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In this study, a new topological approach for the modelling of mecatronic systems is
presented. This approach offers the opportunity to separate the behaviour laws
(physics) and the interconnection laws (topology) at local level. Then, it can be used
as a unification basis for the modelling of the different fields of Mecatronics. This
approach is based on the notion of topological collections and transformations and
applied using the MGS language (Modelling of General Systems). The emphasis is
placed on the application of this approach to the piezoelectric structures (Multi layer
piezoelectric stack and piezoelectric truss structure). To validate this approach, simu-
lation results are presented and compared with those obtained by the finite element
analysis ANSYS software.
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1. Introduction

Since the 1990s, the term mecatronic has spread worldwide in a remarkable way with
numerous proposed definitions (the definition of the Mecatronic International newspaper
in 1991, the definition of the IFAC technical Committee on Mecatronic Systems in
2000, the definition of the French Standard Organisation NF E01–010 in 2010…). The
definitions of mecatronics differ in their expressions, but they all meet on a common
objective to achieve manufacturing of systems that highlight the multidisciplinary
aspect: mechanics, electronics, computer sciences and automation. Obviously, all the
above mentioned disciplines are similar in their topology. In fact, all mecatronic
systems could be decomposed in subsystems that belong to different fields of mecatron-
ics: Each field can be characterised by its topological structure and behavioural laws
(Björke, 1995; Plateaux, Penas, Rivière, & Choley, 2007).

Kron (1942) was the pioneer as well in the use of tensor analysis for electrical net-
works as in their generalisation to the electromechanical systems using the diakoptics
method (Kron, 1963). In this method a physical system is dissected into an appropriate
number of small subdivisions, each of which is analysed and solved separately. The
partial solutions are then interconnected step by step until a solution for the entire
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system is achieved. In 1966, Branin (1966) who relied on Kron’s work, which was
validated mathematically by Roth (1955) on the electrical networks and machines, was
able to use the same topological structure to describe the physical quantities of multi-
physical systems. The generic modelling approach consists in representing the system
by a topological structure (linear or planar graph). This structure connects the various
topological entities (nodes, branches and meshes) of the graph. To the first topological
structure are associated two other topological structures known as chain complexes and
co-chain complexes together with the physical parameters that govern the behaviour of
the studied system. Later, Björke (1995) resumed these works and extended them to the
manufacturing systems integrating the problems of control, planning and cost.

Several researchers have applied a topological approach for the modelling
of mechanical systems. For example: Shai (2001a, 2001b, 2001c) developed a
Combinatorial Representations (CR) based on graph and matroid theory and applied it
to different engineering fields in particular to the analysis of trusses, Egli (2000)
described a framework for the specification and manipulation of models of systems
(mass-spring systems network, fluid particles …) using chain models, and Tonti (2003)
described physical laws by algebraic topology using cell complexes.

Therefore, in this study, we are interested in applying a topological approach for the
modelling of mecatronic systems. This study would make it possible to separate the
topology and the physics of the studied system in order to have generic local models
allowing the optimisation of the system behaviour according to the whole system. This
study is a continuation and extension of the work directed by Plateaux as part of his
thesis (Plateaux, 2011) entitled “Continuity and coherence of mecatronic systems mod-
elling based on a topological approach” and presented in 2011. Plateaux, primarily rely-
ing on the works of Kron (1942, 1963), Roth (1955) and Branin (1966) previously
introduced, applied the KBR topological graph (named KBR in honour of its creators)
for the modelling of mecatronic systems. He used the MODELICA language that
enabled him to apply this graph (MODELICA, 2013). In fact, MODELICA language
allows to take a specific type of topological connexions into account and uses the con-
cepts of flow and potential and consequently respect the Kirchhoff’s laws. On the other
hand, its topological nature is limited to 0 and 1 complexes and the access to higher
dimensions can be done only via transformations to 0-simplexes. Therefore, it associates
the topology and the behaviour into the same model that limits the generalisation of the
studied system. In our study, however, we used the MGS (Modelling of General Sys-
tems) language that proposes a unified view on several computational mechanisms ini-
tially inspired by biological processes. MGS is a research project, developed in the
IBISC (Laboratory for Computer Science, Integrative Biology and Complex Systems)
of the University of Evry (France). It is especially devoted to the simulation of biologi-
cal systems whose state space structure evolves dynamically in time (The MGS home
page, 2013; Giavitto, Godin, Michel, & Prusinkiewicz, 2002; Spicher & Michel, 2007).
The basic data structure of MGS is topological collections that are composed of ele-
ments of various dimensions called topological cells organised according to a certain
topology and associated with values (Cohen, 2004; Spicher, 2006).

