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In this study, a new design approach based on an interval computation method and
the constraint satisfaction problem technique (CSP approach) was discussed. It has
been applied in the design of a compression spring, implemented in the vehicle sus-
pension system. A design process is proposed and compared with what is done in
conventional design. IT allows making static and dynamic sizing in one step. In fact,
with the CSP, static and dynamic requirements can be coupled in the same step of siz-
ing. In the CSP all requirements imposed can be integrated from the beginning. So it
avoids falling on the loop “design-simulate-back to the initial step in case of failure”.
In this study, the design parameters values of the compression spring generated by
the CSP verify all requirements and the resulting simulation of the system behaviour
respects all constraints required. The results obtained in this study affirmed that the
suggested method is valid and potentially useful to the size dynamic system and can
be applied easily and effectively.

Keywords: design; interval computation; constraint satisfaction problem; compression
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1. Introduction

Conventional design methodologies based on a loop “design-simulate-back at the initial
stage in case of failure” appear to be increasingly obsolete. During the past years, many
studies have been conducted to optimise design, more precisely at the pre-sizing step.
We are interested here in optimising the design approach (Colton, Mark, & Ouellette,
1994; Hwang et al., 2006; Meyer & Yvars, 2012; Philipp, 2009; Song, Lee, & Choung,
2011; Teorey, Yang, & Fry, 1986; Yvars, Lafon, & Zimmer, 2009) based on tools and
methodologies using constraint satisfaction techniques (Edmunds, Feldman, Hicks, &
Mullineux, 2011; Eldon, 2002; Granvilliers, Monfroy, & Benhamou, 2001; Montanari,
1974; Moore, 1966). Our approach is applied to optimise the sizing of a compression
spring (Deb & Goyal, 1998; Kulkani & Balasubrahmanyam, 1979; Paredes, 2009;
Paredes, Sartor, & Daidie, 2005; Yokota, Taguchi, & Gen, 1997). Several software tools
are available for sizing springs, in particular for compression springs. In most cases, it
is either software validation of a given size, or tools allowing very low variability
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specifications (Deb & Goyal, 1998; Kulkani & Balasubrahmanyam, 1979; Paredes
et al., 2005; Yokota et al., 1997).

In general, the design process used in those software tools is alike the process
described in Figure 1. In this approach, we commonly find three main steps: the first
one consists to estimate the design variables values based on static lows of calculation
and expertise. The optimisation of the choice of those values requires a lot of expertise.
In the second step, the designer makes a static test and fixes the safety factors according
to the requirements imposed. The next step is to achieve the dynamic modelling and
then to make the dynamic test. So, the designer is faced with two situations. In the first
case, if the resulting behaviour of the system has fulfilled the constraints imposed, the
design parameters used in the simulation will be taken as a solution. In the second case,
if the system response does not satisfy the constraints imposed, then the designer has to
change those parameters by taking into account the previous simulation and the same
sizing steps must be repeated until obtaining the optimal solution. This approach has
the disadvantage that the connection between the static and dynamic design is missing
and depends on a lot of expertise. Also, the passage through two steps of sizing (static
and dynamic sizing) leads to the oversizing of the spring, especially when the designer
took enormous safety factors after the static modelling. The designer has to go through
several simulations to determine an optimal solution without being sure if the retained
solution is the global optimal within the solution space. It comes from the fact that the
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Figure 1. Conventional process of a product design.
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number of simulations that can be done is limited by time and cost constraints. To
overcome the limits of design process used in the study of (Paredes et al., 2005), we
thought to couple the static and dynamic sizing in one step in the aim to optimise the
choice of the safety factors, and to use intervals instead of fixed values in order to mini-
mise the number of simulations and to obtain a set of solution instead of a single one.
So to realise these goals the interval arithmetic of Moore (1966) are used, and the con-
straint satisfaction problem (CSP) approach is integrated in a new design process
describing in Figure 2.

