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Abstract

A methodology based on Machine Learning, namely Fully Connected Neural
Networks, is proposed to replace traditional parameter calibration strategies.
In particular, the relation between hardness, yield strength and tensile strength
is explored. The proposed methodology is used to predict the yield strength
and the tensile strength of a Super Duplex Stainless Steel that was not
included in the neural network training data base. Moreover, it is also used
to determine such material parameters for individual microstructural phases,
which feed a multiscale Finite Element simulation. The methodology is
experimentally validated.

Keywords: Neural network, hardness, yield strength, tensile strength,
Duplex Stainless Steel.

1 Introduction

Traditionally, the design of new steel alloys and components relies on trial-
error procedures, which involve exhaustive experimental testing [1]. Numer-
ical methods, in particular the Finite Element Method (FEM) (e.g. [10, 45])
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and its various developments have contributed to lessen such testing. Using
FEM, service performance and/or production stages of components may
be simulated in a virtual environment and optimization procedures may
be executed during design stage. Nevertheless, material models used in
conjunction with the FEM still require experimental calibration procedures,
involving extensive work hours and generating considerable quantities of
waste. Notwithstanding, a substantial amount of data regarding alloys char-
acterization has been collected throughout the years making it possible to
avoid costly experimental characterizations by combining currently available
information and machine learning.

Machine learning (ML) employs algorithms and statistical models to
analyze and draw inferences from patterns in data [21]. Neural Network (NN)
is one of the most famous methods in this field inspired by the sophisticated
functionality of human brains. In the field of Material Science, it can be
used to obtain an optimal target material property without solving physical or
chemical fundamental equations [29]. It substantially reduces computational
costs and shortens development cycles. Additionally, it may reach a higher
prediction accuracy when compared with conventional calculations based
on first principles [1, 2, 29]. However, the success of this approach lies in
the ability of the system to learn descriptors of data with different levels
of abstraction, without human intervention, which generates a considerable
degree of epistemic opacity [41]. Consequently, as the learned relations
are not explicitly available to the user, NN are often used as black-boxes,
which may result in mere correlations without causal significance. As a
result, physics-driven information has to be incorporated with NN to ensure
reliability.

The application of NN in the field of material science is fairly recent,
and concerns mainly the discovery of new materials. In general, prospec-
tive chemical compositions are screened to find a target material property,
such as thermal conductivity, tensile strength, corrosion resistance, and so
forth [4,38,44]. Nevertheless, it has been reported in the literature [15,29,43]
that pure data-driven approaches often lead to misleading conclusions or have
poor predictive performance, especially when considering chemical compo-
sition alone as input. Moreover, insufficient size of the training sets, corrupted
entries in the data bases, extremely high dimensional target spaces and lack
of exploitation of correlations among different material properties are also
pointed as causes of such ill performance. Therefore, to improve accuracy
NN have been combined with other strategies: Conduit et al. [7] devel-
oped a computational tool that combines experimental data, computational
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thermodynamic calculations and a 2-layer NN to discover new nickel alloys;
Kailkhura et al. [15] assembled simple machine learning modules and pro-
posed a transference of learning technique from one module to the next,
in order to increase control over the process; Xiong et al. [43] compared
five different machine learning algorithms and used symbolic regression
techniques to retrieve the explicit mathematical equations that describe the
influence of each feature in the mechanical properties of steels. However,
benchmarking strategies for the use of NN in material science are still lacking
and little information is available on the influence of the NN hyperparameters
(e. g. number of layers and nodes) in the final outcome.

In this work, instead of using NN abilities to discover a new alloy
composition, the potentialities of NN are used to replace tedious experimental
procedures required for material model calibration, especially when using
the FEM. The final properties of an alloy depend on various factors beyond
its chemical composition such as forming processes or thermal treatments.
These factors may be considered exploring the relation between proper-
ties. In particular, the relation between hardening and yield strength and
the relation between hardening and tensile strength are good candidates,
as empirical and semi-empirical laws relating these properties have been
proposed, e.g. [5, 6, 23, 26].

Hardening tests are relatively simple to execute when compared with
other types of essays, such as tensile tests. Additionally, hardening tests
are non-destructive, as only a small indentation is required, and thus are
susceptible to be used in quality control. As a result, researchers have tried to
establish a relation between hardness and other relevant material properties.
Nevertheless, up to date, this relation has been searched in relatively small
data sets and using relatively simple techniques such as linear regression,
restricting its application to particular steel grades [23, 26, 37].

