Q
−T

CQ
−1

] −J2[Q
−T

CA
(1)

Q
−1

] −J3[Q
−T

CA
(1)

Q
−1

]

−J2[Q
−T

CA
(1)

Q
−1

] J1[Q
−T

CQ
−1

] J1[Q
−T

CQ
−1

]

+J5[Q
−T

A
(1)T

+J4[Q
−T

A
(1)T

CA
(1)

Q
−1

] CA
(1)

Q
−1

]

−J3[Q
−T

CA
(1)

Q
−1

] J1[Q
−T

CQ
−1

] J1[Q
−T

CQ
−1

]

+J4[Q
−T

A
(1)T

+J6[Q
−T

A
(1)T

CA
(1)

Q
−1

] CA
(1)

Q
−1

]


(40)

The stiffness matrices obtained with (DQFEM)

[K] =


I1[Q

−T
A

(1)T
CA

(1)
Q

−1
] I2[Q

−T
A

(1)T
CA

(2)
Q

−1
] I3[Q

−T
A

(1)T
CA

(2)
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−1
]
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A
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Q
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Q
−1
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(2)T
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(2)

Q
−1
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+I7[Q
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(1)T

CA
(1)

Q
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(41)

3.4 Equation of Elementary Motion

By applying Lagrange’s equations Equation (7) to the system discretized
by the DQFEM method showed above, we obtain the following system of
differential equations:

[M e]{q̈}+ [Ke]{q} = [0] (42)

Where:

• [M e] and [Ke] are respectively the elementary matrices of mass and
stiffness.

• {q̈} and {q} are respectively the global acceleration and displacement
vectors suitable for DQFEM connectivity.
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• Considering [M ] and [K] respectively the total matrices after assembly
of mass and stiffness, therefore the differential equation of motion
becomes: [∑

e

M e

]
{q̈}+

[∑
e

Ke

]
{q} = [0] (43)

The assembly of the global matrices is similar to that of the classic
version of the finite elements method to ensure displacement and rotational
compatibility at the nodes of adjacent elements. In the current application of
DQFEM, boundary conditions are applied in the same way as the hp version
of the finite element method.

4 Numerical Results and Discussion

In this part, numerical results are presented, in order to examine and
discussing the free vibration behavior of FG-CNTs composite beams consid-
ering different types of boundary conditions, namely simply-supported (SS),
clamped-clamped (CC), clamped-free (CF) and clamped-simply supported
(CS). In the beginning, a validation studies are conducted to show exactness
of the present model. Afterwards, a parametric study is made to inspect the
influences of various physical and geometrical parameters. We have chosen
in this investigation a Poly (methyl methacrylate), referred to as PMMA, is
selected for the matrix with material properties Em = 2.5 GPa, νm = 0.3
and ρm = 1190 kg/m3. In addition, the (10,10) armchair SWCNT is selected
as the reinforcement and has the following properties (Shen 2009; Yas and
Samadi 2012): vcnt = 0.19; ρcnt = 1400 kg/m3; Ecnt

11 = 600 GPa;
Ecnt

22 = 10 GPa and Gcnt
12 = 17.2 GPa. It is suitable to present the free

vibration results in the dimensionless form as

ω = ωA

√
I00
A110

where A110 and I00 are of beam constructed of pure matrix material,
respectively.

4.1 Convergence Study of the Results

The inspection in Table 2 is for searching the appropriate number of terms
(number of elements Ne and sampling points N) in the Differential Quadra-
ture Finite Element Method (DQFEM) for the degree of convergence related
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Table 2 Convergence results of the first natural frequency of FG-CNTs beams with S-S
boundary condition (L/h = 5)

N 4 10 20
Ne 1 4 9

V ∗
cnt V ∗

cnt V ∗
cnt

Pattern 0.12 0.17 0.28 0.12 0.17 0.28 0.12 0.17 0.28
UD 1.6945 2.1650 2.4001 1.6430 2.0951 2.3314 1.6430 2.0951 2.3314
O 1.4867 1.9016 2.2030 1.4300 1.8219 2.1205 1.4300 1.8219 2.1205
X 1.7694 2.2516 2.4365 1.7231 2.1903 2.3759 1.7231 2.1903 2.3759
V 1.6948 2.1669 2.4145 1.6270 2.0730 2.3233 1.6270 2.0730 2.3233

to the 1st mode of natural frequencies (ω) of FG-CNTs composite beams. Var-
ious volume fraction of carbon nanotubes has been considered (V ∗cnt = 0.12,
0.17 and 0.28) immersed in the epoxy matrix with different shapes of rein-
forcement including (UD- -O, -X, -V). It is seen that, the convergent degree
for the fundamental natural frequency is very fast using only Ne = 4 and
N = 10. In addition, the choice of the combination of sampling number N
with the number of elements Ne is free, which means that any combination
can be chosen, more convergent the results can be obtained with an increase
in the values of sampling points.