The main objective of this study is to develop a general topological approach as a
support for the modelling of mechatronic systems. This approach is based on the KBR
topological graph and applied using topological collections in order to present a topo-
logical structure (interconnection law) of a mecatronic system and transformations in
order to specify its local behaviour laws. The emphasis is put on the application of this
method to piezoelectric structures.
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The remainder of this study is organised as follows: Section 2 sheds light on the
modelling of mecatronic systems using the KBR topological graph and its application
via the topological collections and transformations. Then, section 3 is dedicated to the
application of this topological approach to the case of piezoelectric structure. Two
particular cases are treated: multi layer piezoelectric stack and piezoelectric truss
structure. The numerical results obtained by the MGS language are presented and
compared with those obtained by the finite element analysis ANSYS software. Our
conclusions are drawn in Section 4.

2. Topological modelling

2.1. The KBR topological graph

In 2007, Plateaux proposed a general geometrical and topological structure for the
modelling of complex systems (Plateaux et al., 2007). This modelling is based on the
integration of the topological algebra and geometric algebra and applied them using
the KBR topological graph.

To determine the KBR topological graph, we present the system as a cellular
complex which is an abstract topological structure that generalises to higher dimension
the notion of graph. Then, we extract the complexes of chain and co-chain of these
topological structures to which the physical and geometrical variables of interest are
associated. Figure 1 shows an example of a cellular complex and its chain complex
made up of five cells of dimension 0 representing the nodes, six cells of dimension 1
representing the branches and two cells of dimension two representing the faces.

Figure 2 shows the KBR topological graph. In fact, we can go left again to bring
up the surfaces, volumes ... according to the specifications of the problem. In this graph

Figure 1. Example of a cellular complex and its chain complex linked by a boundary
relationship.

Figure 2. The KBR topological graph.
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[N], [B] and [C], respectively, represent the column matrix representing the nodes, the
column matrix representing the branches and the incidence matrix branches/nodes. The
incidence matrix allows the transition from the variables associated with the nodes to
the variables associated with the branches: the lines correspond to the branches and the
columns correspond to the nodes. The coefficients of the incidence matrix indicate:

Cði; jÞ ¼
1 if Pi is an input node

�1 if Pi is an output node
0 else

8<
:

[Y] and [Z], respectively, represent the admittance and impedance matrices. They allow
the expression of the geometrical and physical relationships that occur between the
elements of the primal and dual objects (e.g. of primal/dual object: force/displacement,
Voltage/current …). The existence of [ZN] is subject to the condition that [YN] is
invertible.

The topological graph KBR creates interesting perspectives for the modelling of
mechanical or mecatronic systems, particularly, when the same representation leads to
different modelling. Therefore, based on the converse analogy (Firestone, 1933), the
KBR topological graph can be used as a unification basis for the modelling of
multi-physics systems.

For example, we consider the linear graph presented in Figure 3. This graph is
composed of two nodes noted P1 and P2 and one arc noted e1 and it is oriented from
P1 to P2. The incidence matrix associated with this graph is ½C� ¼ ½1� 1�. Based on the
converse analogy, this graph can present a tension spring in the mechanical field or an
electric resistance in the electrical field.

For the tension spring, we associate the displacement vector with the nodes
dx1
dx2

� �
. The incidence matrix applied to the nodes provides the displacement of the

spring Dl ¼ dx1 � dx2. The transition to the dual spaces corresponds to the forces asso-

ciated with the nodes
F1

F2

� �
and the arc F. This transition is done using the admittance

matrix ½Y � ¼ ½k� that allows the expression of the behaviour law of the spring F ¼ kDl.