In this work, the relation between hardening and yield/tensile strength is
established using NN. Different NN structures are explored in a comparative
study to illustrate the influence of the various NN hyperparameters in the
final result. As it will be explained in the forthcoming sections of this paper,
the methodology is successful across different steel grades, performing better
than the existing empirical/semi-empirical approaches.

Then, the best performing NN structures are used to calculate the yield
strength and the tensile strength of a Super Duplex Stainless Steel (SDSS) that
was not included in the NN training data-base, and results are experimentally
validated. DSS and SDSS exhibit a favorable combination of mechanical
and corrosion resistance properties due to their microstructure composed
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approximately by equal parts of austenite and ferrite. Notwithstanding, when
DSS and SDSS are subjected to thermal cycles, secondary phases may
arise, in particular the sigma phase [25, 34]. These secondary phases may
detiorate the mechanical response of the material and therefore they have to
be considered when characterizing the material, which is often done through
multiscale FEM simulations. Here, the developed NN approach is used to
replace the experimental characterization of the individual microstructural
phases, which feed a multiscale FEM simulation.

As a result, the methodology developed in this work reduces the amount
of experimental procedures that have to be carried every time a new alloy
is developed. Moreover, it may be used to test prospect compositions prior
to production. In terms of numerical simulation, it was used to retrieve the
material parameters required for an elasto-plastic material model and it has
the potential to be extended to other models (e.g. GTN [13,39]), as long as the
relevant data is available. Finally, this paper also contributes for the general
development of the use of NN in material science by giving some hints on the
influence of NN hyperparameters in the final results.

This paper is organized as follows. In Section 2 the NN approach is
developed concerning theoretical aspects and the application to the particular
problem of predicting yield strength and tensile strength of a steel alloy.
The methodology is applied to a steel alloy not included in the training
data base in Section 3 and results are experimentally validated. Finally, in
Section 4 the final conclusions are outlined and future work is proposed.

2 Methods

2.1 Fully Connected Neural Network

NN are one of the most used methods within the machine learning community
but only in the last couple of years it became significant in the field of material
science and engineering [29]. It falls in the category of supervised learning
methods in which a set of labelled training data is used to find the function
that connects inputs and outputs. It mimics the human brain and therefore is
constituted by layers of neurons or nodes. In a fully connected network all
the neurons of one layer are connected to the neurons of the subsequent layer
(as schematically represented in Figure 1) and therefore such NN is structure
agnostic, meaning that no particular assumptions have to be made about the
inputs [16]. In this way, they constitute a good starting point for exploratory
approaches and thus are employed in this work. Moreover, fully connected
NN are trained in a reasonable time.
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Figure 1 Scheme of a fully connected neural network (produced by the authors using latex
code).

Structurally, the neurons of layer k are connected to the neurons of the
previous layer k − 1, through the relation:

xki = φ

∑
j

xk−1
j Ak−1

ij

 (1)

where xk and xk−1 are the vectors containing the nodal values and bias of the
neurons in layers k and k−1, respectively, An−1

ij is the weight matrix and φ(x)
is the activation function. Traditionally, the Sigmoid Function is employed as
activation function [18], nevertheless, it leads to vanishing gradients in the
training process. Therefore, in this work the Rectified Linear Unit Function,
defined as follows, is employed:

φ(x) =

{
x, x > 0

0, x ≤ 0
(2)

The weight matrices Aij contain the parameters that have to be fitted
during training, which in this work is done through the backpropagation
method in a Gradient Descent fashion [27]. In brief, the output of the NN is
compared with the target output, originating an error function, E(w), which
depends on the weights and biases of the network. Then, weights and biases
are updated according to the following equation:

wt+1 = wt − α∇wE(wt) (3)

where wt and wt+1 are the vectors containing all the weights and biases of the
NN, at time instants t and t + 1 respectively, ∇wE(w) is the gradient of the
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error function in respect to the weights and biases vector, and α is the learning
rate, which, in this work, was set to 0.03. Equation (3) may be enhanced
with terms depending on the previous modification values of the weights,
in order to increase the convergence rate [27]. Finally, the error is evaluated
through a Loss function. In this work, Smooth L1 Function was selected due
to its reduced sensitivity to outliers and ability to prevent exploding gradients,
when compared to alternatives [12]. It is defined as follows:

0.5(yi−yp)2

δ if |yi − yp| < δ

|yi − yp| − 0.5δ, otherwise
(4)

where yi and yp are the vectors containing the actual output and the predicted
output, respectively, δ is a hyperparameter, that was set equal to the learning
rate, δ = α = 0.03.