In Figures 2–3, a combination of the sampling number N with the number
of elements Ne (Ne(i + 1) = Ne(i) + 1 and Ne(i + 1) = Ne(i) + 2) was used.
At each iteration, a set of sampling points and two additional elements were
added. We can see that the DQFEM method converge quickly, at N = 4 and
Ne = 1 being the starting point of convergence, the results begin to converge
from N = 6 and Ne = 2, which confirms the effectiveness of the proposed
model, it gives a good result with a minimum of refinement.

To have good agreement with other works in the literature, and according
to the convergence study of the DQFEM used in this work, we will choose a
number of sampling N = 10, and a number of element Ne = 2 in the rest of
the investigation.

4.2 Results Comparison

To evaluate precision of the obtained results predicted by the present method,
the natural frequencies values of simply supported composite beam was
compared with existing works in the literature in two stages. First, without
considering CNTs reinforcement, a functionally graded (Ceramic-Metal)
beam in which its material properties are Ec = 380 GPa, ρc = 3960 kg/m3,
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Figure 2 Convergence of the first frequency of CNTs beams as a function of the sampling
number of DQHFEM nodes N and mesh degree-Ne with (Ne(i) = Ne(i) + 1 and Ni = Ni + 2).

Figure 3 Convergence of the first frequency of CNTs beams as a function of the element
number of DQHFEM nodes N and mesh degree-Ne with (Ne(i) = Ne(i) + 1 and Ni = Ni + 2).
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Table 3 First three modes natural frequencies ω of FG-beams. (N = 10, Ne = 2)
p

L/h Mode Model 0 0.5 1 5 10
5 1 Thai and Vo (2012) 5.1527 4.4107 3.9904 3.4012 3.2816

Present 5.1527 4.5328 4.2551 3.7055 3.4513
2 TBT Thai and Vo (2012) 17.8812 15.4588 14.0100 11.5431 11.0240

Present 17.8812 15.3461 13.7723 11.2436 10.8418
3 Thai and Vo (2012) 34.2097 29.8382 27.0979 21.7158 20.5561

Present 30.2314 27.0488 24.8169 19.2826 17.9026
1 Thai and Vo (2012) 5.1531 4.4110 3.9907 3.3998 3.2811

Present 5.1531 4.5332 4.2554 3.7036 3.4509
2 SBT Thai and Vo (2012) 17.8868 15.4631 14.0138 11.5324 11.0216

Present 17.8868 15.3501 13.7757 11.2345 10.8389
3 Thai and Vo (2012) 34.2344 29.8569 27.1152 21.6943 20.5581

Present 30.2314 27.0499 24.8182 19.2772 17.9040
20 1 Thai and Vo (2012) 5.4603 4.6511 4.2051 3.6485 3.5390

Present 5.4603 4.7882 5.0022 4.0061 3.7385
2 TBT Thai and Vo (2012) 21.5732 18.3962 16.6344 14.3746 13.9263

Present 21.5732 18.3864 16.6132 14.3429 13.9072
3 Thai and Vo (2012) 47.5930 40.6526 36.7679 31.5780 30.5369

Present 47.6040 40.7801 37.0412 31.8954 30.7086
1 Thai and Vo (2012) 5.4603 4.6511 4.2051 3.6484 3.5389

Present 5.4603 4.7882 4.5022 4.0060 3.7384
2 SBT Thai and Vo (2012) 21.5736 18.3965 16.6347 14.3728 13.9255

Present 21.5736 18.3867 16.6134 14.3412 13.9065
3 Thai and Vo (2012) 47.5950 40.6542 36.7692 31.5699 30.5337

Present 47.6060 40.7818 37.0426 31.8871 30.7045

νc = 0.3 for ceramic and Em = 70 GPa, ρm = 2700 kg/m3, νm = 0.3 for
metal with the work provide Thai and Vo (2012) in Table 2, next stage is to
consider a composite beam reinforced by carbon nanotubes (CNTs) in graded
pattern with the results provided by (Wattanasakulpong and Ungbhakorn
2013; Tagrara et al. 2015).

From the Table 3, it can be observed that our results match well with the
results obtained by (Thai and Vo 2012) for various power law exponent (p),
slenderness ratios (L/h) and mode number which confirm our model.

