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The drilling of deep holes with small diameters remains an unsatisfactory
technology, since its productivity is rather limited. The main limit to an increase in
productivity is directly related to the poor chip evacuation, which induces frequent
tool breakage and poor surface quality. Retreat cycles and lubrication are common
industrial solutions, but they induce productivity and environmental drawbacks. An
alternative response to the chip evacuation problem is the use of a vibratory drilling
head, which enables the chips to be fragmented thanks to the axial self-excited vibra-
tion. Contrary to conventional machining processes, axial drilling instability is
sought, thanks to an adjustment of head design parameters and appropriate condi-
tions of use. In this paper, self-vibratory cutting conditions are established through a
specific stability lobes diagram. A dynamic high-speed spindle/drilling head/tool sys-
tem model is elaborated on the basis of rotor dynamics predictions. The model-based
tool tip Frequency Response Function (FRF) is integrated into an analytical stability
approach. The torsional-axial coupling of the twist drill is investigated and conse-
quences on drilling instability are established.
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1. Introduction

The drilling of deep, small-diameter holes is an unsatisfactory machining operation that
results in poor surface quality and low productivity. These drawbacks are mainly related
to difficulties in evacuating the chips through the drill flute during the cut. Non-produc-
tive retreat cycles and the use of high-pressure lubrication are the current industrial
solutions used to evacuate chips but present, respectively, productivity and environmen-
tal problems. New drilling techniques have emerged, based on the tool’s axial vibration,
in order to fragment the chips and enhance their evacuation without the need for Iubri-
cants and retreat cycles. The two major technologies are:

® Vibration-assisted drilling technologies, based on forced excitations generated by
a specific system implemented in the tool holder.

® Self-vibratory drilling technology, which uses the cutting energy to generate tool
axial vibration (Guibert, Paris, & Rech, 2008). A specific self-vibratory drilling
head (SVDH) excites low-energy chatter vibration for specific process parameters
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by using a combination of a low-rigidity axial spring and an additional mass
located between the spindle and the tool. The self-excited vibrations must be
tuned and controlled in order to have a magnitude greater than the feed per tooth,
which enables the fragmentation of the chips without external adjunction of
energy.

In this paper an original approach to establishing accurate stability lobes diagram in
self-excited drilling operations is proposed. The predicted speed-dependent transfer
function of the overall system, composed of spindle-SVDH-twist drill, is then integrated
into an analytical chatter vibration stability approach to calculate the associated dynamic
stability lobes diagram.

In the second section, the spindle-SVDH rotor dynamics model is presented. A spe-
cial rotor-beam element, developed in a corotational reference frame (Gagnol et al,
2007a) is implemented. The rolling bearing stiffness matrices are calculated around a
static function point on the basis of T.C Lim’s formulation (Lim & Singh, 1990) and
then integrated into the global finite element model. The rotating system is derived
using Timoshenko beam theory. The identification of contact dynamics in tool-SVDH-
spindle assemblies is carried out using the receptance coupling method on the basis of
experimental substructure characterisation (Forestier, Gagnol, Ray, & Paris, 2011). The
identified models are then integrated into the global spindle-SVDH-tool model.

In Section 3, a generic accurate drilling force model is developed by taking into
account the drill geometry, cutting parameters and effect of torsion on the thrust force.
Section 4 is dedicated to the prediction of adequate drilling conditions based on con-
trolled self-excited drill vibration. A specific instability lobes diagram is elaborated by
integrating into an analytical stability analysis the overall structural model-based tool tip
Frequency Response Function (FRF) of the system associated with the proposed drilling
force model. Investigations are focused on the drill’s torsional-axial coupling role on
instability predictions. Finally, a conclusion is presented.

2. Model building

The vibratory drilling system is composed of a SVDH body clamped to the spindle by a
standard HSK63A tool-holder interface. A SVDH vibrating subsystem is jointed to the
SVDH body using a specific spring, and axially guided by a ball retainer. Finally, a long
drill is held in the SVDH vibrating subsystem with a standard ER25 collet chuck. The
SVDH system is mounted on a spindle capable of speeds up to 15,500 rpm. The spindle
has four angular bearings in overall back-to-back configuration (Figure 1). The spindle-
SVDH-tool system is composed of four structural subsystems: the drill, the SVDH
vibrating subsystem, the SVDH body and the spindle.