Besides the Loss functions, which is used in the backpropagation algo-
rithm, further metrics may be used to evaluate the performance of a NN.
In this work, three additional metrics were selected, namely, Root Mean
Square Error (RMSE), Mean Absolute Error (MAE) and R-squared Score
(R2 Score).

RMSE is given by the following equation:

RMSE =

√∑
(yi − yp)2

n
(5)

again, yi and yp are the vectors containing the actual output and the predicted
output, respectively, and n is the number of samples. RMSE is a measure of
how concentrated the data is around the line of best fit. On the other hand,
MAE is simply the mean deviation of all samples:

MAE =
|yi − yp|

n
(6)

Finally, R2 Score measures the percentage of correct predictions given by
the model:

R2 Score = 1−
∑

(yi − yp)
2∑

(yi − ȳi)2
(7)

where ȳi is the mean of all actual values. These three metrics are used
to find an optimal network structure for the problem in hands, that is, to
calculate yield/tensile strength of a material given its hardness and chemical
composition.
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2.2 Applying NN to Model the Relation Between Hardness and
Yield/Tensile Strength

The development of a NN for a particular problem concerns the choice of
several hyperparameters as outlined in Section 2.1. As referred, the Rectified
Linear Unit Function was chosen as activation function, the Smooth L1
Function was chosen as Loss function and RMSE, MAE and R2 Score were
selected as further metrics. Still, the hyperparameters related to structure the
NN have to be set, namely the number of layers and the number of neurons in
each layer. There is no unified way to define a good structure, as it depends
strongly on the problem to solve. Therefore, the problem context is presented
in the following section.

2.2.1 Modeling the relation between hardness and yield/tensile
strength

The simplicity of execution of hardening tests has been one of the main
reasons for searching a relation between hardness and other mechanical
properties, in particular yield strength and tensile strength. Cahoon et al. [5,6]
proposed the following law to calculate the yield strength, Y S, as a function
of hardness, H:

Y S =

(
H

3

)
(0.1)n (8)

where n is the strain-hardening exponent, which may be retrieved from
uniaxial tensile tests or from Meyers index of empirical methods [36]. In
terms of tensile strength, TS, the relation reads:

TS =

(
H

2.9

)( n

0.217

)n
(9)

This method is particularly good for ferritic steels reaching an accuracy
of 2%, nevertheless it looses performance in other grades.

Alternatively, Pavlina and Tyne [26] have proposed a linear relation
between hardness and tensile strength, based on least-squares linear regres-
sion for a data collection of 165 points:

Y S = −90.7 + 2.876H (10)

which performs well for non-austenitic hypoeutectoid steels. Finally,
Rodriguez et al. [28] have updated the values of the slope and intercept of the
aforementioned linear relation, when nano-hardness tests are used instead of
regular hardness tests.
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Figure 2 Measured and calculated values of the yield strength of a random sample of 40
steel alloys, using equations 8 (Empirical Equation 1) and 10 (Empirical Equation 2).

One of the main drawbacks of the stated empirical relation is their
limited applicability to particular steel grades. It is difficult to compare results
with the existing literature due to the difficulty in recovering the data bases
used in different works. Notwithstanding, for illustration purposes, YS was
calculated using Equations (8) and (10) for a random selection of 40 different
steel alloys of the data base used in this work (Section 2.2.2) and plotted
against the tabled values in Figure 2.

The yield strength is related to the presence strengthening alloying ele-
ments in solid solution, however most empirical equations are provided for
low alloy carbon steels, loosing performance for high alloy steels, which
explains the differences shown in Figure 2.

Acknowledging the importance of alloying elements is essential to model
the relation between hardness and yield/tensile strength. As a result, the
inputs and outputs of the NN were selected accordingly. Additionally, in
order to have a better control on the performance of the NN model, yield
strength and tensile strength were handled separately. Thus, two families
of NN were created in this work, the first one has as inputs hardness and
weight percentage of the various alloying elements, namely C, Si, Mn, P, S,
Cr, Mo, Ni, N, Cu, W, V, Be, Fe, Nb, Ti, Al, Cu, La, Ce, Zr and Mg, and yield
strength as output; the second family has the same inputs and tensile strength
as output.
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2.2.2 Data set
An adequate data set is essential for the success of fully connected neu-
ral networks training under backpropagation algorithms. Therefore, a data
base containing chemical composition, hardness, yield strength and tensile
strength for different steel alloys was compiled. Data was retrieved from the
website steel-grades.com [30]. Corrupted entries in the data base are one of
the main sources of failure, therefore, the data base was manually inspected
before use, resulting in 70 different steel alloys. From the total number of
data points, 80% was used to training. Subsequently, the remaining 20% were
used in an inference step, where the calculated values were compared with the
actual values, using the selected metrics. As the data base is relatively small,
training included over-sampling, that is, some of the data points were showed
more than once to the NN, resulting in a total of 200 data points. It has been
demonstrated that this procedure improves training speed and generalization
abilities of NN [31].