For the electric resistance, we associate the voltage vector with the nodes
V1

V2

� �
.

The incidence matrix applied to the nodes provides the voltage of the resistance

U ¼ V1 � V2. The transition to the dual spaces corresponds to current associated with

the nodes
I1
I2

� �
and the arc I. This transition is done using the admittance matrix

½Y � ¼ ½1=R� that allows the expression of the behaviour law of the electric resistance

I ¼ ð1=RÞU .

2.2. MGS language: Topological collections and transformations

As a language allowing the application of the KBR topological graph, we used the
MGS that embedded the concept of topological collections and their transformations
into the framework of a simple dynamically typed functional language.

A topological collection is a collection in which the structure is captured by a
neighbourhood relationship among the data. In other words, from providing one of the
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elements in the collection, we can provide all the other data that are directly related.
The organisation of a topological collection is founded on a cellular complex, where
the values are associated with each cell. A cellular complex is made of elements of
various dimensions called topological cells of dimension n or n-cells (0-cells represent
vertices, 1-cells represent edges, 2-cells represent faces …). These basic elements are
organised following the incidence relationship that relies on the notion of boundary: let
c1 and c2 be, respectively, an n1 -cell and an n2 -cell with n1hn2; if n1 ¼ n2 � 1; c1 is
called a face of c2, and c2 is a co-face of c1.

Transformations (paths, functions defined by case, patches …) are functions operat-
ing on the topological collections. They are defined by a set of rewritten rules of the
form m ) e. The left-hand part of the rule is called pattern and the right-hand part is
the expression that replaces the instances of m.

The application of a transformation to a collection is as follows: a number of
non-intersecting occurrences of the first pattern are selected and then replaced with the
appropriate element calculated from the corresponding expression. When we cannot find
a new instance of the first pattern, we select a number of non-intersecting occurrences

Figure 3. The KBR topological graph based on the converse analogy in the case of a tension
spring and an electric resistance.
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of the second pattern among the elements that haven’t been selected yet, and so on.
When this process is finished, we replace the selected elements by the new
corresponding elements and the new collection is thus created.

3. A case study: piezoelectric structure

3.1. Theory of piezoelectric structure

3.1.1. Piezoelectric converse and direct effect

Piezoelectricity is the property of some materials that become electrically charged, when
subjected to a mechanical stress. This behaviour, which is spontaneous, is due to the
crystal structure. Indeed, when a mechanical action is applied to a piezoelectric volume,
an electric dipole appears in each crystal unit cell due to the displacement of the centres
of the positive and negative charges. Electrostatic balance being broken, a polarisation
appears: this is the piezoelectric direct effect as shown in Figure 4(a). There is also a
converse effect: a piezoelectric material subjected to an electric field undergoes a
mechanical deformation as illustrated in Figure 4(b).

3.1.2. Piezoelectric equations

For linear piezoelectric materials simultaneously submitted to a mechanical deformation
process and an electrical polarisation process, the constitutive equations are written in
matrix form as follows (IEEE standard of piezoelectricity, 1988):

frg ¼ ½cE�feg � ½e�TfEg
fDg ¼ ½e�feg � ½2S �fEg

�
ð1Þ

where frg ¼ fr11r22r33r23r13r12g: Stress vector N=m2, feg ¼ fe11e22e33e23e13e12g:
Strain vector ðm=mÞ, fEg ¼ fE1E2E3g: Vector of applied electric field ðV=mÞ;
fDg ¼ fD1D2D3g: Vector of electric displacement ðC=m2Þ ½cE�: Mechanical stiffness
matrix for a constant electric field ðPaÞ; ½e�: Piezoelectric coupling coefficients matrix

ðN=m=VÞ, ½e�T is the transposed, ½2S �: Dielectric constant matrix for constant mechani-
cal strain ðF=mÞ:

3.1.3. The main piezoelectric coupling modes

There are various vibration modes of a piezoelectric structure. Figure 5 illustrates
the main coupling modes in the case of a rectangular bar of a piezoelectric ceramic. In

(a)

(b)

Figure 4. Piezoelectric effect. (a) Direct piezoelectric effect, (b) Converse piezoelectric effect.
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general, a piezoelectric ceramic is referenced by a Cartesian reference triad
ðO; x1; x2; x3Þ. Conventionally, the displacement and the direction of polarisation are
coincident with the axis 3.