2.1. Structural elements

The model for the spindle-SVDH-tool system is restricted to the rotating structure com-
posed of the spindle shaft, the SVDH and the drill. This hypothesis was established by
an experimental modal identification procedure carried out on spindle substructure ele-
ments (Gagnol et al., 2007b). The motion of the rotating structure is considered as the
superposition of rigid and elastic body displacements (Figure 2). Dynamic equations
were obtained using Lagrange formulation associated with a finite element method.
Due to the size of the rotor sections, shear deformations had to be taken into account.
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Figure 1. The spindle-SVDH-tool system.
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Figure 2. Reference frames used: (a) differential section kinematics and (b) beam element
degrees of freedom.

Then, the rotating substructure was built using Timoshenko beam theory. The relevant
shape functions were cubic in order to avoid shear-locking. A special three-dimensional
rotor-beam element with two nodes and six degrees of freedom per node was developed
in the corotational reference frame.
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The damping model used draws on Rayleigh viscous equivalent damping, which
makes it possible to regard the damping matrix D as a linear combination of the mass
matrix M and the spindle rigidity matrix K:

D =K + M (1)

where o and f are damping coefficients.
The set of differential equations can be written as follows:

Mg, + (2QG + D)4, + (K — Q*N)q, = F(?) (2)

where M and K are the mass and stiffness matrices, D is the viscous equivalent damp-
ing matrix, q, and F(z) are the nodal displacement and force vectors. G and N are,
respectively, representative of gyroscopic and spin softening effects. Q is the rotor’s
angular velocity.

2.2. Modelling angular contact ball bearings

The rotating system is supported by four (two front and two rear) hybrid angular con-
tact bearings. The rolling bearings stiffness matrices were calculated using in-house
software developed on the basis of T.C Lim’s formulation (Lim & Singh, 1990). The
bearing stiffness model represents the load-displacement relation combined with the
Hertzian contact stress principle and is calculated around a static function point char-
acterised by the bearings preload. Based on Rantatalo’s prediction (Rantalalo, Aid-
anpaa, Goransson, & Norman, 2007), the initially calculated bearing stiffness is
spindle speed-dependent because of the gyroscopic and centrifugal force Fe, which
acts on each ball (Figure 3(a)). As the speed increased, the load conditions between
the balls and the rings in the bearing changed because of the centrifugal force
(Figure 3(a)). Then, speed-dependent bearing stiffness was integrated into the global
spindle FEM and influenced the natural frequencies of the spindle-SVDH-tool unit
under consideration.

:
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Figure 3. Bearing stiffness variation depending on spindle speed.
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2.3. Modelling of spindle-SVDH-tool interfaces

The dynamic behaviour of the interfaces represented by the HSK63 taper, spring and
ball retainer, and collet chuck are taken into account (Figure 1). The identification pro-
cedure of the interface models was carried out by Forestier (Forestier et al., 2011) based
on the receptance coupling method and then integrated into the model as illustrated in
Figure 4.

The axial dynamic behaviour of the interface is modelled by a spring-damper ele-
ment whose transfer function is:

1

[—]inwrﬁwe(g) = m

(3)

The rigidity k£ and damping ¢ values were determined by minimising the gap between
the measured and the modelled tool tip node frequency response function for a non-rotat-
ing spindle, using an optimisation routine and a least-squares type object function.

2.3.1. Model assembly and experimental validation

As in a classic finite element procedure, dynamic equations of the overall system, com-
posed of the drill, the SVDH vibrating subsystems, the SVDH body and the spindle,
were obtained by assembling element matrices. Matrices and vectors for each individual
element are formed first and then linked together into a set of system equations. The
spring-damper connection parameters between the drill and the SVDH vibrating subsys-
tems and between the SVDH vibrating subsystems and SVDH body, identified by the
receptance coupling method, enabled the rotor-beam models of the components to be
assembled. The rolling bearing model imposes the boundary conditions of the system.

The spindle-SVDH-tool assembled model was validated by comparison between
numerical and experimental FRF, as shown in Figure 5.