2.2.3 Network structure
After defining inputs and outputs and collecting data, the structure of the hid-
den layers of the NN has to be defined. Although there are some techniques
which can aid in the optimization of the hyperparameters (e.g. dropout [35],
batch normalization [14]), a departure structure is in general determined by
trial-error, especially in fields where the use of NN is still under development.
Therefore, in this work, the number of hidden layers was added iteratively,
until a reasonable performance was achieved.

The performance of each NN is evaluated through the values of the
loss function and the values of the selected metrics, defined in Section 2.1.
The loss function is evaluated in the training and inference steps, while the
remaining metrics are only evaluated in the inference step. Results for each
particular NN structure are displayed in Tables 1 and 2, regarding yield
strength and tensile strength, respectively.

In terms of yield strength, NN 3 hidden layers (HL) and 224 hidden
neurons (HN) neurons, NN 4HL/240HN and NN 4HL/120HN exhibited the
best performance. In NN 3HL/224HN inference loss is significantly larger
than its training loss, which may suggest that this NN tends to memorize
the database, loosing generalization power, while NN 4HL/120HN exhibits
slightly better metrics than the other two. Adding one addtional hidden layer
worsens the results, suggesting that 4 hidden layers is the optimal number of
layers for this problem. The calculated value of the yield strength during the
inference stage is plotted against the actual value in Figures 3 and 4 for NN
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Table 1 NN metrics when calculating yield strength. Each NN structure is defined by the
number of hidden layers/total number of hidden neurons. Training consisted of 80% of data
and the remaining 20% was used for inference

Training Inference RMSE MAE R2
NN Structure Loss (MPa) Loss (MPa) (MPa) (MPa) Score
2/96 35 46 101 46 0.843
3/112 25 39 95 40 0.862
3/224 19 33 67 33 0.931
4/240 22 34 72 34 0.920
4/120 29 32 60 32 0.944
5/248 36 40 72 40 0.898

Table 2 NN metrics when calculating tensile strength. Each NN structure is defined by the
number of hidden layers/total number of hidden neurons. Training consisted of 80% of data
and the remaining 20% was used for inference

Training Inference RMSE MAE R2
NN Structure Loss (MPa) Loss (MPa) (MPa) (MPa) Score
3/224 29 48 119 49 0.774
4/240 36 49 114 50 0.793
4/120 44 63 107 63 0.818
5/248 32 52 126 53 0.749

Figure 3 Yield Strength of different steel grades calculated by NN 4HL/240HN and respec-
tive tabled values.
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Figure 4 Yield Strength of different steel grades calculated by NN 4HL/120HN and respec-
tive tabled values.

Figure 5 Scatter of calculated yield Strength of different steel grades using NN 4HL/240HN.

4HL/240HN and NN 4HL/120HN, respectively. In Figures 5 and 6 results are
displayed in scatter form.

In terms of tensile strength, the results were less good, but still satis-
factory, as tensile strength was correctly predicted for approximately 80%
of the data points not used for training. NN 4HL/120HN exhibited the
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Figure 6 Scatter of calculated yield Strength of different steel grades using NN 4HL/120HN.

Figure 7 Tensile strength of different steel grades NN 4HL/120HN.

best performance and thus its results are displayed in graphic form in
Figures 7 and 8.

An additional strategy to improve a NN performance is the increase of
training time. Therefore, as an attempt to improve the calculation of tensile
strength, the most promising NN structures were retrained using an additional
5% of data and results are displayed in Table 3. NN 4HL/120HN significantly
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Figure 8 Tensile strength of different steel grades NN 4HL/120HN. Results are displayed
in the scatter form.

