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In this study, an experimental validation of a 3D gear dynamic model in the
presence of localised faults such as pitting on tooth flanks is proposed. The corre-
sponding numerical model accounts for spur and helical gear systems including gear
errors and deviations along with the supporting shafts and bearings. Simulation
results are compared with the evidence from a back-to-back test rig and the model
validation relies on loaded transmission error (TE) measurements. Many numerical
and experimental results on dynamic behaviours due to the presence of tooth pitting
in geared systems are presented. Based on TE measurements, it is demonstrated that
the actual vibrations generated by gear tooth pitting validate the gear model and its
extension to consider such tooth surface failures.
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1. Introduction

Geared transmission systems are frequently integrated in many industrial applications
because of their reduced cost, power-to-weight ratio and high degree of reliability.
Because of the critical role of gears in these systems, gear failures diagnosis and moni-
toring are required for optimal and/or preventive maintenance especially for high power
applications in order to reduce technical and financial losses.

In this context, the dynamic behaviour of geared systems has been widely studied
over the last 30 years initially based on linear models neglecting the non-linear contribu-
tion of contact conditions such as possible contact losses during motion and, progres-
sively, more sophisticated non-linear dynamic models with variable mesh stiffness
adapted to the simulations of actual dynamic behaviour including the influence of geo-
metrical errors and assembly defects. Transmission error (TE) under load at low speed
is classically defined as the difference between the actual and theoretical gear angular
positions and it is widely accepted as a reliable indicator of the vibration and noise per-
formance of narrow-faced gears (Velex & Ajmi, 2006).

In this study, a numerical three-dimensional gear model is presented which makes it
possible to simulate the non-linear dynamic behaviour of a spur or helical gears, shafts
and bearings. The pinion and the gear bodies are assimilated to rigid-cylinders con-
nected by a series of time-varying, non-linear springs representing the mesh stiffness
function (Velex & Maatar, 1996). Gear tooth faults such as pitting can be introduced
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anywhere on the active tooth flanks by some suitable localized distributions of normal
initial separations with respect to the errorless tooth flanks (Feki, Clerc, & Velex,
2012). The shafts are simulated by two-node classic elements, whereas the bearings are
accounted for by additional lumped stiffness elements. On the other hand, experimental
investigations were conducted using a standard power circulating Forschungsstelle für
Zahnräder und Getriebebau (FZG) fatigue test rig in order to generate real pitting fail-
ures on tooth flanks. The test rig was instrumented by optical encoders to continuously
measure TEs under load and appraise the influence of pits on mesh excitations.

The study is organized as follows. The first section is dedicated to the description
of the numerical gear dynamic model with pitting failures on gear teeth followed by the
description of the experimental set-up along with the measurement principles and meth-
odology. Then, based on TE spectral analyses, it is shown that the frequencies associ-
ated with the defects can be easily identified. The experimental and simulated results
agree fairly well, thus validating the gear dynamic model and its extension to imple-
menting a tooth pitting model.

2. 3D dynamic gear model

2.1. Gear model description

The model, described in Figure 1(a), is composed of five basic elements: (1) the input
and output shafts simulated by two-node Timoshenko beam elements with circular cross
sections, (2) the pinion-gear pair assimilated to two rigid-cylinders linked by a series of
time-varying, non-linear springs accounting for the time-variations of mesh stiffness and
contact non-linearity (Velex & Maatar, 1996), (3) the bearings introduced as additional
lumped stiffness elements (Abousleiman & Velex, 2006), (4) a motor and a load
machine imposing, respectively, the input torque at the first node of the pinion shaft
and the resisting load at one node of the gear shaft (output). The total model comprises
six nodes with six degrees-of-freedom (DOFs) per node corresponding to the infinitesi-
mal generalized elastic displacements superimposed on rigid-body motions (Raclot &
Velex, 1999). The pinion-gear pair DOFs are shown in Figure 1(b).