The accuracy of the presented free vibration results are compared with
those of hyperbolic and sinusoidal order beam theories presented respectively
by (Wattanasakulpong and Ungbhakorn 2013; Tagrara et al. 2015) for func-
tionally graded reinforced CNT beam and the results are presented in Table 4.
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Table 4 Comparison of dimensionless fundamental frequencies for CNTs beams without
elastic foundation (L/h = 15, V ∗

cnt = 0.12)
Source UD O X V

HSDT Source (*) 0.9745 0.7454 1.1151 0.8441
Present 0.9745 0.7454 1.1152 0.9442

SSDT Source (**) 0.9749 0.7446 1.1163 0.8443
Source (*) 0.9745 0.7453 1.1152 0.8441
Present 0.9745 0.7453 1.1152 0.9442

SSDT Source (*) 0.9756 0.7440 1.1180 0.8448
Present 0.9749 0.7446 1.1163 0.9444

*Wattanasakulpong, and Ungbhakorn (2013)
**Tagrara et al. (2015).

It is indicated that the actual model and solution procedure can accurately
predict natural frequencies of FG-CNTs composite beams.

4.3 Parametric Study

Figure 4 demonstrates the maximum values of non-dimensional frequencies
against length to thickness ratios (L/h) of FG-CNTs reinforced beams under
free vibration. The beams are supposed to be simply supported at both
supports (S-S) and reinforced by V ∗cnt = 0.17% of CNTs with various
patterns distribution. It can be seen, that the highest natural frequency is
detected in the case of the beam with FG-X reinforcement and then followed
by free vibration of the beams with UD, FG-V, and FG-O of reinforcements,
correspondingly. This is due to that the stiffness of the composite beam with
–X distribution being much greater compared to those of others types.

To find out the significant influence of volume fractions of CNTs V ∗cnt
on dynamic response of FG composite beams with respect slenderness ratios
(L/h) when FG is −X type and S-S board condition is depicted in Figure 5.
Increasing volume fraction coefficient V ∗cnt leads to increases in natural
frequency of reinforced composite FG beam. Because, the Young’s modulus
of becomes high and consequently the beam become more rigid.

In Table 5, the obtained results of dimensionless natural frequency of
the refined sinusoidal FG-CNTs beams considering various thickness ratios
(L/h), different types distribution of CNTs beams and CNT volume fractions
are presented for benchmark results. It is found that the FG-X beam is a
stiffest one, and its frequency is high compared to other cases. With incre-
menting CNTs fraction for each pattern distribution into the beams, there is a
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Figure 4 Dimensionless fundamental frequencies ω of CNT beam with various thickness
ratios L/h (V ∗

cnt = 0.17, S-S).

Figure 5 Dimensionless fundamental frequencies of X-beam with various thickness
ratios(S-S).
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Table 5 Comparisons of fundamental frequencies ω for CNTRC beams with different
volume fraction V ∗

cnt (N = 10, Ne = 2, Reddy)
L/h V ∗

cnt = 0.12 V ∗
cnt = 0.17 V ∗

cnt = 0.28

UD O X V UD O X V UD O X V

5 1.6430 1.4300 1.7231 1.6270 2.0951 1.8219 2.1903 2.0730 2.3314 2.1205 2.3759 2.3233

10 1.2582 1.0083 1.3891 1.2290 1.5689 1.2463 1.7364 1.5291 1.8259 1.5041 1.9637 1.7902

15 0.9745 0.7453 1.1152 0.9442 1.1983 0.9088 1.3761 1.1583 1.4361 1.1149 1.6114 1.3930

20 0.7807 0.5830 0.9123 0.7531 0.9529 0.7065 1.1168 0.9172 1.1605 0.8733 1.3368 1.1190

Table 6 Comparison of natural frequencies of different types of CNTRC beam for different
boundary conditions V ∗

cnt = 0.17

Boundary Type of CNT L/h
Conditions Distribution 5 10 15 20
S-S UD-Beam 2.0951 1.5689 1.1983 0.9529

O-Beam 1.8219 1.2463 0.9088 0.7065
X-Beam 2.1903 1.7364 1.3761 1.1168
V-Beam 2.0730 1.5291 1.1583 0.9172

C-C UD-Beam 2.6514 2.2459 1.9559 1.7070
O-Beam 2.3480 1.9546 1.6311 1.3715
X-Beam 2.7356 2.3445 2.0941 1.8736
V-Beam 2.6083 2.1423 1.8073 1.5370

C-S UD-Beam 2.4035 1.9717 1.6247 1.3536
O-Beam 2.1385 1.6552 1.2926 1.0404
X-Beam 2.4800 2.1025 1.7956 1.5365
V-Beam 2.3468 1.8499 1.4772 1.2061

C-F UD-Beam 0.9718 0.6383 0.4594 0.3551
O-Beam 0.7973 0.4842 0.3384 0.2584
X-Beam 1.0504 0.7325 0.5416 0.4239
V-Beam 0.8882 0.5508 0.3883 0.2975

significant increase of frequency. Moreover, it is seen that thickness ratio has
more significant influence on frequency parameter when it takes a reduced
value.