In Figure 2 a new design approach based on interval computation and the CSP
approach is presented. This sizing process is made up of three main stages: the first step
is to express design variables by intervals, here the choice of the design variables values
does not require expertise but we cannot deny that expertise may reduce the calculation
time. In the next step, the designer identifies the requirements that must be satisfied,
expresses these requirements as constraints on the design variables, and then imple-
ments all types of constraints in the CSP model. Finally, the designer spreads those
constraints in the intervals of design variables to frame the areas of parameters defining
the product, and here the role of the CSP approach comes in. In fact, the CSP approach
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Figure 2. New design process based on CSP and Interval computation methods.
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eliminates all values of design variables that do not respect the requirements imposed.
The set of values that remain represent the set of solutions generated. This calculation
was applied for the design of compression springs made by circular section rods, sub-
mitted under the action of static and dynamic forces.

In this paper a review of the various steps of the conventional design process and
the proposed new design process is presented, following this review, the technique used
to optimise the sizing process was defined. In the third and the forth part all static and
dynamic constraints of a compression spring integrated in the vehicle suspension system
have been described. Section 5 is devoted to presenting, in detail, the application of the
CSP approach for the sizing of the compression spring. Finally, we end with a brief
summary and a conclusion is presented.

2. CSP approach

The CSP approach (Edmunds et al., 2011; Eldon, 2002; Granvilliers et al., 2001;
Montanari, 1974; Moore, 1966; Teorey et al., 1986; Yvars et al., 2009) is a program-
ming paradigm that emerged in the 1980s for solving combinatorial problems of large
sizes such as problems with planning and scheduling. This technique is extensively
used to treat problems manipulating intervals and to solve mathematical problems that
look for states or objects satisfying a number of constraints. A CSP (Yvars et al., 2009)
is defined by a 3-tuple (X, D, C) such that:

• �X = {x1, x2, x3, …, xn} is a finite set of variables which we call constraint vari-
ables with n being the integer number of variables in the problem to be solved.

• �D = {d1, d2, d3, …, dn} is a finite set of variable value domains of X such that:

8i 2 f1; . . . ; ng; xi 2 di ð1Þ

• A domain should be a real interval or a set of integer values.

• �C = {c1, c2, c3, …, cp} is a finite set of constraints, p being any integer number
representing the number of constraints of the problem.

8i 2 f1; . . . ; pg; 9Xi #X=ciðXiÞ ð2Þ

To solve a CSP requires the instantiation of each variable in X while addressing the
whole constraints problem C, and at the same time satisfying all the constraints of the
problem C. Here, a constraint is a relationship between one or more variables which
limit values that can take each of the variables simultaneously by the constraint. It can
be any type of mathematical relationships (linear, quadratic, non-linear, Boolean, etc)
covering the values of a set of variables. A solution is an assessment that satisfies all
constraints. The constraint propagation is the operation that consists to apply recursively
all contractors of a problem in a manner to make an exhaustive reduction of intervals.
Here is an example to explain the constraint propagation mechanism.

The following continued CSP is defined by:

x 2 ½�10;10� and y 2 ½�10; 10�;
Constraints:

ðC1Þ:y ¼ sin x;
ð3Þ
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ðC2Þ:y ¼ x3; ð4Þ

The constraint propagation gives:

ðC1Þ ) y 2 ½�10;10� \ ½�1;1�; y 2 ½�1;1� ð5Þ

ðC2Þ ) x 2 ½�10;10� \
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½3�½�1;1�

p
; x 2 ½�1;1� ð6Þ

ðC1Þ ) y 2 ½�10;10� \ sin½�1;1� y 2 ½�0:8414;0:8414� ð7Þ

ðC2Þ ) x 2 ½�1;1� \
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½3�½�0:8414;0:8414�

p
x 2 ½�0:944;0:944� ð8Þ

The process stops and returns the resulting intervals.
We apply this mechanism to the design of a compression spring. The purpose is to

design the compression spring in any environment wherever it is placed. We chose the
example of a compression spring integrated into a vehicle suspension. There are too
many factors that influence the calculation of the spring and its service life, so prefera-
bly to stay in a simplified form within the spring sizing can be quickly done.