Figure 5 represents experimental and numerical axial FRF of the assembled system.
The 60 and 4700 Hz modes are, respectively, due to the spring-ball retainer and collet
chuck interfaces determined in the previous subsystem identification procedure. Some
parasitical experimental bending modes at 193, 1237 and 2433 Hz are present in the
experimental FRF.

A good correspondence between the numerical and experimental axial FRF curves
enabled the numerical model to be used for further investigations.
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Figure 4. The spindle-SVDH-tool System Finite Element Model.
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Figure 5. Numerical vs. experimental system axial FRF.

3. Drilling force model

The energy required to maintain the self-excited vibration is provided by the cutting
forces. These excite both the SVDH and the flexible low-diameter drill. The combina-
tion of rigid body motion and dynamic displacements of the drill induces mainly tor-
sional and axial vibrations.

Several force models have been proposed in the literature for the primary cutting
edge presented in Figure 4 in zone 1. Both geometrical parameters and cutting pressures
change greatly along the cutting lip of the twist drill (Roukema & Altintas, 2006). Each
cutting lip can be thought of as being composed of a number of small differential seg-
ments. The elementary tangential force dFt is perpendicular to the cutting edge and the
axial force dFz is in the drill axial direction. The cutting forces, axial forces and torque
applied to the drill are evaluated by summing the elementary forces and torques acting
on the basic elements of the edge of the drill and are expressed as a function of chip
thickness /# and width b.

Following Tlusty (1985) and Stephenson and Agapiou (1992), the net variations in
the time-varying part of tangential and thrust forces at the drill tip are assumed to be
proportional to the chip area. The influence of the ploughing effect and the effect of the
chisel edge are not taken into account in the proposed cutting force model. Hence, the
thrust force, the axial force and the torque at the tool tip are, respectively:

F, = ZdF, = —K,bh
F, = ZdFZ = —K;bh (4)
M; =25 dF, x r(z) = —K,bhR,,
where R,, is the average radius of the cutting force, 4 is the chip thickness and b is
the radial depth of cut (drill diameter minus pilot hole diameter, if there is a pilot

hole). K. and K; are the average cutting pressures in the axial and tangential
directions, respectively.
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3.1. Torsional-axial coupling

The development of a torsional-axial vibration model (Bayly and Metzer 2001) was a
major milestone in understanding chatter in machining using a twist drill. The torsional-
axial theory of Bayly is based on the fact that when a twist drill “untwists”, it extends
in length (Figure 5).

Twisting and axial deformations are coupled. Accordingly, the second member of
Equation (2) becomes:

F(t) x Z=—F.(t) — (0)My(2) (5)

The 0 term represents a torsional-axial coupling parameter, since it relates the
applied torque to drill axial excitation. It is determined by FEM analysis (Figure 5(b)).
The coupling is negative, since when the drill twists in -z resulting from the negative
cutting torque it also extends in+z which results in a negative axial force contribution.
According to Equation (3), Equation (4) can be rewritten as follows:

(a)

1 Rav |
Zone 2 and 3! : I
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—
. \
/ _dr,

Figure 6. Drill geometry, elementary forces.
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K
F(t) xZ=hx b x K, x o with azfﬁwae (6)

t

K. and K, are identified through experimental drilling characterisation (Guibert et al.
2008), and the coupling term R0 by finite element modelling of the drill. In our case,
using a carbide drill of 5mm diameter, the helix angle is 30° and the material to be
machined is 35MnV7. The identification of terms R,0 and o is, respectively, .45
and .39.

4. Stability prediction

Torsional-axial coupling in the drill and SVDH vibration provide a mechanism for tor-
sional-axial chatter. The torsional vibrations lead to the shortening and lengthening of
the drill, which results in a wavy surface of the bottom of the hole. The main difficulty
of vibratory drilling is to foresee the cutting conditions that will generate regular vibra-
tions able to induce interrupted cutting. In this study, the drilling operation is considered

(a)

==
T 1

(b)

&

Figure 7. (a) Dynamic model of drill bit (b) Finite element model of the drill.
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as having one degree of freedom in thrust force, taking into account the torsion effect
in this direction (Figure 7). The analytical method allows the stability of system to be
investigated from the study of the chip thickness (Figure 8(a)). The regenerative chatter
of system can be presented by the block diagram shown in Figure 8(b).