The variation of natural frequencies of FG-CNTS reinforced composite
beam based on (RSDBT) for different boundary conditions (S-S, C-S, C-C
and C-F) are presented in Table 6, according to different distribution schemes
of CNTs (UD, -X, -V, -O) and thickness ratios (L/h = 5, 10, 15, 20) at
(V ∗cnt = 0.17).

By examining the results, it is found that the maximum non-dimensional
frequency is obtained for FG-CNTs composite beam having C-C boundary
condition due to stiffened edges, while the frequencies of clamped free (C-F)
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Figure 6 Influence of boundary conditions on the frequency parameter ω of CNTs beam.
(X-beam, V ∗

cnt = 0.17).

composite beam provides the lowest values. Another observation is that FG-
X distribution has the highest natural frequencies compared to others patters
distribution. In addition, we notice that as slenderness ratios (L/h) increase
the natural frequencies reduce.

Figure 6 exhibits the effect of different boundary conditions on the
dimensionless frequency of FG composite beam reinforced with CNTs with
respect to thickness ratios, at V ∗cnt = 0.17, and FG-X distribution. It is
clear that natural frequency obtained for Clamped-Free boundary condition
proceeds the lowest natural frequency, while it is intermediate for Simply-
Simply then Clamped-Simply boundary conditions. However, the value of
natural frequency is highest for the case of Clamped-Clamped end edges.

Figure 7 displays a 3D bar chart form of nondimensional frequency (ω)
versus various distribution shapes of reinforcement CNTs and slenderness
ratios (L/h) for Vcnt = 0.17. The results from this figure show that, the FG-X
strengthened beams have the maximum natural frequency, which is the
strongest composite beam followed by the UD-,V-and O-Beams, respectively.
In addition, increasing the value of length to thickness ratio (L/h) leads to a
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Figure 7 Variation of frequency parameter ω S-S beam with various thickness ratios and
different patterns CNTs distribution for V ∗

cnt = 0.17.

Figure 8 3D bar chart presentation of dimensionless fundamental frequencies (S-S) X-beam
with various thickness ratios and volume fraction of carbon nanotubes.

decrement in the frequency parameter (ω), due to the reduction in area, and
the stiffness of the beam decrease.

The variation of the non-dimensional frequency for S-S reinforced CNTs
beams is depicted in Figure 8 by bar chart through 3D representation,
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Figure 9 Vibration mode shapes of simply supported FG-X CNTs composite beam (V ∗
cnt =

0.17, L/h = 5) using RSDBT.
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with respect to the different values of volume fraction of carbon nanotubes
(Vcnt = 0.12, 0,17 and 0,28) and length to thickness ratios (L/h) with FG-X
dispersion pattern. It can be seen that the largest value of the CNTs leads
to higher natural frequencies for each arrangement of reinforcement, due to
of the enhancement of the local stiffness. It is also observed as before that
the values of non-dimensional frequency reduce with increasing length to
thickness parameter (L/h).

The first three mode shapes for the transverse displacements of the S-S
FG-CNTs composite beam are illustrated in Figure 9 for FG-X pattern
reinforcement, V ∗cnt = 0.17, and L/h = 5. One can notice that all vibration
mode shapes exhibits dual coupled (shear-flexural) mode for present RSDBT.
Thus, from this double coupled mode that highlights the effect of transverse
shear stress on the vibration behavior of FG-CNTs beams. Therefore, this
effect is important and must be taken into consideration in designing of thick
composite beams.