3. The problem of the optimal design of a compression spring

Springs are structural elements designed to maintain and store the energy and mechani-
cal work based on principles of the flexible deformation of materials. They are among
the components of the most heavily loaded machines and are usually used as: (energy
absorbing, dampers in the anti-vibration protection and devices for control, etc).
The purpose in this section is to determine the static design requirement of a compres-
sion spring (Duchemin, 1985; Paredes, 2009; Paredes et al., 2005; Spaes, 1989) with
round wire (Figure 3). The design parameters (Choné, 2007; Paredes, 2000) of the com-
pression spring are classified into three types:

• Variables characterising the material: They are related to the material used. A
material set, some variables are known (G, E, ρ). Others vary depending on the
values of the geometric variables of the spring (Table 1).

Figure 3. Parameterizing of a compression spring.
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• Geometric variables: They (De, Di, R, L0, Lc, d, n, z and m) are used to define
the geometry of a compression spring.

• Operating variables: (F1, F2, L1, L2 and Sh) The spring is a component whose
geometry varies significantly during use. It works between two configurations:
one corresponding to the less compressed state, the second corresponding to the
most compressed state.

3.1. Technological relations between design variables

The different parameters defining the design of a compression spring are interrelated
through a set of equations (Paredes, 2000) which is detailed below.

D ¼ De � d ð9Þ

Di ¼ D� d ð10Þ

F1 ¼ RðL0 � L1Þ ð11Þ

F2 ¼ RðL0 � L2Þ ð12Þ

Fc theo ¼ RðL0 � LcÞ ð13Þ

Fn ¼ RðL0 � LnÞ ð14Þ

fe ¼ 3560d

nD2

ffiffiffiffi
G

q

s
ð15Þ

k ¼ wþ 0:5

w� 0:75
ð16Þ

L0 ¼ mu þ ðni þ nmÞd ð17Þ

Table 1. Mechanical material properties of compression springs.

Material Steel DH Stainless steel 302

Limits of the manufacturer (mm) 0.36 d6 12 0.156 d6 15
G 81,500 70,000
E 206,000 192,000
Rm 2230 �355.94 ln (d) 1919–255.86 Ln (d)
Maximum permissible stress τzul (% de Rm) 50 48
ρ 7.85 7.90
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Lc ¼ dðnþ ni þ nmÞ ð18Þ

Ld ¼ pD 2þ nm þ n

cos z

� �
ð19Þ

Ln ¼ dðnþ ni þ nmÞ þ Sa ð20Þ

Lr ¼ L0 � pd3szul
8DRk

ð21Þ

M ¼ q10�3Ldpd2

4
ð22Þ

m ¼ L0 � dðni þ nmÞ
n

ð23Þ

n ¼ Gd4

8RD3
ð24Þ

nt ¼ nþ nm þ 2 ð25Þ

R ¼ Gd4

8nD3
ð26Þ

sh ¼ L1 � L2 ð27Þ

V0l0 ¼ pD2
eL0

4000
ð28Þ

V0l2 ¼ pD2
eL2

4000
ð29Þ

W ¼ 0:5ðF1 þ F2ÞðL1 � L2Þ ð30Þ

w ¼ D

d
ð31Þ

tan z ¼ m

pD
ð32Þ

sk2 ¼ 8DRðL0 � L2Þk=ðpd3Þ ð33Þ
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skctheo ¼ 8DRðL0 � LcÞk=ðpd3Þ ð34Þ

Also, the additional relationships such as inequalities, compatibility tables and
conditional relations were reformulated and taken into account in the design of the
spring.

3.2. Choice of extremities

This choice determines the value of the variable ni. It can take its values from the set
{1, 2, 3, 4}. In practice, extremities with simply cut and just grinded (ni = 1) are rarely
used because they cause a force dispersion. It is preferable to use closer extremities
(ni = 3) or even close and ground (ni = 2).

3.3. Choice of the number of dead spiral turns

It is also possible to add spiral turns named dead spirals to increase the length of the
spring without changing its stiffness (nm).

3.4. Winding ratio

The winding ratio w (also called index of the spring) is the ratio between the average
diameter of the spring and the wire diameter. DIN [22] indicates that:

4 � w � 20 ð35Þ

3.5. Minimum operational length

The minimum length Ln is the minimum operational length based on geometrical con-
siderations. DIN [22] imposed to respect a minimum distance between the spiral turns
named Sa as:

sa ¼ n 0:0015
D2

2
þ 0:1d

� �
ð36Þ

Moreover, when the number of failure cycles is around N> 104 then Sa was multi-
ply by a coefficient of 1.5.