• The longitudinal mode (mode 33) results in a change in length along the axis 3,
when an electric field is applied along the same axis by means of electrodes
placed on the sides perpendicular to this axis,

• The transverse mode (mode 31 or 32) leads to a change in length along the axis
3, when an electric field is applied along the axis 2 or 1,

• The shear mode (mode 15) leads to shear deformation around the axis 2, when
an electric field is applied along the axis 3.

The longitudinal mode is the most interesting in terms of coupling and should be
favoured whenever it is possible.

3.2. Example 1: Multi layer piezoelectric stack

3.2.1. Description

Multi layer piezoelectric stack is obtained by a stack of piezoelectric ceramic isolated
from each other but electrically connected in parallel in an adequate armature. The
polarisation direction of each element is parallel to the direction in which the elongation
and/or the force must be developed (Figure 6(a)).

(a) (b) (c)

Figure 5. The different coupling modes of a rectangular piezoelectric bar (a) The longitudinal
mode (b) The transverse mode (c) The shear mode.

(a) (b)

Figure 6. (a) Multi layer piezoelectric stack (b) Piezoelectric stack element.
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When we apply a voltage U across the electrodes, each piezoelectric stack element
lies down along the polarisation direction. That is to say, we are interested in mode 33.
Then, the behaviour law for a piezoelectric stack element can be written in a matrix
form as follows:

r3i

D3i

� �
¼ CE

33i �e33i
e33i 233i

� �
e3i
E3i

� �
ð2Þ

where i ¼ 0 ::: n and n is the number of the piezoelectric stack element.
For small deformations, the electric field vector E3i can be simply expressed as a

function of Ui:

E3i=Ui/Li, where Li presents the length of a piezoelectric stack element.

We assume a static regime, that is to say that changes in external forces Fi to the
piezoelectric stack element are practically null, and so the dynamic effects are
neglected. Then, the vector stress is given by the following:

Fi ¼
R R

Air3idAi ¼ r3iAi ¼) r3i ¼ Fi=Ai, where Ai is the cross-sectional area of the
piezoelectric stack element.

The electric charge in a piezoelectric element is given by Qi ¼
R R

AiD3idAi ¼ D3iAi

On the other hand, Ii ¼ dQi=dt then Ii ¼ dðAi D3iÞ=dt ¼ p Ai D3i (Where p is the
Laplace variable)

Thus, we can write the piezoelectric behaviour law for a piezoelectric stack element
as follows:

Ii
Fi

� �
¼ ðpAiÞ=Li 0

0 Ai=Li

� � 233i e33i
�e33i CE

33i

� �
DUi

DLi

� �
ð3Þ

We note: ½K�piezi ¼
ðpAiÞ=Li 0

0 Ai=Li

� � 233i e33i
�e33i CE

33i

� �

3.2.2. Topological graph KBR

3.2.2.1. For a piezoelectric stack element. The linear graph corresponding to a piezo-
electric stack element is shown in Figure 7. The incidence matrix associated with this
graph is as follows: ½C� ¼ ½1� 1�.

For this topological structure the vector f�PPi

���!gpiez ¼
ZPi

VPi

� �
; i ¼ 1; 2 is associated

with the nodes where Zi and Vi, respectively, represent the displacement along the Z

axis and voltage of the node Pi ði ¼ 1; 2Þ. The incidence matrix applied to these nodes

provides the voltage Ve1 ¼ V1 � V2 and the displacement Ze1 ¼ ZP1 � ZP2 of the

Figure 7. Linear graph of a piezoelectric stack element.
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piezoelectric stack element f�e1gpiez ¼
Ve1

Ze1

� �
. The transition to the dual space

corresponds to the force and the current associated with the nodes and the arc

f se1�!gpiez ¼
Ie1
Fe1

� �
. By adding the behaviour law linking the two dual spaces (equation

(3)), we obtain the KBR topological graph for a piezoelectric stack element (Figure 8).