The cutting forces and coupling term, Equation (5), are substituted into Equation (2)
for motion in the drill’s axial direction:

(Mdy + (2QG + D)q, + (K — Q’N)qy) x Z = aK,b(Z(t) — Z(t — 1)) (7)

The chip thickness, due to regenerative displacement, is expressed in the Laplace
domain:

h(s) =f: + Z(s) — Z(s)e™" (8)

where f. is the feed rate per tooth and T is the tooth period. Z(s) is the axial tool tip
displacement.

The stability diagram is obtained by integrating the numerical-predicted axial tool
tip frequency response into the chatter stability approaches. The axial transfer function
H(jw) representing the ratio between the Fourier transform of the axial displacement
Z(jw) at the tool tip and the axial dynamic cutting force F(jw) is expressed as follows:

H(jo) = 1);((]1(:)0)) = inv(—Ma? + (2QG + D)o + (K — @°N)) 9)

H(jo) = R(w) +jI(w) where R and I are, respectively, the real part and the imagi-
nary part of the transfer function. They depend on the adjustable parameter of the
SVDH, i.e. the axial spring rigidity and the additional SVDH mass.

For a given axial SVDH rigidity or SVDH mass, the chip thickness can be
expressed as follows:

(a)
(b) Chip thickness Cutting Force
fem' :f, Surface h(t) Cutting Force F.() Dynamic n
Generation Model of System
Inner Modulation : Z(»)
2D Delay : T

Figure 8. (a) dynamic chip thickness (b) block diagram of chatter dynamics.
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hs) =17 oK.DZ(R(s) + il (s))(1 — e T)
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(10)

The resulting stability relationships (Equations (9) and (10)) are obtained, at the
stability limit: s = iw., by annulling, respectively, the real part and the imaginary part
of Equation (8)’s denominator.

(a)
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Figure 9.
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The stability limit, integrating drill torsional-axial vibration, can be established:

-1
Dy, =
! o x K, X2 xR(w)

(13)

where R(w) is the real part of the global system (Spindle-SVDH-drill) transfer function.
a is the torsional-axial coupling term (Equation (5)). The stiffness and mobile mass of
the SVDH are adjustable and require tuning to optimise the process. The stability lobes
in a drilling operation can be established (Figure 9).

Figure 9(a) represents the computed stability diagrams in the plane of spindle speed
and SVDH stiffness. It can be noticed that the torsional-axial coupling effect influences
the instability of the process, depending on SVDH rigidity. Figure 9(b) represents stabil-
ity predictions in the plane of spindle speed and drill diameter. It is established for
SVDH rigidity of up to 1.2¢7 Nm, where the operating domain representative of self-
excited vibrations is increased. For a drilling operation with a Smm diameter drill, the
maximum spindle speed is increased from 16,800 to 19,500 rpm by taking into account
the torsional-axial coupling of the drill.

5. Conclusion

The use of SVDH to drill small-diameter deep holes enables productivity to be
improved by eliminating the retreat cycles. The main difficulty is to choose the ade-
quate cutting parameters to obtain self-excited vibrations that enable the fragmentation
of the chips. To achieve this goal, a dynamic model of the global system composed of
spindle-SVDH-tool is developed. The structural components of the system were mod-
elled using a specific rotor-beam element, taking into account the speed-dependent
gyroscopic effects and centrifugal forces. The interface models were identified by the
receptance coupling method and then integrated into the global spindle-SVDH-tool
model.

Adequate cutting conditions are determined by integrating the model-based tool tip
transfer function into an analytical chatter vibration stability approach. Specific stability
lobe diagrams are elaborated, taking into account the effective dynamic properties of
the studied system. The torsional-axial coupling of the twist drill is modelled based on
Bayly’s approach and integrated into the overall system dynamics in order to investigate
drilling stability. The stability lobes established indicate modifications of self-excited
operating zones, allowing increased drilling operation productivity for specifics combi-
nations of SVDH rigidity and mass. Taking into account the torsional-axial coupling of
the drill allows refining the stability prediction of the global system during a drilling
operation.
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