2.2. Contact simulation

Following Velex and Maatar (1996), mesh elasticity is modelled by a distribution of
independent stiffness elements along the theoretical contact lines in the base plane
(Wrinckler foundation) as illustrated in Figure 2. The base plane is one of the tangent
planes to both the pinion and gear base cylinders (Figure 1(b)), where all the contacts
between the teeth take place for involute tooth profiles. Each stiffness element kðMijÞ
associated with any potential point of contact Mij is time and position dependent as the
relative positions of the meshing teeth vary during the gear rotation (Figure 2). The
stiffness functions have been determined by using the classic results of Weber and
Banascheck (1953) for tooth bending and base displacements (every tooth is assimilated
to a variable thickness cantilever fixed to an elastic half-plane). The non-linear formula
of Lundberg (1939) is employed for contact deflections assuming that pressure distribu-
tions are semi-elliptical in the profile direction and constant across the contact line. All
the displacements described above are then superimposed and the (tangent) stiffness is
deduced by differentiating the force with respect to the total displacement.

Figure 2 shows an instantaneous configuration of the contact between pinion and
gear profiles in the base plan in the case of helical gears (bb: helix angle). The contact
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Figure 2. Mesh stiffness modelling in the base plane.

Figure 1. 3D dynamic gear model (36 DOFs).
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lines evolve over time in the real contact area with respect to the speed V . Each contact
line is discretised into several segments and at each segment, an elemental mesh stiff-
ness kðMijÞ and an equivalent error eðMijÞ are associated (cell ij: segment j of contact
line i). eðM �Þ is the maximum of equivalent errors eðMijÞ in the base plane. The instan-
taneous contact line positions in the base plane are determined and updated based on
rigid-body rotations in order to simulate the meshing process and, at every time step,
the actual elemental mesh stiffness are re-calculated.

2.3. Tooth pitting model

From a simulation point of view, every localized fault such as a tooth pit or spall is
assimilated to a distribution of initial separations eðMijÞ (Figure 2) with respect to ideal
tooth shapes (El Badaoui, Cahouet, Guillet, Danière, & Velex, 2001) at some points on
the flanks (transposed on the base plane). As illustrated in Figure 3, the resulting tooth
error functions are three-dimensional and depend on: (a) the varying defect width in the
contact line direction (tooth face width), (b) its extent in the profile direction (tooth
height), and (c) its varying depth distribution which is simulated by using Bezier’s func-
tion BeðtÞ (Figures 3 and 4) in order to introduce realistic spall morphologies (Olver,
2005) and avoid discontinuities, when tooth faults come into the contact zone. The
shape deviations associated with spalls are approximated as eðMijÞ ¼ Pij � BeðtÞ, Where
�ij is a windowing function, which is equal to 1 within the fault area on the base plane
and zero outside the defect area (Figure 4).

The deflection at any potential point of contact Mij on the tooth flanks can be
expressed as follows:

DðMijÞ ¼ VðMijÞTq� deðMijÞ ð1Þ

where q ¼ fv2;w2; u2;u2;w2; h2; v5;w5; u5;u5;w5; h5gT is the pinion-gear pair DOF
vector (Figure 1(b)); deðMijÞ ¼ eðMijÞ � eðM �Þ represents the equivalent normal devia-
tion at point Mij with respect to ideal flanks (theoretical contact lines (Figure 2)) and
accounts for geometrical errors produced by spalls, … etc.; eðM �Þ is the maximum of

Figure 3. Gear pit form and dimensions.
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eðMijÞ at every time step; VðMi jÞ is the pinion-gear structural vector associated with
point Mij which embodies the pinion-gear geometrical proprieties at Mij and reads:

VðMijÞ ¼ f n O2Mij � n �n �O5Mij � n gT ð2Þ

where n is the outward unit normal vector with respect to the pinion flanks.