3.2.2.2. For a piezoelectric stack with n elements. The linear graph corresponding to a
multi layer piezoelectric stack with n piezoelectric stack element is made up by nþ 1
nodes and n arcs (Figure 9(a)). The incidence matrix associated with this graph is given
in Figure 9(b).

Relying on the KBR topological graph of a piezoelectric stack element, we
determine the one corresponding to the piezoelectric stack with n elements (Figure 10).

Figure 8. KBR topological graph for a piezoelectric stack element.

(a) (b)

Figure 9. Multi layer piezoelectric stack (a) linear graph (b) incidence matrix.
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3.2.3. MGS Modelling

3.2.3.1. For a piezoelectric stack element. First, we begin with the definition of the cells
representing the piezoelectric stack element. We use only cells of dimensions 0 and 1.

• 0-cells represent the nodes noted P1 and P2.

• 1-cells can represent:

(a) The piezoelectric stack element noted ep1
(b) The two electrical grounds noted em1 and em2 (the two nodes are connected

to the electrical ground)
(c) The frame noted eb1

The 1-cells representing the piezoelectric stack element differ from those represent-
ing the frame and the electrical ground in that they are bounded by two nodes. Then,
we define the functions of the piezoelectric variables and, we associate them with the
corresponding k-cells. Finally, we generate the system of equations of the piezoelectric
stack elements, taking into account that this system should be written in a format that is
executable by other software. In our case, the equations are written in MODELICA

Figure 10. KBR topological graph for a piezoelectric stack with n elements.
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format, and we use Dymola as a solver. The generation of the system of equations is
done by sweeping all the cells and by defining the local behaviour law of each cell.

• For 0-cells, we have
PN

j¼1 Fj
!¼ 0

!
and / or

PN
j¼1 Ij ¼ 0 Where Fj

!
and Ij,

respectively, represent the normal force and the electric current of each arc
connected to the isolated node and N the number of concurrent arcs to the node.

• For 1-cells, they can present (i and j denote the ends of the arc)

(a) The piezoelectric stack element in this case, we have

Fi
!þ Fj

!¼ 0
!

Ii þ Ij ¼ 0

�Ppiez
���! ¼ ½K�piezspiez e

���!
8><
>:

(b) The frame, in this case, we have Fi
!þ Fj

!¼ 0
!

(c) The electrical ground, in this case we have Ii þ Ij ¼ 0

3.2.3.2. For a multilayer piezoelectric stack. The modelling steps are the same as a pie-
zoelectric stack element (Figure 11). The only difference is at the level of the declara-
tion of the cells representing the studied multilayer piezoelectric stack because this step
depends on the number of the stack elements (topological structure).

Figure 11. Modeling principal steps of a piezoelectric stack element using MGS language.
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3.2.4. A Particular case and numerical results

Considering a simple case of a piezoelectric stack consisting of three-layers of thickness
e ¼ 0:02m and section A ¼ 0:25E� 5m2. The piezoelectric material properties are
(Boucher, Lagier, & Maerfeld, 1981): CE

33 ¼ 11:5 1010N=m2, e33 ¼ 14:1 C=m2

233¼ 5:838345 10�9 F=m.
In order to validate the results obtained using the concept of topological collections

and transformations, we compare the results obtained by the MGS language and those
obtained by ANSYS. SOLID 5 is taken from the ANSYS library as a finite element.
The nodes of this element have six degrees of freedom which are the displacements
along the axes x, y, z, the intensity of the electric potential, the intensity of the magnetic
field and temperature. So this is a multi-field element. Since we are discussing the linear
piezoelectricity, the displacements and electric potential are of interest for us.

Tables 1 and 2 show the different results using the MGS as well as those obtained
by ANSYS for U ¼ 1000V.