5 Conclusions

Dynamic analysis of functionally graded carbon nanotube-reinforced com-
posite beams is provided during this study based on refined higher order
shear deformation beam theory, needless of the use shear correction factor.
The functionally graded form, which describe the repartition of the carbon
nanotubes across the thickness direction of the beam are considered, and
their materials properties are estimated through extended rule of mixture.
The general governing equations of motions have been extracted employ-
ing Lagrange’s principal and then solved via a robust numerical method,
called differential quadrature finite element method for the first time in this
area, with high rate of convergence speed and enhanced numerical stabil-
ity. The exactitude of the present model in conjunction with the numerical
resolution is verified by comparison with some existing results through a
tabulated form. According to the obtained results from this investigation, the
most interesting remarks can be summarized as follows:

• The present numerical tool based on (DQFEM) shows a fast conver-
gence, rapid calculus in term of execution, and good numerical stabil-
ity. The proposed model can be extended to study more complicated
structures.

• The calculation times employing the present DQFEM based on refined
shear deformation beam model is considerably faster compared to the
classical finite element method and analytical solution.
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• The convergence of the results can be controlled by increasing the
number of samples and the number of elements.

• Overall, the presence of CNTs as being reinforcing elements with a
graded form show an significant role in enhancing stiffness and strength
of the composite beams.

• From the obtained results, it is shown that the FG-CNTs X pattern
provides the higher non-dimensional natural frequency compared to
other different types of CNTs beams, while the O-Beam has the smallest.

• It is revealed that, an increase in CNT volume fractions (Vcnt) leads to
an increment in natural frequencies of the reinforced composite beam.

• The change in length to thickness ratios (L/h) have significant on
the maximum value of the natural frequency frequencies of FG-CNTs
beams.

• The frequency results of the beams with C-C boundary condition are
higher than those of C-S and S-S boundary conditions, respectively.

Acknowledgements

We acknowledge with grateful thanks the support by the laboratory of
mechanical and material systems engineering, as well as the General Direc-
torate of Scientific Research and Technological Development of the Ministry
of Higher Education of Algeria.

References

Abdollahi, I., and Yas, M.H. 2020. Free vibration analysis of Timoshenko
beams reinforced by BNNTs and a comparison with CNT-reinforced
composite. SN Applied Sciences 2:645. doi:10.1007/s42452-020-242
9-5.

Attia, M.A., and S.A. Mohamed. 2020. Nonlinear thermal buckling and
postbuckling analysis of bidirectional functionally fraded tapered
Microbeams Based on Reddy beam theory. Engineering with Comput-
ers. doi:10.1007/s00366-020-01080-1.

Azimi, M., Mirjavadi, S.S,. Navvab, S., A. M. S. Hamouda, and E. Davari.
2018. Vibration of rotating functionally graded Timoshenko nano-beams
with nonlinear thermal distribution. Mechanics of Advanced Materials
and Structures 25(6):467–480. doi:10.1080/15376494.2017.1285455.

Babaei, H., Kiani, Y., and Reza. Eslami, M. 2021. Vibrational behavior of
thermally pre-/post-buckled FG-CNTRC beams on a nonlinear elastic

10.1007/s42452-020-2429-5
10.1007/s42452-020-2429-5
10.1007/s00366-020-01080-1
10.1080/15376494.2017.1285455


532 I. E. Houalef et al.

foundation: a two-step perturbation technique. Acta Mechanica. doi:10
.1007/s00707-021-03027-z.

Barati, M.R., and Shahverdi, H. 2020. Finite element forced vibration
analysis of refined shear deformable nanocomposite graphene platelet-
reinforced beams. Journal of the Brazilian Society of Mechanical
Sciences and Engineering 42(33). doi:10.1007/s40430-019-2118-8.

Bekhadda, A., Bensaid, I., Cheikh, A., and Kerboua. B. 2019. Static Buckling
and Vibration Analysis of Continuously Graded Ceramic-metal Beams
Using a Refined Higher Order Shear Deformation Theory. Multidisci-
pline Modeling in Materials and Structures 15(6):1152–1169. doi:10.1
108/MMMS-03-2019-0057/full/html.

Bensaid, I., and Saimi, A. 2022. Dynamic investigation of functionally
graded porous beams resting on viscoelastic foundation using gener-
alised differential quadrature method. Australian Journal of Mechanical
Engineering. doi:10.1080/14484846.2021.2017115.

Ebrahimi, F., and Karimiasl, M. 2018. Nonlocal and surface effects on the
buckling behavior of flexoelectric sandwich nanobeams. Mechanics of
Advanced Materials and Structures 25(11):943–952. doi:10.1080/1537
6494.2017.1329468.

Eltaher, M.A., Mohamed, S.A., and Melaibari, A. 2020. Static Stability
of unified composite Beams under Varying Axial Loads. Thin-Walled
Structures 147:106488. doi:10.1016/j.tws.2019.106488.