2.4. Equations of motion

Centrifugal and gyroscopic effects being neglected, the equations of motion point to a
non-linear parametrically excited differential system of the form (Feki et al., 2012;
Velex & Maatar, 1996):

M€Xþ C _XþKðt;XÞX ¼ F0ðtÞ þ Fe1ðt;XÞ þ Fe2ðtÞ ð3Þ

where X ¼ fv1;w1; u1;u1;w1; h1; v2 . . . h5 ; v6;w6; u6;u6;w6; h6gT is the DOF’s vector;
M, C and Kðt;XÞ are the total mass, viscous damping and time-dependent non-linear
stiffness matrices, respectively; F0ðtÞ is the nominal torque vector; Fe1ðt;XÞ is an addi-
tional excitation vector generated by tooth shape deviations (including pits or spalls);
Fe2ðtÞ is an additional inertial vector caused by unsteady rotational speeds (due to gear
faults).

The total mass matrix is classic, whereas the global viscous damping matrix is
defined via a pseudo-modal basis derived from the system at rest with averaged mesh
stiffness (Abousleiman & Velex, 2006). In this study, the damping matrix is determined
using a unique modal damping factor of 0.1 for all the retained modes. The time-
dependent global stiffness matrix and additional forcing vectors represent the gear mesh
elasticity variations caused by the contact length evolutions on tooth flanks, tooth shape
deviations and errors (Feki, Clerc, & Velex, 2013), they read as follows:

Figure 4. Simulation of the contact line passage within the spall surface on the base plane.
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Kðt;XÞ ¼ Kc þ
XNl

i

XNs

j

ðkðMijÞHðDðMijÞÞVðMijÞVðMijÞT Þ ð4Þ

Fe1ðt;XÞ ¼
XNl

i

XNs

j

ðkðMijÞHðDðMijÞÞdeðMijÞVðMijÞÞ ð5Þ

where Kc is a constant matrix comprising the constant stiffness elements associated
with the shaft-bearing assembly; VðMi jÞ is the extended gear structural vector (as
described in Equation (2)) completed by zeros to the total system size; kðMijÞ is the ele-
mental stiffness at cell ij: segment j of contact line i (Figure 2); Nl is the number of
time-dependent contact lines in the base plane; Ns is the number of time-dependent seg-
ments for each contact line in the base plane and finally, HðDðMijÞÞ is the Heaviside
unit function which is equal to one when DðMijÞ[0 (see Equation (1)) and zero other-
wise (i.e. when the contact at point Mij is lost).

The differential system (3) is solved iteratively by combining an implicit Newmark’s
time-step integration scheme and a unilateral contact algorithm which, at every time-
step, verifies that the contact conditions are satisfied (compressive contact forces, no
penetration of the parts outside the contact zone) (Velex & Ajmi, 2006).

3. Experimental set-up

3.1. Description of the FZG gear test rig

The FZG gear test rig was originally developed at the FZG of the Technical University
of Munich. It is an electromechanical system composed of an asynchronous motor with
a speed controller (100–3000 rpm) and a back-to-back rig consisting in test and slave
gears connected by two shafts (Figure 5). The secondary shaft is divided in two parts

Figure 5. FZG back-to-back gear test rig (Höhn et al., 2008).
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with the load clutch. This device is fixed on one side to the foundation by means of a
locking pin. On the other side, the half shaft is twisted using a lever and weights in
order to apply a static load. This torsion torque is kept constant during the operation of
the test bench after bolting the clutch, removing the weights and lever and unlocking
the shaft.

This machine was specifically designed for testing highly-loaded gears and the
related fatigue issues (contact and root stresses). High powers can be reached to the
power circulation and the capability to impose a torque by elastic deformation indepen-
dently of the speed imposed by the electrical motor controller.

3.2. Measurement principle

From an experimental point of view, TE can be measured by systems based on acceler-
ometers or high-resolution optical encoders. In the present case, TE was derived from
the data of two optical encoders mounted on the free-ends of either shafts of the gear
system as illustrated in Figure 6.

The optical encoders were mounted very close to the test pinion and gear in order
to make TE measurements as representative as possible of the gear behaviour. The mea-
surement principle relies on counting the number of pulses from a timer signal with a
very high frequency (80MHz here) between two rising edges of the optical encoder sig-
nal (Remond, 1998). Having a common reference (same timer and counter), the count-
ing can be simultaneously performed on the two channels. Figure 7(a) shows a
simplified scheme leading to the reconstruction of the time variations of the pinion and
gear angular positions (De Vaujany, Remond, & Guingand, 2005) in relation to the
number of encoder pulses per revolution (here, 2500 pulses).