The results obtained by the MGS language based on topological collections and
transformations are very close to those obtained by the ANSYS software based on the
finite element method.

We can also notice that the total elongation of the piezoelectric stack is equal to
3� 0:12261E � 06.

Where 3 represents the number of the piezoelectric elements and 0:12261E � 06
represents the elongation of one of the piezoelectric stack element.

Indeed, we can write the behaviour law of a piezoelectric stack consisting of n
piezoelectric elements having the same physical and geometrical properties as follows:

Istack
Fstack

� �
¼ ðpAÞ=L 0

0 A=L

� �
n 233 e33
�e33 ð1=nÞCE

33

� �
DUstack

DLstack

� �
ð4Þ

We note: ½K�stack ¼
ðpAÞ=L 0

0 A=L

� �
n 233 e33
�e33 ð1=nÞCE

33

� �
where A and L, respectively, represent the cross-sectional area and length of a
piezoelectric stack element and n the number of the piezoelectric stack elements.

Table 2. Displacement of the nodes (m).

MGS ANSYS

P1 0 0
P2 �.122609E�06 �.12261E�06
P3 �.245217E�06 �.24522E�06
P4 �.367826E�06 �.36783E�06

Table 1. Electric current at the arcs (A).

MGS ANSYS

e1 .946236E�08 .946236E�08
e2 .946236E�08 .946236E�08
e3 .946236E�08 .946236E�08
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3.3. Example 2:Planar piezoelectric truss structure

3.3.1. Description

We consider a two-dimensional three bar truss structure articulated to a rigid support in
P1, P2 and P3 as shown in Figure 12. This truss has only one piezoelectric bar which is
bar 2. We consider that the piezoelectric bar is a multi-layer piezoelectric stack having
the same geometrical and physical properties of the one used in the previous example.

3.3.2. KBR topological graph

The linear graph corresponding to the three-bar piezoelectric truss element is made up
by 4 nodes and 3 arcs (Figure 13(a)). The incidence matrix associated with this graph
is given in Figure 13(b).

After determining the KBR topological graph for a bar element in tension/
compression (Miladi Chaabane et al., 2012) (Figure 14(b)) and that of a multilayer
piezoelectric stack (Figure 14(a)), we determine the KBR topological graph for the
three-bar piezoelectric truss given in Figure 14(c).

Figure 12. The three-bar piezoelectric truss.

(a) (b)

Figure 13. The three-bar piezoelectric truss (a) linear graph (b) incidence matrix.
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3.3.3. MGS Modelling

The modelling steps of the three-bar piezoelectric truss are presented in Figure 15. First,
we begin with the definition of the cells representing the piezoelectric truss structure.

• 0-cells represent the nodes noted P0, P1, P2 and P3.

• 1-cells can represent:

(a) The piezoelectric bar noted ep2
(b) The two bars noted e1 and e3
(c) The two electrical ground noted em1 and em2 (the two nodes P0 and P2 are

linked to the electrical ground)
(d) The three frames noted eb1, eb2 and eb3 (the three nodes P1, P2 and P3 are

linked to a rigid support).

(a) (b)

(c)

Figure 14. KBR topological graph of the three-bar piezoelectric truss.
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Then, in addition to the function of the piezoelectric variables, we add the function
of the mechanical variables and we associate them to the corresponding k-cells. Finally,
we generate the system of equations of the piezoelectric stack element, taking into
account that the latter should be written in a format executable by other software. In
our case, the equations are written in MODELICA format, and we use Dymola as a sol-
ver. The generation of the system of equations is done by sweeping all the cells and
defining the local behaviour law of each cell. Compared with the piezoelectric stack,
we add the local behaviour law for a bar element (Miladi Chaabane et al., 2012):

Fi
!þ Fj

!¼ 0
!

DP
�! ¼ ½K�bar se!

(
Where ½K�bar ¼ ½ðEAÞ=L� c2 cs

cs s2

� �
(L: length of the bar, A: the

cross-sectional area of the bar, E: the Young’s modulus of the bar,
c ¼ cosðhÞ; s ¼ sinðhÞ).