Table 3 NN Metrics when calculating tensile strength. Each NN structure is defined by the
number of hidden layers/total number of hidden neurons. Training consisted of 85% of data
and the remaining 15% was used for inference

Training Inference RMSE MAE R2
NN Structure Loss (MPa) Loss (MPa) (MPa) (MPa) Score
3/224 45 70 122 71 0.748
4/224 46 65 115 65 0.777
4/120 33 67 144 68 0.648
5/248 35 60 137 60 0.684

lost performance, that is, lost ability to accommodate new data points. On
the contrary, NN 4HL/240HN showed approximately the same performance,
indicating a good generalization ability for new data. This NN has more
hidden nodes than data points provided during training, which is often
beneficial as it has been reported in the literature [19, 20]. Backpropagation
training algorithms often result in sub-optimal solutions. The extra degrees
of freedom can aid convergence as they decrease the chance of being stuck
in local minima, when updating the network weights. Consequently, NN are
not as prone to over-fitting as conventional types of interpolation, such as
polynomial interpolation. Nevertheless, there is still a trade-off between over-
fitting and poor approximation. The worst performance of the NN with 5
hidden layers is a indicator that over-fitting may be occurring. As a result, the
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NN with 4 hidden layers and a total of 240 nodes exhibited the overall best
performance.

In the following section, the developed NN strategy is applied to the
characterization of the mechanical behaviour of a particular still alloy, not
included in the training or inference sets.

3 Results

In this section, the NN strategy developed in Section 2 is used to characterize
the mechanical properties of SDSS 25Cr-7Ni-Mo-N. Casting DSS and SDSS
have received less attention in the literature, when compared to wrought DSS
and SDSS [17, 34]. As cast SDSS and DSS are still in a characterization
stage, they are one of the material classes that may take significant advantages
from the proposed methodology. Firstly, the bulk material is characterized
in Section 3.1 and next, in Section 3.2, the material is characterized in
microstructural terms, employing a multisclale FEM simulation.

3.1 Bulk Material

SDSS 25Cr-7Ni-Mo-N was not part of the training set or inference set
of the developed NN. Therefore, the best performing networks defined in
Section 2.2.3 are used to predict the yield strength and tensile strength of
this material, given its chemical composition and hardness. The chemical
composition is presented on Table 4, while hardness was experimentally
measured as 279 HV, through a standard Vickers test HV 20. Calculated
values for the yield strength and tensile strength are displayed on Table 5
and compared with the actual values of Y S = 549 MPa and TS = 907 MPa.
The actual values were experimentally determined in a tensile test, whose
details are provided in Section 3.2.2.

All selected NN were able to calculate the yield strength and the tensile
strength of SDSS 25Cr-7Ni-Mo-N with good accuracy. In particular, NN
with 4 hidden layers exhibited the best performance, as it was expected
considering the analysis presented in Section 2.2.3. Next, the developed NN
approach is used to determine the yield strength and tensile strength of the
individual microstructural phases of SDSS 25Cr-7Ni-Mo-N.

Table 4 Chemical composition of the 25Cr-7Mo-Ni-N SDSS (wt%)
C Si Mn Ni Mo Cr Cu W N
0.02 0.7 0.7 7.9 3.8 25.3 0.9 0.7 0.2
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Table 5 Calculated values of the yield strength and the tensile strength of SDSS 25Cr-7Ni-
Mo-N and relative error in respect of the actual value, which was experimentally determined

Yield Relative Tensile Relative
NN Structure Strength (MPa) Error % Strength (MPa) Erros %

3/224 542 1.3 896 1.2

4/224 561 2.2 902 0.6

4/120 546 0.6 915 0.9

5/248 529 3.6 887 2.2

3.2 SDSS Microstructure

It is well known that mechanical properties of DSS and SDSS are dependent
on the amount of secondary phases [17, 24, 34]. Nevertheless, such depen-
dence is specific for each particular alloy. Different chemical compositions
combined with particular thermal cycles lead to different stereological param-
eters (e.g. grain size, distribution of microstructural phases), therefore, a
relation between micro-properties and macro-properties has to be established.
The Representative Volume Element (RVE) [3, 11] has been one of the
leading approaches in this respect and thus it is applied in this work. As it
requires the identification of the yield strength of individual phases, NN are
applied for this purpose in Section 3.2.1. Section 3.2.2 furnishes the details
of the experimental tensile essay, and finally in Section 3.2.3 the RVE based
FEM multiscale simulation is compared with the experimental tensile curve.

3.2.1 Mechanical properties of ferrite, austenite and sigma
The neural network with 4 hidden layers and 240 hidden nodes was used
to calculate the yield strength of ferrite (δ-phase), austenite (γ-phase) and
sigma phase (σ-phase). This NN was selected due to its overall good per-
formance. The chemical composition of each individual phase was obtained
through SEM-EDS, as part of a thesis work within the project this paper is
inserted [33]. It is presented in Table 6. Element C was also considered as
input and was obtained calculating the difference to 100% from the other ele-
ments. Hardness was measured through micro-indentation tests, employing a
load of 25gf. Results are displayed in Table 7.