3.3. Experimental TE calculation

Having stored the measured time lengths between successive rising edges from both
encoders, TE can be deduced by using several methods. According to Remond and Play
(1999), the so-called “angular methods” seem to be more representative of physical
phenomena than asynchronous methods (Remond & Play, 1999). In fact, the use of
angular methods leads to bring out the dynamic effects of gear geometry, eccentricity,
tooth meshing and especially gear tooth faults. This method consists in sampling the
gear angular position with reference to the pinion angular position (Figure 7(b)). Then,
the new gear angular position h2ðiÞ is resolved by linear interpolation at times corre-
sponding to the number of timer pulses between two consecutive rising edges of the
pinion encoder. The TE formula can then be numerically reconstructed by taking into
account the speed ratio leading to an expression of the form:

Figure 6. Optical encoders mounting positions on FZG back-to-back gear test rig.
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Figure 7. Measurement principle (De Vaujany et al., 2005).
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TEðiÞ ¼ h1ðiÞ � Z2

Z1
h2ðiÞ ¼ i � Dh1 � Z2

Z1
h2ðiÞ: ð6Þ

4. Results and discussion

All the following results have been obtained for a test spur gear whose characteristics
are detailed in Table 1 (Höhn, Oster, Tobie, & Michaelis, 2008).

4.1. Generation of actual pitting

In order to investigate the vibration behaviour of a spur gear in the presence of pitting,
a fatigue test was performed to generate “natural” gear tooth pitting. The test condi-
tions, taken from DGMK Information Sheet (2006), are intended to lead to pitting
(short duration test pitting). In short, it consists in applying very important loading lev-
els (levels 9 and 10 in Table 2) at a constant rotational speed, while controlling the oil
temperature in the gearbox (90 ± 3 °C (DGMK Information Sheet, 2006)). The torque
applied to the output shaft causes a force distribution on the tooth contact surfaces
resulting in local Hertzian pressure distributions (a maximal local Hertzian contact stress
of 2069N/mm² for loading level 9 (DGMK Information Sheet, 2006)). This type of fati-
gue test is mainly used to determine the influence of lubricants on pitting resistance.

During fatigue testing, the test gearbox was cooled down in order to be able to run
the machine continuously until contact failures appear. A unique spall was detected on
one pinion tooth after 13million cycles which is shown in Figure 8 (C-type gears).

The dimensions of the actual pitting failure on the tooth are given in Figure 9(a)
where t/Tm (Tm is the mesh period) represents a dimensionless time but also the nor-
malised position in the profile direction. The defect is characterized by a triangular
shape on the tooth surface with a maximum depth around 380 μm. In order to compare
the numerical and experimental results, this defect has been simulated as a hole on one
pinion tooth whose geometry is close to that of the actual fault as illustrated in
Figure 9(b).

4.2. Comparison between measured and simulated TE spectra

Figures 10–13 show the spectra of the experimental and theoretical (simulated) TE sig-
nals of the test gear with and without the presence of a pit in one tooth of the pinion.
The TE signals have been obtained for a rotational speed of 30Hz on the input shaft

Table 1. Main geometrical characteristics of test spur gear (C-type).

Pinion Gear

Centre distance (mm) 91.5
Number of teeth 16 24
Module (mm) 4.5
Pressure angle (°) 20 20
Face width (mm) 14 14
Pitch diameter (mm) 73.2 109.8
Profile shift coefficient 0.1817 0.1715
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and under loading level 7 (as defined in Table 2). All the spectra have been calculated
using a Blackman window in order to obtain narrow and distinctive peaks and ampli-
tudes have been divided by the maximum amplitude in each case.