3.3.4. Numerical results

The two bars noted bar 1 and bar 3 are identical:
Young’s modulus: E1 ¼ E3 ¼ 200GPa; cross sectional area: A1 ¼ A3 ¼ 2:5E � 5m2

and length L1 ¼ L3 ¼ 0:12m.
For the piezoelectric bar, we have the same geometrical and physical parameters of

the piezoelectric stack previously used.

Figure 15. Modeling principal steps of the three-bar piezoelectric truss structure using the MGS
language.

European Journal of Computational Mechanics 223



We studied the direct piezoelectric effect and the converse piezoelectric effect.

• The direct piezoelectric effect: the truss is subjected to a force F ¼ 1000N
applied to the node P0. This force implies a deformation of the three bars. Then,
the piezoelectric bar is an electrically polarised (Figure 16(a)).

Figure 16. Piezoelectric effect of the three-bar piezoelectric truss (a) Direct piezoelectric effect
(b) Converse piezoelectric effect.

(a) (b) (c)

Figure 17. (a) SOLID5 Geometry (b) LINK8 Geometry (c) Three-bar piezoelectric truss
structure.

Table 3. Electric current at the piezoelectric stack (A).

MGS ANSYS

bar2 .2635443E�7 .2635428E�07
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• The converse piezoelectric effect: the truss is not subject to any external force.
The piezoelectric bar is subjected to a voltage U ¼ 1000V (Figure 16(b)).

In order to validate the results obtained using the concept of topological collections
and transformations, we compare the results obtained by the MGS language to those
obtained by ANSYS. As a finite element, from the library of ANSYS, the element
SOLID 5 is taken for the piezoelectric bar 2, and LINK 8 is taken for the two bars
noted bar 1 and bar 3 (Figure 17).

• For the converse piezoelectric effect (U ¼ 1000V ): Tables 3–5, respectively,
represent the electric current at the piezoelectric stack, the displacement of the node
P0 along the z direction and the support reactions obtained using the MGS language
as well as those obtained by the software of the finite element method ANSYS.

Table 4. Displacement of the node P0 (m) along the z direction.

MGS ANSYS

P0 .252498E�6 .25250–6

Table 5. Support reactions (N).

MGS ANSYS

P1 ½4:78472 2:76307� ½4:7847 2:7631�
P2 ½0 � 5:52615� ½:177639E � 14 � 5:5261�
P3 ½�4:78472 2:76307� ½�4:7847 2:7631�

Table 6. Electric current at the piezoelectric stack (A).

MGS ANSYS

bar2 .252498�06 .2524998E�06

Table 7. Displacement of the node P0 (m) along the z direction.

ANSYS MGS

P0 .143261E�4 .14326E�4

Table 8. Support reactions (N).

MGS ANSYS

P1 [271.474 �156.77] [271.47 �156.77]
P2 [0 �686.46] [.156323E�12 �686.46]
P3 [�271.474 �156.77] [�271.47 �156.77]
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• For the direct piezoelectric effect (F ¼ 1000N ): Tables 6–8, respectively, represent
the electric current at the piezoelectric stack, the Displacement of the node P0

along the z direction and the support reactions obtained using the MGS language
as well as those obtained by the software of the finite element method ANSYS.

The results obtained by the MGS language based on topological collections and
transformations are very close to those obtained by the software ANSYS based on the
finite element method.

4. Conclusion

In this study, we presented a new topological approach for the modelling of mecatronic
systems on the basis of topological collections and transformations. This approach was
applied in the case of piezoelectric actuator stack and the case of piezoelectric truss
structure. The results are validated using the software of the finite element analysis
ANSYS.

The major advantage of this approach is the separation of the topology (interconnec-
tion law) and the behaviour laws (physics) of the studied system, which allows the
formation of generic models. Therefore, we can create an MGS library by defining the
local behaviour laws of the different fields of mecatronics.

The perspective of this study is the application of this topological approach for the
modelling of more complex systems (multi-physics: mechanical, electrical, hydraulic,
thermal …).
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