The values obtained for the yield strength of each individual phase are
similar to the ones obtained by reference [23]. Although they were not
experimentally determined, they feed a multiscale FEM simulation, which
reproduced well the experimental stress-strain curve, as explained in the
following sections.
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Table 6 Chemical composition of each individual phase (wt%) obtained by SEM-EDS
Phase Fe Cr Ni Mo W Mn Cu Si
γ-phase 60.0 23.0 9.3 3.3 1.3 0.7 1.6 0.9
δ-phase 59.8 26.7 5.1 4.4 1.6 0.4 1.0 1.0
σ-phase 53.1 29.3 4.7 8.0 2.6 0.4 0.6 1.2

Table 7 Hardness measure and calculated value for the yield strength of each individual
phase

Phase Hardness (HV) Calculated Yield Strength (MPa)
γ-phase 332 714
δ-phase 387 640
σ-phase 558 1313

Figure 9 a – Dimensions of specimens, b – Specimens

3.2.2 Tensile test
The yield strength and the tensile strength of casting SDSS 25Cr-7Ni-Mo-
N were experimentally determined through a tensile test. In the following
paragraphs the essential features of the essay are provided. The detailed
experimental procedures related to this work will be presented in a dedicated
forthcoming paper by the same authors.

Specimens were extracted from a cast part, cutting on a milling machine,
grounding and cutting by EDM. Their dimensions are shown in Figure 9.
Their thickness is approximately 1.5 mm and their uniform zone measures
2×2 mm.
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Table 8 Parameters software V IC-2D
Correlation criteria Normalizes Squared Differences
Interpolation method Optimized 8-tap
Subset weights Gaussian
Subset size 29 pixel
Seteup size 5 pixel
Low-pass filter images yes
Incremental correlation yes
Maximum pixel confidence 0,05 pixel
Epipolar threshold 0,5 pixel

Table 9 Tensile test results: young modulus, yield strength, tensile strength, uniform elastic
elongation, uniform plastic elongation and total elongation

Results
E (MPa) 170
YS (MPa) 549
TS (Mpa) 907
e0 (%) 0.5
eu (%) 13.3
et (%) 26.9

Real extension of the specimens was measured by image correlation with
software V IC-2D TM (parameters displayed on Table 8). Thus, specimens
were painted in white color and speckle. The machine used for the test was a
prototype developed in U. Porto and INEGI especially for mini specimens [9].
The capacity of test equipment is 2,5 KN, and the test speed was set to
1 mm/min. Results are presented in Table 9 and the curve is displayed in
Figure 14.

3.2.3 Multiscale FEM simulation
In this section a RVE approach [3, 8, 11] is used to relate micro-properties
and macro-properties of the SDSS 25Cr-7Ni-Mo-N. As previously referred,
the optimal properties of SDSS and DSS are due to the duplex microstructure
of austenite and ferrite, which is affected by the presence of the sigma
phase. However, the length-scale of loads to which a SDSS is subjected is
significantly larger than the characteristic length-scale of these microstruc-
tural features. Therefore, the macro behaviour of SDSS and DSS may be
determined by solving a fine-scale problem over a region that contains enough
statistical information about the heterogeneous medium, that is, over the
Representative Volume Element (RVE).
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In this work, a three step approach was used to determine the macro
behaviour of SDSS 25Cr-7Ni-Mo-N. The first step consists of discretizing
the RVE in a finite element mesh that can be used by commercial software
Abaqus [32]. Secondly, the micro problem is solved with this software, and
finally an homogenization step is taken to retrieve the macro behavior.

RVE finite element mesh
The RVE for this particular problem was generated from optical micrographs
(OM), using an in-house image segmentation software [42] coded in Mat-
lab [22]. Two threshold values are defined in the grey scale of the OM, the
lowest corresponds to the limit of the σ-phase, and the highest to the limit of
the δ-phase. Then the relevant micrograph is divided in a structured mesh of
triangular elements, and according to the number of pixels below each thresh-
old, a new color is attributed to the triangular element. Therefore, elements
having the highest number of pixels below the first threshold are colored red,
corresponding to the σ-phase, elements having the highest number of pixels
between both thresholds are colored green, corresponding to the δ-phase and
the remaining elements are colored grey, corresponding to the γ-phase. The
optical micrograph and the respective RVE finite element mesh used in this
work are displayed in Figure 10 (dimensions: 864 × 648 µm2). A bright
γ-phase, a light-grey δ-phase, and dark-grey particles of can be observed,
corresponding, respectively to grey, green and red finite elements.