3.6. Choice of compressing spring material

The type of material selected imposes values on certain parameters and a restriction for
others bounds (Table 1). On the other hand, DIN (DIN, 2088, DIN 2089–1, DIN 2089–
2) sets the application scope of these formulas for helical compression springs:

d � 17 ð37Þ

D � 200 ð38Þ
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L0 � 630 ð39Þ

n � 2 ð40Þ

4 � w � 20 ð41Þ

The maximum static stress (Del Llano-Vizcaya, Rubio-Gonzalez, Mesmacque, &
Banderas-Hernandez, 2007) is defined by the following equation:

sK2\szul ð42Þ

Almost all main constraints that define the static behaviour of the compression
spring were included. In the next section the dynamic constraints related to the vehicle
suspension system are studied.

4. Vehicle suspension

A vehicle suspension is a set of elements designed to absorb shocks and ensure perma-
nent adhesion of the wheels on the ground. The use of the suspension was imposed by
the irregularities of the surface on which the vehicle travels. It lessens the impact on
the carrier, avoids excessive wear and breakage, improves ride comfort and maintains
contact between the wheels and the ground despite the irregularities. The spring is one
of engineering’s masterpieces. It is the element that sets the frequency of oscillation of
the sprung mass and the amplitude of vertical movements.

A dynamic study was made to obtain the dynamic requirements of the suspension
system (Suciu & Buma, 2009) to avoid its destruction in case of resonance. A simple
model of the suspension system was treating in the following. Indeed, in Figure 4 a
suspension system of a quarter vehicle in vertical mode is exposed; it is composed by
the chassis m2 which is connected to the wheel m1 by a linear spring of stiffness k2,
and in parallel with a linear viscous damper provided with a damper coefficient η. The
wheel-ground contact is modelled by a linear spring of stiffness k1 (which represents
the stiffness of the tyre and the rim).

The purpose here is to determine some conditions under which the system resists
and its behaviour responds well in case of disturbance and excitation phenomena. By
applying the fundamental principle of the dynamics and by the isolation of each mass,
the motion equations are as follows:

m2:z
��
2 þ g:z�2 � z�1Þ þ k2:ðz2 � z1Þ ¼ 0 ð43Þ

m1:z
��
1 þ g:ðz�1 � z�2Þ þ k2:ðz1 � z2Þ þ k1:ðz1 � z0Þ ¼ 0 ð44Þ

We apply the Laplace transform

ðm2:p
2 þ g:pþ k2Þz2 � ðg:pþ k2Þz1 ¼ 0 ð45Þ

ðm1:p
2 þ g:pþ k1 þ k2Þz1 � ðg:pþ k2Þz2 � k1:z0 ¼ 0 ð46Þ
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We obtain the following global transfer function:

FtðpÞ ¼ z2
z0

¼ ðg:pþ k2Þk1
m2:m1:p4 þ g:ðm2 þ m1Þ:p3 þ ½m2ðk2 þ k1Þ þ m1:k2�:p2 þ g:k1:pþ k2:k1

ð47Þ

The harmonic transfer function is obtained simply by substituting p by jω

Ftð jxÞ ¼ k1:k2 þ j:x:k1:g
ðk2 � m2:x2Þðk1 � m1:x2Þ þ jðk1 � m1:x2Þ:x:g ð48Þ

Assume that xmax and xmin represent the maximum and minimum displacements
imposed in the requirements of the suspension system and FðtÞ ¼ F0 sinXt is the excitation
force type sinusoidal. Then for a best functioning of the suspension system and to avoid that
the system oscillates until the destruction, it must respect the following constraints:

xmin\xðtÞ\xmax with:jxj

¼ F0

k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1:k2Þ2 þ ðx:k1:gÞ2

½m2:m1:x4 � ½m2ðk2 þ k1Þ þ m1:k2�:x2 þ k2:k1�2 þ ½g:ðm2 þ m1Þ:x3 � g:k1:x�2
s

ð49Þ

Figure 4. Linear model of a passive suspension system of vehicle.