Han, Y., and J. Elliott. 2007. Molecular dynamics simulations of the elas-
tic properties of polymer / carbon nanotube composites. Computa-
tional Materials Science 39(2):315–323. doi:10.1016/j.commatsci.20
06.06.011.

Iijima, S. 1991. Helical microtubules of graphitic carbon. Nature 354:56–58.
doi:10.1038/354056a0.

Jam, J.E., and Kiani, Y. 2015. Low velocity impact response of functionally
graded carbon nanotube reinforced composite beams in thermal envi-
ronment. Composite Structures 132:35–43. doi:10.1016%2Fj.compstru
ct.2015.04.045.

Karamanli, A., and Vo, T.P. 2021. Finite element model for carbon
nanotube reinforced and graphene nanoplatelet-reinforced composite
beams. Composite Structures 264:113739. doi:10.1016/j.compstruct
.2021.113739.

Ke, L.L., Yang, J., and Kitipornchai, S. 2010. Nonlinear free vibration
of functionally graded carbon nanotube-reinforced composite beams.

10.1007/s00707-021-03027-z
10.1007/s00707-021-03027-z
10.1007/s40430-019-2118-8
10.1108/MMMS-03-2019-0057/full/html
10.1108/MMMS-03-2019-0057/full/html
10.1080/14484846.2021.2017115
10.1080/15376494.2017.1329468
10.1080/15376494.2017.1329468
10.1016/j.tws.2019.106488
10.1016/j.commatsci.2006.06.011
10.1016/j.commatsci.2006.06.011
10.1038/354056a0
10.1016%2Fj.compstruct.2015.04.045
10.1016%2Fj.compstruct.2015.04.045
10.1016/j.compstruct.2021.113739
10.1016/j.compstruct.2021.113739


Free vibration analysis of FG carbon nanotube-reinforced composite beams 533

Composite Structures 92(3):676–683. doi:10.1016/j.compstruct.200
9.09.024.

Ke, L.L., Yang, J., and Kitipornchai, S. 2013. Dynamic stability of function-
ally graded carbon nanotube-reinforced composite beams. Mechanics of
Advanced Materials and Structures 20(1):28–37. doi:10.1080/153764
94.2011.581412.

Kiang. CH., M. Endo, P.M. Ajayan, G. Dresselhaus, and M.S. Dressel-
haus. 1998. Size effects incarbon nanotubes. Physical Review Letters
81:1869–72. doi:10.1103/PhysRevLett.81.1869.

Kiani, Y. 2016. Shear buckling of FG-CNT reinforced composite plates using
Chebyshev-Ritz method. Compos Part B Engineering 105:176–87.
doi:10.1016/j.compositesb.2016.09.001.

Kiani, Y., and Mostafa, M. 2019. Nonlinear stability of sandwich beams
with carbon nanotube reinforced faces on elastic foundation under ther-
mal loading. Proc IMechE Part C: J Mechanical Engineering Science
233(5):1701–1712. doi:10.1177%2F0954406218772613.

Lal, R., and Dangi, CH. 2019. Thermal vibrations of temperature-dependent
functionally graded non-uniform Timoshenko nanobeam using nonlocal
elasticity theory. Materials Research Express 6(7):075016. doi:10.1088/
2053-1591/ab1332.

Lei, Z.X., Liew, K.M., and Yu, J.L. 2013. Free vibration analysis of
functionally graded carbon nanotube-reinforced composite plates using
the element-free kp-Ritz method in thermal environment. Composite
Structures 106:128–138. doi:10.1016/j.compstruct.2013.06.003.

Lei, J., He, Y., Li, Z., Guo, S and Liu., D. 2019. Postbuckling analysis of bi-
directional functionally graded imperfect beams based on a novel third-
order shear deformation theory. Composite Structures. doi:10.1016/j.co
mpstruct.2018.10.106.

Lin, F., and Xiang, Y. 2014. Vibration of carbon nanotube reinforced com-
posite beams based on the first and third order beam theories. Applied
Mathematical Modelling 38(15–16): 3741–3754. doi:10.1016/j.apm.20
14.02.008.

Liu, C., Liu, B., Zhao, L., Xing, Y., Ma, C.H and Li, H. 2016. A dif-
ferential quadrature hierarchical finite element method and its appli-
cations to vibration and bending of Mindlin plateswith curvilinear
domains. International Journal for Numerical Methods in Engineering
109(2):174–197. doi:10.1002/nme.5277.