For the same operating conditions, it can be noticed that the spectra of the
experimental and simulated signals (with or without tooth pitting) look similar. In
all the cases, significant amplitude is reported at the fifth harmonic of the mesh fre-
quency. According to the simulation results, this frequency corresponds to a critical
frequency of the mechanical system (test gear, shafts and bearing) with a very large
contribution of the gear element (84.19%) to the total modal strain energy. In the
presence of one tooth pit, the spectra exhibit modulation sidebands between the dif-
ferent gear mesh harmonics mainly around the first and fifth harmonics. However,
these sidebands are not present in the TE spectra of healthy gears. For example,
between harmonics 4 and 5 or 5 and 6, 16 peaks emerge in the TE spectra with
pitting (Figures 11 and 13). These peaks are spaced by integer multiples of the pin-
ion rotational frequency and their number (between two harmonics) corresponds to
the pinion tooth number. This explains that, in the presence of a fault, the frequency
modulation is controlled by the rotational frequency of the defective wheel (pinion
in our case).

It is also noticed that the TE spectra with pitting reveal asymmetric sideband distri-
butions typical of both amplitude and frequency modulations. The main reasons for this
asymmetry are, (1) the dynamic effects caused by the vicinity of these sidebands and

Table 2. Loading levels.

Loading levels 4 5 6 7 8 9 10

Load torque (Nm) 60.75 94.1 135.3 183.35 239.25 302 372.7
Input torque (Nm) 91.12 141.15 202.95 275.02 358.87 453 559.05

Figure 8. Actual gear tooth pitting.
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the resonance zone (critical frequencies) (Inalpolat & Kahraman, 2009; McFadden &
Smith, 1985), and (2) the effect of the carrier frequency of the pinion rotation on modu-
lation sidebands (Inalpolat & Kahraman, 2009).

Figure 9. (a) Actual and (b) simulated tooth pitting.

Figure 10. Spectrum of the experimental TE signal without gear tooth pitting.
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Figure 11. Spectrum of the experimental TE signal in the presence of a tooth pit.

Figure 12. Spectrum of the simulated TE signal without gear tooth pitting.

Figure 13. Spectrum of the simulated TE signal in the presence of a tooth pit.
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4.3. Influence of tooth pitting on the mean energy spectral density

According to Stoica and Moses (2005), the so-called energy spectral density (ESD)
characterises the distribution of sequence (signal) energy as a function of frequency.
The ESD is particularly suited for the analysis of transients and signals perturbed by
faulty elements.

The mean ESD of the TE signal is defined as follows:

MeanðESDÞ ¼
PN

i¼1
ðTEð fiÞÞ2

N
ð7Þ

where N is the number of peaks over a frequency band and TEð fiÞ is the spectrum
amplitude at frequency fi.

Figure 14 shows the mean ESD over the frequency band [4·Fmesh, 6·Fmesh] for the
experimental and numerical spectra, with and without spall and various loading levels.
It is noted that the presence of one spall on tooth flanks leads to an increase in the
mean ESD in the considered frequency band. This phenomenon has been observed for
all loading levels and in both the theoretical and experimental TE signals. The presence
of a localised fault on one tooth manifests itself by higher peak amplitudes associated
with the pinion rotational frequency, which corresponds to the frequency of passage of
the defective tooth in the mesh. On the other hand, the mean spectral density energy
increases slightly for larger loads for all the signals (with and without spall, theoretical
and experimental). It can, therefore, be inferred that the mean ESD can be used for the
detection of gear tooth failures. Moreover, the evaluation of the mean over the fre-
quency band including the sidebands around the harmonics of the mesh frequency is
very sensitive to transmission effects.

5. Conclusion

A model has been presented which can be used for simulating the contribution of local-
ized tooth faults such as pits on tooth flanks. The simulation results compare favourably
with the evidence from a back-to-back test rig instrumented with encoders, thus

Figure 14. Mean ESD on the frequency band [4·Fmesh, 6·Fmesh] of the spectra of experimental
and simulates signals, with and without spall, for different loading levels.
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validating the proposed modelling strategy. It is also confirmed that TE signals can be
employed in order to detect and monitor tooth surface failures. The presence of one
tooth fault leads to significant modulation sidebands near the mesh frequency and its
harmonics that are spaced by integer multiples of the rotational frequency of the faulty
gear. In this context, ESD appears as a reliable and sensitive tool for the early detection
by vibration monitoring.
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