192 H. Trabelsi et al.



The excitation frequency of the system is different from its natural frequency (the
stability study of the suspension system is attempting to determine the roots of the
denominator poles of the transfer function depending on the parameters m1, m2, k1, k2
and η). This constraint can be expressed by the following mathematical relation:

m2:m1:x
4 � ½m2ðk2 þ k1Þ þ m1:k2:x

2 þ k2:k1 � j½g:ðm2 þ m1Þ:x3 � g:k1:x�–0 ð50Þ

5. Constraint formalisation and resolution by interval

5.1. Definition of design variables and implementation of technological
relationships in CSP

Each design variable presented in the nomenclature of a compression spring (view
annex) will be considered as a variable in our CSP that involve an initial range of val-
ues. They can be found in the column “initial value” in Table 4. All mathematical rela-
tions between design variable types static or dynamic described previously were
implemented in CSP code using the ILOG solver library developed by IBM Company.
The table of valid combinations of material parameters is modelled as a table constraint.
This is called global constraint representing the possible combinations of values for a
set of variables constraints. Each row of the table is considered as a constrained tuple
of consistent values. For example, with Table 2, if the value of G must be less than
81,500, lines 1 and 2 are automatically removed from the table by propagation. Only
the line numbers 3 in the table remain constrained. The advantage of such constraint is
to spread an event across the table.

Generally all design variables of the compression spring are expressed by intervals
as shown on Table 4. So, it remains to propagate these constraints in the intervals of
design variables to determine all possible solution of the spring sizing that satisfied the
requirements imposed. All constants used in the calculation by CSP are presented in
Table 3.

Table 2. Constraints table.

Material 1 2 3

E 206,000 206,000 192,000
Coeff τzul 0.5 0.5 0.48
ρ 7.8510–6 7.8510–6 7.910–6
G 81,500 81,500 70,000

Table 3. Constants.

π 3.1415926535897932384626433832795
ɛ 0.01
m1 25
m2 500
k1 200,000
K2 20,000

7000
Ωe 10
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Table 4. Numerical results of the compression spring dimensions obtained by the CSP approach.

The material parameters

Variables Initials values Results

Material {1, 2, 3} 1
G {70,000, 81,500} 81,500
E {192,000, 206,000} 206,000
Rm [0; 2230] 1455.69189252899
ρ {7.85e�06, 7.9e�06} 7.85e�06
M [0; +∞] [906.159418; 906.159419]
τzul [0, 10,000] 727.845961728
μ [0; 1] [0.263803680981595; 0.263803680981596]

Principal constructive parameters of the spring
d [0.15; 15] 7.00000011026432
D [0; 200] 50
dmin {0.15, 0.3} 5.599999819776
dmax {12, 15} 7.50000007020544
De [0; 217] [58.8056134702269; 58.8056134702269]
Di [0; 200] [41.1943865297732; 41.1943865297733]
L0 [0; 630] [200; 200.000010986247]
Lc [0; 630] 105.667361642722
R= k2 [0; 10,000] 49
n [2; 2e9] 3
ni [2; 2e9] 2
nm [2; 2e9] 1
m [0, 315] 12
Sa [0; +∞] [0.00076; 0.00077]
z [-π/2, π /2] [0.114205511695; 0.1142055148096]

Secondary Constructive parameters of the spring
Ld [0; +∞] [1895.508930; 1895.508932]
Vol0 [0; 24,000] [543.1970, 543.1971]
nt [4; 2e9] 6
w [4; 20] [4.1728433945700; 4.1728433945701]
fe [0; +∞] 0.49
M [0; +∞] [1677.6568091; 1677.6568096]

Functional parameters of the spring
F1 [0; +∞] [2.763; 2.764]
F2 [0; +∞] [4621.7713; 4621.7718]
Fn [0; +∞] [4622.2613; 4622.2619]
L1 [0; 630] [199.9435; 199.9436]
L2 [0; 630] [105.67812; 105.67813]
Ln [0; 630] [105.66812; 105.66813]
Sh [0; 630] [94.26545; 94.26547]
W [0; +∞] 217966.956249088
Vol2 [0; 24,000] [287.02024, 287.02028]