Subsequently, the created mesh is imported to Abaqus through a Python
script [40], which creates typical FEM matrices with nodal coordinates and
nodes belonging to each element. An additional name tag accompanies each
element, which in the original mesh corresponds to one of the colors (red,
green or grey) and in the new mesh corresponds to a material group (sigma,
ferrite and austenite).

Figure 10 Optical microscopy image of SDSS 25Cr-7Ni-Mo-N and respective RVE finite
element mesh.
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Micro-Problem
After importing the finite element mesh, constituted of 7200 elements,
Abaqus is used to solve the elasto-plastic micro problem. Element type CPS3
was selected, and plastic behavior was modelled through a power law, as
follows:

σR = σy +Kεn (11)

where σR, represents the real stress, σy represents the yield stress, K repre-
sents the hardening constant, ε represents the real strain and n represents the
hardness exponent.K was set to 1400, according to reference [2] for stainless
steel, and the hardening exponent was set to 0.6, which is accordance with
the experimental curve. The remaining material parameters are presented in
Table 10, recalling that the values for the yield strength were calculated using
the NN approach. Young modulus and poisson coefficient were taken from
reference [23].

After homogenization, each micro-problem will correspond to a point in
the macro tensile curve. Therefore, six different micro problems were solved,
under plane stress assumption. For each problem a dislocation was imposed
in the direction of the tensile test, as depicted in Figure 11. Results for the
first and the last micro problems are displayed in Figures 12 and 13, where
dislocations of 4.7 µm and 88.0 µm have been applied, respectively.

Table 10 Material parameters used in the FEM simulation

Phase Young’s Modulus (GPa) Poisson’s Ratio Yield Strength (MPa)

γ-phase 189 0.3 714

δ-phase 220 0.3 640

σ-phase 201 0.3 1313

Figure 11 Boundary conditions imposed to the RVE.
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Figure 12 Von Mises stress and equivalent plastic strain for the first micro problem.

Figure 13 Von Mises stress and equivalent plastic strain for the last micro problem.
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Homogenization
The transition from the micro problem to the macro problem is done assum-
ing an uniform essential boundary condition by which the micro problem
displacement corresponds to the macro problem displacement, obtained by
integrating the macro strain. This choice has proven to be successful in
a similar analysis performed by Tao et al. [37], although it excluded the
presence of sigma phase.

Macro stress, σmacro, corresponding is obtained by homogenizing the von
Mises stresses of the micro problem σmicro, collected at each gauss point, as
follows:

σmacro =
1

V

ng∑
i=1

σmicroi wiJi (12)

where wi and Ji correspond to weight and jacobian of each gauss point,
ng is total number of gauss points and V is the volume of the RVE. This
calculation in performed with Matlab, using the outputs written in the .obd
file from Abaqus. Finally, the macro strain-stress points are compared with
the experimental curve in Figure 14. There is a good correlation between
numerical and experimental results, showing that the NN approach was
successful in predicting the material parameters required for the multiscale
elastoplastic simulation.

Figure 14 Tensile test.
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4 Conclusions

The NN model developed in this work predicted successfully the yield
strength and tensile strength based on chemical composition and hardness
of various steel alloys. In general, the overall performance was superior to
the existing empirical laws, independently of the steel grade.

Different NN structures were tested and the best results were obtained
when using 4 hidden layers and a number of hidden neurons slightly superior
to the number of data points. In particular, the NN with a total o 240 hidden
nodes was able to capture the non-linearities associated with the problem and
generalize well for new data. A higher number of hidden layers seemed to
lead to over-fitting.

The implemented NN strategy was able to predict accurately the yield
strength and tensile strength of the cast SDSS 25Cr-7Ni-Mo-N, which was
not including in the training data base of the NN. Additionally, it was
adequate to determine the material properties of individual microstructural
phases. Thus, results indicate that NN may be used to replace experimental
characterization procedures, for both bulk material and microstructure.

The parameters calculated by the NN fed a multiscale FEM simulation,
which correlated well with experiments. A simple elastoplastic model based
on a power law was employed, however results suggest that other material
models could benefit from this approach. The main difficulty in extending
the proposed approach to more complex material models is the collection of
data. As most authors publish parameters for only one particular alloy, each
paper has to be screened individually in order to construct a data base.

