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It is well acknowledged that Fatigue Crack Growth (FCG) process is one of the
main processes that can produce failure of structures and mechanical components.
To ensure the survival of these components a maintenance inspection schedule is
needed. The aim of this study is to develop a predicting inspection time model for
structural FCG life based on updating reliability analysis. The proposed approach
takes into account the additional information generated by the previous inspection
results. First-order reliability method and surface response method are used to evalu-
ate the reliability. The uncertainties such as material parameters and geometrical
parameters that affect the lifespan of the structure were regarded as random vari-
ables. Updating reliability assessment based on Bayesian approach was introduced to
determine the updating inspection time for target reliability. Moreover, the proposed
approach leads to determine the optimal inspection time strategy based on an eco-
nomic study under the minimal total inspection and detecting costs using a dynamic
method. The optimal inspection time for a single and two inspections was deter-
mined. A generalisation of this method is carried out for the case of multiple inspec-
tions. In order to illustrate and validate this method two applications are carried out:
the first one is applied to the crack growth in mode I, and the second one is applied
to the crack growth in mixed mode. The results of these applications are in good
agreement with the physical results and show that the proposed method is proved to
be feasible and applicable in the general complex fatigue loading and able to give
accurate updating framework for scheduling inspections.

Keywords: fatigue crack growth; inspection scheduling; updating reliability; First-
order reliability method; response surface; optimisation

1. Introduction

Mechanical parts are generally subjected to a repetitive loads that are often complex.
For a better secure design, practical computation of fatigue behaviour of mechanical
components, used in automotive, aerospace, naval structures, nuclear plants is much
needed. In structural design, fatigue and damage tolerance analysis have become the
most important task for the designers. Two different stages can be considered during
the structure fatigue life they are usually decomposed into: (i) a crack initiation period
including some micro-crack growth, where the prediction of the high cycle fatigue

*Corresponding author. Email: eltaiefmaher@yahoo.fr

European Journal of Computational Mechanics, 2013
Vol. 22, Nos. 2–4, 132–156, http://dx.doi.org/10.1080/17797179.2013.820899

� 2013 Taylor & Francis



(HCF) behaviour of a mechanical component is carried out, in the majority of cases, by
deterministic multiaxial HCF criteria (Papadopoulos IV, Davol, Gorla, Filippini, &
Bernasconi, 1997) and (ii) crack growth period, where the crack is growing until com-
plete failure and the prediction of the Fatigue Crack Growth (FCG) behaviour is carried
out by linear elastic fracture mechanics (LEFM) approach (Gdoutos, 2005).

The large majorities of FCG models are limited to opening mode and neglect the
two other modes, namely, sliding and tearing modes. However, for complex loading, at
which two or more loading axes fluctuate with time all crack modes are activated in
practice the FCG is mainly a mixed mode propagation.

The stress intensity factor based on LEFM is used for predictions on FCG, where
an equivalent stress intensity factor based on energetic method (Destuynder, Djoua, &
Lescure, 1983) and maximal shearing stress is used (Erdogan & Sih, 1963).

The traditional analytical method of engineering fracture mechanics usually assumes
that crack size, stress level, material property and crack growth rate have all determinis-
tic values. However, due to the randomness of all these properties, the FCG is a process
that is naturally considered to be random (Ghonem & Dore, 1987) and requires appro-
priate inspection plan in order to prevent the risk of failure and improve maintenance
strategies.

Considering the development of the reliability fatigue based methods (Cavallini &
Lazzeri, 2007; Fourlaris, Ellwood, & Jones, 2007; Shen, 1999; Wirsching, 1980) taking
into account the scatterings and the significant dispersions related to the used geometri-
cal and material parameters (Webster & Ezeilo, 2001; Yuan, 2007), it seems to be nec-
essary and with substantial benefit to analyse the HCF and FCG behaviour of the
mechanical parts using probabilistic methods.

Several applications dealing with probabilistic FCG (Bea, Doblaré, & Gracia, 1999;
Myötyri, Pulkkienen, & Simola, 2006; Newby, 1987) have been carried out where the
authors highlighted the advantage of using probabilistic approach to analyse the FCG
behaviour of the mechanical parts, but they do not couple reliability and fatigue in their
approach.

Because of the increasing complexity of modern engineering systems, reliability
computation becomes more and more considered as an engineering design way, several
works coupling fatigue reliability assessment leading to useful probabilistic HCF dia-
grams were carried out (Ben Sghaier, Bouraoui, Fathallah, & Hassine, 2007; Zhao &
Ono, 2001).

Different interesting works based on LEFM have been carried out to predict the life-
span of the mechanical part with a probabilistic point of view (Besterfield, Liu, Law-
rence, & Belytschko, 1991; Liu,Chen, Belytschko, & Lua,1996; Lua, Liu, &
Belytschko, 1992; Yu, Purnendu, & Zheng, 2009). More recently few applications
based on coupling FCG reliability assessment have been developed (Leonel, Chateau-
neuf, Venturini, & Bressolette, 2010). These approaches lead to have a reliable fatigue
behaviour of mechanical parts.