Saimi, A., A. Hadjoui, I. Bensaid, and A. Fellah. 2020. An Differential
Quadrature Finite Element and the Differential Quadrature Hierarchical

10.1016/j.compstruct.2009.09.024
10.1016/j.compstruct.2009.09.024
10.1080/15376494.2011.581412
10.1080/15376494.2011.581412
10.1103/PhysRevLett.81.1869
10.1016/j.compositesb.2016.09.001
10.1177%2F0954406218772613
10.1088/2053-1591/ab1332
10.1088/2053-1591/ab1332
10.1016/j.compstruct.2013.06.003
10.1016/j.compstruct.2018.10.106
10.1016/j.compstruct.2018.10.106
10.1016/j.apm.2014.02.008
10.1016/j.apm.2014.02.008
10.1002/nme.5277


534 I. E. Houalef et al.

Finite Element Methods for the Dynamics Analysis of on Board Shaft.
European Journal of Computational Mechanics 29 (4–6):303–344.
doi:10.13052/ejcm1779-7179.29461.

Shen, H.S. 2009. Nonlinear bending of functionally graded carbon nanotube-
reinforced composite plates in thermal environments. Composite Struc-
tures 91(1):9–19. doi:10.1016/j.compstruct.2009.04.026.

Shen, H.S., and Xiang, Y. 2013. Nonlinear analysis of nanotube reinforced
composite beams resting on elastic foundations in thermal environ-
ments. Engineering Structures 56:698–708. doi:10.1016/j.engstruct.
2013.06.002.

Tagrara, S., H., Benachour, A., Bouiadjra, M.B., and Tounsi, A. 2015. On
bending, buckling and vibration responses of functionally graded carbon
nanotube-reinforced composite beams. Steel and Composite Structures
19(5):1259–1277. doi:10.12989/scs.2015.19.5.1259.

Thai, H.T. and Vo, T.P. 2012. Bending and free vibration of function-
ally graded beams using various higher-order shear deformation beam
theories. International Journal of Mechanical Sciences 62(1): 57–66.
doi:10.1016/j.ijmecsci.2012.05.014.

Thostenson, E.T., Ren, Z.F., and Chou, T.W. 2001. Advances in the science
and technology of carbon nanotubes and their composites: a review.
Composites Science and Technology 61(13):1899–1912. doi:10.1016/
S0266-3538(01)00094-X.

Vo-Duy, T., Ho-Huu, V., and Nguyen-Thoi, T. 2019. Free vibration analysis
of laminated FG-CNT reinforced composite beams using finite element
method. Frontiers of Structural and Civil Engineering 13:324–336.
doi:10.1007/s11709-018-0466-6.

Vo, T., and Thai, H.T. Static behavior of composite beams using various
refined shear deformation theories. Composite Structures 94(8):2513–
2522. doi:10.1016/j.compstruct.2012.02.010.

Vo, T.P., Thai, H.T., and Aydogdu, M. 2017. Free vibration of axially loaded
composite beams using a four-unknown shear and normal deformation
theory. Composite Structures 178:406–414. doi:10.1016/j.compstruct.2
017.07.022.

Vo, T.P., Thai, H.T., Nguyen, T.K., and F. Inam. 2014. Static and vibration
analysis of functionally graded beams using refined shear deformation
theory. Meccanica 49:155–168. doi:10.1007/s11012-013-9780-1.

Wang, Z.X., and Shen, H.S. 2011. Nonlinear vibration of nanotube-
reinforced composite plates in thermal environments. Computational

10.13052/ejcm1779-7179.29461
10.1016/j.compstruct.2009.04.026
10.1016/j.engstruct.2013.06.002
10.1016/j.engstruct.2013.06.002
10.12989/scs.2015.19.5.1259
10.1016/j.ijmecsci.2012.05.014
10.1016/S0266-3538(01)00094-X
10.1016/S0266-3538(01)00094-X
10.1007/s11709-018-0466-6
10.1016/j.compstruct.2012.02.010
10.1016/j.compstruct.2017.07.022
10.1016/j.compstruct.2017.07.022
10.1007/s11012-013-9780-1


Free vibration analysis of FG carbon nanotube-reinforced composite beams 535

Materials Science 50(8):2319–2330. doi:10.1016/j.commatsci.2011
.03.005.

Wattanasakulpong, N., and Ungbhakorn, V. 2013. Analytical solutions
for bending, buckling and vibration responses of carbon nanotube-
reinforced composite beams resting on elastic foundation. Computa-
tional Materials Science 71:201–208. doi:10.1016/j.commatsci.2013
.01.028.