Therefore, one of the main future tasks is the extension of the data base
used in this work. Additionally, feature selection techniques will be employed
to determine which of the inputs are most determinant for the output.

Acknowledgements

Authors gratefully acknowledge the funding of Project NORTE-01-0145-
FEDER-032419 – msCORE – Multiscale methodology with model order
reduction for advanced materials and processes, co-financed by Programa
Operacional Regional do Norte (NORTE2020), through Fundo Europeu de
Desenvolvimento Regional (FEDER) and by Fundação para a Ciência e
Tecnologia through its component of the state budget. They also acknowledge
the funding of the doctoral grant 2021.05067.BD by Fundação para a Ciência
e Tecnologia, through the national budget and Community budget from
European Social Fund (ESF).



Material Model Calibration Using Machine Learning 149

References

[1] The high-throughput highway to computational materials design.
[2] I Arrayago, E Real, and Leroy Gardner. Description of stress–strain

curves for stainless steel alloys. Materials & Design, 87:540–552,
2015.

[3] T Belytschko and R. de Borst. Multiscale methods in computational
mechanics. Int. J. Numer. Meth. Eng, pages 939–1271, 2010.

[4] Giorgos Borboudakis, Taxiarchis Stergiannakos, Maria Frysali,
Emmanuel Klontzas, Ioannis Tsamardinos, and George E Froudakis.
Chemically intuited, large-scale screening of mofs by machine learning
techniques. npj Computational Materials, 3(1):1–7, 2017.

[5] JR Cahoon. An improved equation relating hardness to ultimate
strength. Metallurgical and Materials Transactions B, 3(11):3040–
3040, 1972.

[6] JR Cahoon, WH Broughton, and AR Kutzak. The determination of
yield strength from hardness measurements. Metallurgical transactions,
2(7):1979–1983, 1971.

[7] BD Conduit, Nick G Jones, Howard J Stone, and Gareth John Conduit.
Design of a nickel-base superalloy using a neural network. Materials &
Design, 131:358–365, 2017.

[8] APO Costa, RO Sousa, LMM Ribeiro, AD Santos, and JMA César
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[19] Ben Kröse, Ben Krose, Patrick Van der Smagt, and Patrick Smagt. An
introduction to neural networks. 1993.

[20] Steve Lawrence, C Lee Giles, and Ah Chung Tsoi. Lessons in neural net-
work training: Overfitting may be harder than expected. In AAAI/IAAI,
pages 540–545. Citeseer, 1997.

[21] Pierre Lison. An introduction to machine learning. Language Technol-
ogy Group (LTG), 1(35):1–35, 2015.

[22] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick,
Massachusetts, 2010.

[23] C Meena and V Uthaisangsuk. Micromechanics based modeling
of effect of sigma phase on mechanical and failure behavior of
duplex stainless steel. Metallurgical and Materials Transactions A,
52(4):1293–1313, 2021.

[24] J-O Nilsson. Super duplex stainless steels. Materials science and
technology, 8(8):685–700, 1992.

[25] J-O Nilsson, P Kangas, A Wilson, and T Karlsson. Mechanical prop-
erties, microstructural stability and kinetics of σ-phase formation in
29cr-6ni-2mo-0.38 n superduplex stainless steel. Metallurgical and
materials Transactions A, 31(1):35–45, 2000.

[26] EJ Pavlina and CJ Van Tyne. Correlation of yield strength and tensile
strength with hardness for steels. Journal of materials engineering and
performance, 17(6):888–893, 2008.

[27] Ning Qian. On the momentum term in gradient descent learning
algorithms. Neural networks, 12(1):145–151, 1999.



Material Model Calibration Using Machine Learning 151

[28] R Rodrıguez and I Gutierrez. Correlation between nanoindentation and
tensile properties: influence of the indentation size effect. Materials
Science and Engineering: A, 361(1-2):377–384, 2003.

[29] Jonathan Schmidt, Mário RG Marques, Silvana Botti, and Miguel AL
Marques. Recent advances and applications of machine learning in
solid-state materials science. npj Computational Materials, 5(1):1–36,
2019.

[30] S&G. Steel grades, 2021 [Online].
[31] Andrew JR Simpson. Over-sampling in a deep neural network. arXiv

preprint arXiv:1502.03648, 2015.
[32] Michael Smith. ABAQUS/Standard User’s Manual, Version 6.9. Das-
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