Performance parameters (static rupture)
Lr [0; 630] [136.46128; 136.46129]
Fc théo [0; +∞] [4622.2992; 4622.2998]
k [1; 10] 8.80561375674368
τkcthéo [0; +∞] [1080.5951; 1080.5953]
τk2 [0; +∞] [8.153535; 8.153538]

(Continued)
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5.2. Tables implementation and Resolution by interval

The static and dynamic requirement imposed on the compression spring was coupled
and implemented in CSP code according to the proposed design approach based on
intervals and the CSP showed in Figure 2. Then after the step of constraint propagation,
results in Table 4 are obtained. According to those results, we notice a drastic reduction
in certain intervals and the solution for some parameters is an interval (example: m, L0,
Fcthéo …) and for the other parameters is just one value (example: d, dmin, fe …). We
notice also that the material 1 is the only one that can satisfy the requirement imposed.
So, we could say that we succeed to size the compression spring taking into account
the entire static and dynamic requirement studied previously in the same time without
the need to resize the spring which is due to the fact that all the solutions generated
and represented with all values (column Results in Table 4) of the parameters that
define the possible dimensions of the spring satisfy the constraints imposed.

To sum up, with the new design process based on the CSP approach and interval
computation we can couple more than one analysis for designing a system which helps
to take an exact decision contrary to a conventional design approach. Also, using this
approach can determine a set of solutions instead of one, thanks to a mathematical oper-
ator by intervals used in the CSP approach. The calculation was made by intervals that
explain the accuracy of some values obtained. Despite the accuracy, which is an advan-
tage in the CSP approach, values of some parameters obtained precisely with this will
lead to a problem in the manufacturing step (example: De).

6. Conclusion

The study shows that the CSP approach should be applied efficiently to the optimal
design of a compression spring. The static and dynamic sizing steps were coupled in
the same step of sizing. The design processes allows taking into account all type of
constraints from the beginning that avoid resizing the system. The optimisation becomes
easier, since with the new design approach proposed in this paper the designer uses
intervals instead of fixed values and thus generates a set of solutions instead of a single
simulation. The computation time is interesting: in this study, the simulation results are
almost obtained immediately on a standard PC. So, it can be claimed that the objectives
and the advantages of the proposed design approach compared with the conventional
design approach are verified and demonstrated. The method was applied for the design
of one component of a linear system. Future work might focus on the validation of the
capability of the proposed design based on the CSP approach and intervals computation
to optimise the sizing of a full non-linear system (structure + all components …).

Table 4. (Continued).

The material parameters

Variables Initials values Results

Dynamic study
Ω [0; +∞] 2
F0 [0; +∞] 4000
x0 [0; +∞] [0.0291543950465661; 0.0291543950465662]
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Nomenclature

D mm mean diameter of spiral turns
De mm external diameter of spiral turns
Di mm internal diameter of spiral turns
d mm wire diameter
E N/mm2 modulus of elasticity of the material
F1 N spring force for the length L1

F2 N spring force for the length L2

Fctheo N theoretical force of the spring for Lc

Fn N spring force for Ln

fe Hz natural frequency of the spring
G N/mm2 shear modulus
k – coefficient of stress as a function of w
L0 mm free length
L1 mm spring length in charge, for force F1
L2 mm spring length in charge, for force F2
Lc mm block length
Ld mm developed length
Lr mm shorter length of eligible work (maximum stress)
Ln mm shorter length of eligible work (geometrically)
M g mass of the spring
m mm step of the spring
n – number of active spiral turns
ni – number of spiral turns for the extremities
nm – number of dead spiral turns
nt – total number of spiral turns
R N/mm spring stiffness
Rm N/mm2 minimum value of the tensile strength
Sa mm sum of minimum space between the active spiral turns
Sh mm course
Vol0 cm3 volume envelope for L0
Vol2 cm3 volume envelope for L2
W Nmm work of the spring
w – winding ratio
z ° winding angle
ρ kg/dm3 density
τk2 N/mm2 constraint shear adjusted for L2
τzul N/mm2 maximal eligible constraint
τkctheo N/mm2 theoretical constraint shear adjusted Lc
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