Wu, H., Kitipornchai, S., and Yang, J. 2015. Free vibration and buckling
analysis of sandwich beams with functionally graded carbon nanotube-
reinforced composite face sheets. International Journal of Structural
Stability and Dynamics 15(7):1540011. doi:10.1142/S02194554154
00118.

Xing, Y. F. and Liu, B. 2009. High-accuracy differential quadrature finite
element method and its application to free vibrations of thin plate with
curvilinear domain. International Journal for Numerical methods in
engineering 80(13):1718–1742. doi:10.1002/nme.2685.

Yan, Y., Liu, B., Xing, Y., Carrera, E and Pagani, A. 2021. Free vibration
analysis of variable stiffness composite laminated beams and plates
by novel hierarchical differential quadrature finite elements. Composite
Structures 274:114364. doi:10.1016/j.compstruct.2021.114364.

Yang, J., Ke, L.L., and Feng, C. 2015. Dynamic buckling of thermo-
electro-mechanically loaded FG CNTRC beams. International Journal
of Structural Stability and Dynamics 15(8):1540017. doi:10.1142/S021
9455415400179.

Yarasca, J., Mantari, J.L., and Arciniega, R.A. 2016. Hermite–Lagrangian
finite element formulation to study functionally graded sandwich
beams. Composite Structures 140:567–581. doi:10.1016/j.compstruct
.2016.01.015.

Yas, M.H., and Samadi, N. 2012. Free vibrations and buckling analysis
of carbon nanotube-reinforced composite Timoshenko beams on elas-
tic foundation. International Journal of Pressure Vessels and Piping
98:119–128. doi:10.1016%2Fj.ijpvp.2012.07.012.

10.1016/j.commatsci.2011.03.005
10.1016/j.commatsci.2011.03.005
10.1016/j.commatsci.2013.01.028
10.1016/j.commatsci.2013.01.028
10.1142/S0219455415400118
10.1142/S0219455415400118
10.1002/nme.2685
10.1016/j.compstruct.2021.114364
10.1142/S0219455415400179
10.1142/S0219455415400179
10.1016/j.compstruct.2016.01.015
10.1016/j.compstruct.2016.01.015
10.1016%2Fj.ijpvp.2012.07.012


536 I. E. Houalef et al.

Biographies

Ihab Eddine Houalef, Ph.D student in Mechanical Engineering from Abou
Beckr Belkaid University Tlemcen, Algeria. He is currently working in
the level of the Mechanical engineering department at the same University.
Mechanical and structural Engineering, Materials, Composite, Maintenance,
Nanostructures and Dynamical Systems.

Ismail Bensaid received his B.Sc, M.Sc and Ph.D degrees in Mechanical
Engineering from Abou Beckr Belkaid University Tlemcen, Algeria. He is
currently working in the level of the Mechanical engineering department at
the same University. Dr. Bensaid does research in Mechanical and struc-
tural Engineering, Materials, Composite, Maintenance, Nanostructures and
Dynamical Systems. He, as an author/co-author, has published more than 18
articles in various journals.



Free vibration analysis of FG carbon nanotube-reinforced composite beams 537

Ahmed Saimi obtained his Ph.D in Mechanics of Materials and Struc-
tures from the University of Tlemcen, Algeria, in 2017. He is currently a
Senior Lecturer at the National High School of Hydraulics Blida, Algeria.
A researcher member of Mechanical Systems and Structural Engineering
Laboratory, IS2M/UABT. His research interests are: Finite element methods,
Structural vibration, Structural dynamics, Dynamics of rotors, Dynamics
of rotating machines, computational mechanics, FG materials, Composite
materials.

Abdelmadjid Cheikh obtained his Ph.D in mechanical engineering from the
University of Tlemcen, Algeria. He is currently a professor at the University
of Tlemcen, Algeria (UABT). Research Director in Mechanical Systems
and Structural Engineering Laboratory, IS2M/UABT. His research interests
are: Materials Engineering, Structural Engineering, Mechanical Engineering,
Structural Analysis, Finite elements Modeling, Structural Dynamics, Simu-
lation, Dynamic Analysis, Modal Analysis, Structural Vibration, Vibration
Analysis, mechanical fabrication, tolerancing, CAO, DAO.




	Introduction
	FG-CNRC Beams
	Basic Mathematical Modeling
	Kinematics and Equations of Motion
	Equations of Motion
	Solution Procedure Based DQFEM
	The reformulated differential quadrature rule
	Gauss-Lobatto quadrature rule
	The differential quadrature finite element method

	Equation of Elementary Motion

	Numerical Results and Discussion
	Convergence Study of the Results
	Results Comparison
	Parametric Study

	Conclusions