For many mechanical structures, such as aircrafts, ships and offshore structures the
crack growth period represents the major part of the total fatigue life. In-service inspec-
tions are often needed to ensure their safety and availability and prevent sudden failure
due to fatigue damage (Nechval, Nechval, Purgailis, & Strelchonok, 2011).

For complex system, it is not easy to identify the failed component upon the failure
of the system. In this case, inspection and resource allocation policies are frequently
adopted (Kulkarni & Achenbach, 2007; Meng, Li, Sha, & Zhou, 2007; Wu & Ni,
2007).
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In the majority of cases, this inspection time strategies are determined according to
probabilistic models without taking into account the additional information deduced
from previous inspect results.

It is worth noticing that too many inspections cause not only the deterioration of
system availability, but also cause an increase in costs. So, it is necessary to provide an
optimal inspection strategy for mechanical structures in order to keep these structures
safety and reduce their inspection costs.

Many works proposed in the literature have been applied to evaluate the inspec-
tion planning time, they use deterministic crack growth approach and propose with
an adequate margin of safety an inspection strategy that is easy to implement. How-
ever, the deterministic approach does not quantify the risk level of an inspection
interval.

In scheduling inspections, in the context of implementing the damage-tolerance
few authors proposed some inspection strategies based on reliability approach (Baker
& Descamps, 1999; Khaleel & Simonen, 2000; Straub & Faber, 2005). Recently,
Tanaka et al. (Tanaka & Toyoda-Makino, 1998) have theoretically investigated the
optimal scheduling of a single inspection based on minimising a cost function. Ran-
dom crack growth is accounted for by the diffusive crack model. This study was later
extended by the authors to the case of scheduling multiple inspections. More recently,
and in order to increase the confidence level of the inspection planning time, results
of previous inspections are used to perform the updating reliability using the colloca-
tion method reliability assessment (Riahi, Bressolette, Chateauneuf, Bouraoui, &
Fathallah, 2011).

During the lifespan of these mechanical components, inspections are required for
the surveillance and monitoring of their state and also to decide on the intervention’s
nature maintenance’s type to be applied to structures (Jiao & Moan, 1990). Several
methods are used to define a maintenance optimal inspection programme; there are
authors who set a failure probability to not be exceeded and choose an optimal mainte-
nance time. Others use an optimal maintenance programme based on the minimum
value of the failure probability in order to ensure the required security (Han, 1999).
Economically, the optimal maintenance programme is defined by minimising the total
cost function (Laggoune, Chateauneuf, & Aissani, 2009). Most of these studies do not
take into account the results of previous inspections of maintenance.

In the present study, a framework for scheduling inspections based on FCG reliabil-
ity assessment is presented. This approach presents the advantage to carry out time
inspection calculation by a more efficient and reliable method that takes into account
the dispersion of the different FCG parameters. Based on the previous inspection
results, the updating reliability is determined and from which a new updating time
inspection is proposed. For illustration, the proposed approach is applied on a centred
crack loaded uniaxially perpendicular to the crack direction leading to an opening crack
growth mode. This analysis will be helpful and easy to implement for modern engineer-
ing systems to optimise, for a given reliability the inspection time under inspection
costs reduction. In this study, a new formulation of the cost function in the case of a
single inspection is developed. It is based on the decision tree and taking into account
the results of previous inspections of maintenance. This formulation is treated in a
sequential mode starting from the initial crack. Optimal inspection time is determined
by minimising the total cost function. The method is then generalised to the case of
two and multiple inspections.

134 M. Eltaief et al.



2. Background

2.1. Fatigue crack growth

2.1.1. Computation of stress intensity factors

Usually, concepts of fracture mechanic based on linear elastic behaviour assumption are
considered to analyse the behaviour of structures subjected to FCG. The fracture can be
described by the use of the stress intensity factors in various modes. This parameter
defines the magnitude of the local stresses around the crack tip and depends on loading,
crack size, crack shape and geometric boundaries. For a simple geometry specimen,
where the fracture follows the opening mode usually named mode I, the stress intensity
factors can be expressed under this general form:

KI ¼ r:FðaÞ: ffiffiffiffiffiffiffi
p:a

p ð1Þ

In engineering practice, where the loading is complex and the structures have a
complex geometry, the defects are randomly oriented, as a consequence, a mixed mode
crack propagation is expected. In this case, the stress intensity factors can not be com-
puted using analytic solution, where several numerical methods have been proposed in
the literature, such as the displacement extrapolation technique (Chan, Tuba, & Wilson,
1970; Guinea, Planas, & Eliccs, 2000), the J-integral method (Parks, 1974) and the G–
h method (Paris & Erdogan, 1963) in which the author compute the strain energy
release rate G, representing the decrease of the total potential energy pc during the
growth Da of the crack:

G ¼ �@pc

@a
¼ �pcðaþ DaÞ � pcðaÞ

Da
ð2Þ

2.1.2. Computation of crack growth direction

Due to a curved followed path during crack propagation, it is necessary to compute the
equivalent stress intensity K Ieq factor in mode I and crack growth angle h0. For this pur-
pose, the maximum circumferential stress criterion (Rackwitz & Fiessler, 1978) is con-
sidered, which yields:

@rhh

@h
¼ 0 and

@2rhh

@h2
\0 ð3Þ

rhh ¼ 2ffiffiffiffiffiffiffi
2pr

p KI 1þ cosðhÞð Þcos h
2

� �
� 3KIIsinðhÞcos h

2

� �� �
ð4Þ

KIeq ¼ KIð1þ cosðhÞÞ cos h
2

� �
� 3KII sinðhÞ cos h

2

� �
ð5Þ

Based on the maximisation of Equation (3) with respect to the crack orientation
angle, the bifurcation angle h0 is obtained by:
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tg
h0
2

� �
¼ 1

4

K I

KII

� �
� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KI

K II

� �2

þ8

s
ð6Þ

2.1.3. Computation of crack growth rate

In fatigue, the crack growth behaviour is, usually, described by the plot of log da
dN

� �
vs.

log DKð Þ where N is the number of loading cycles and ΔK is the stress intensity factor
range. This plot is a sigmoïdal curve and is divided in three regions. Majority of the
current applications of LEFM concepts to describe crack growth behaviour are associ-
ated with the mid-region that is essentially linear.

Paris and Erdogan (1963) proposed an equation which is widely accepted:

da

dN
¼ C DKð Þm ð7Þ

Kmax and Kmin are the value of the stress intensity factor K at the maximum and the
minimum stresses of the loading cycle.

The crack growth life, Nf , may be calculated by integrating the Paris equation:

Nf ¼
Z ac

a0

da

CðDKÞm ð8Þ

2.2. Reliability method

To compute the reliability, one considers a vector of random variables {X} representing
uncertain structural quantities. Let xi be an element of the random vector {X}, with a
probability density function (PDF) fX Xið Þ. A performance function G({X}), separating
the security and the failure fields is written as follows:

GðfXgÞ ¼ SðfXgÞ � LðfXgÞ ð9Þ

where G({X}) = 0 is the limit state function, S({X}) is the strength function and L({X})
is the load function (Lemaire, Chateauneuf, & Mitteau, 2005; Zhao & Ono, 2001). The
probability of failure Pf is given by:

Pf ¼
Z
GðX Þ�0

f X ðx1; x2; . . . ; xnÞdx1; dx2; . . . dxn ¼ PrðGðfxgÞ\0Þ ð10Þ

In that case, if the inequality G({X}) > 0 is satisfied, this indicates a structural safety
condition. In the opposite case, if G({X}) < 0, this means a failure of such a structure.

To compute the probability of failure Pf in the Equation (10), one can use :

(1) Analytical resolution: when the joint probability density function (JPDF) of {X}
is available ( fX ðxiÞ), however, even when the JPDF is defined, the evaluation of
the Pf by multiple integration is very difficult.
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(2) Approximate computational methods: such as moments based methods: first
order reliability method (FORM) and second order reliability method that are
widely used to assess the Pf . They use only the information of the first and the
second moments of the random variables namely the means and the covariances.
In addition the methods need an explicit performance function G({X}). These
methods are based on the use of the Reliability Index such as Cornell (Lemaire
et al., 2005).

bCornell ¼
EðGðfxgÞÞ
rðGðfxgÞÞ ð11Þ

Pf ¼ £ð�bCornellÞ ð12Þ

This approximation method is used in the case of random Gaussian variables and
where the performance function G({X}) is linear and its derivates are available under
an explicit analytic form in the space of the random variables.

When the limit-state function is nonlinear, there is no unique distance from the per-
formance function to the origin of the variables. The Reliability Index βHL is correctly
defined by Hasofer Lind (Hasofer & Lind, 1974). It is defined as the shortest distance
between the limit state function and the diagram origin in a standard reduced space of
the random uncorrelated variables {u}.

ui ¼
Xi � lXi

rXi

ð13Þ

The index βHL is then evaluated in this space by resolving the following problem of
optimization:

bHL ¼ min
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ui:ui
r

Under the constraint HðfugÞ � 0 ð14Þ

where H({u}) is the performance function in the standard reduced space (Hasofer &
Lind, 1974).

The most probable failure point is:

u�i ¼ �a�i :bHL ð15Þ

In which a�i are the direction cosines:

a�i ¼
dHðfugÞ

du�i

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i
dHðfugÞ

du�i

	 
2

�

r ð16Þ

where the partial derivatives dHðfugÞ
dui

	 

�
are evaluated at fug� ¼ ðu�1; u�2; . . . u�nÞ. And the

derivatives are calculated at fug� ¼ ðu�1; u�2; . . . u�nÞ.
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Then; x�i ¼ rxi :u
�
i þ lXi

¼ lXi

¼ l The reliabilityR is given by the following relationship: Xia
�
i :rxi :bHL ð17Þ

The solution of the limit state function Gðx�1; x�2; . . . x�nÞ ¼ 0 then yields bHL.
The results are summarised in the following numerical steps calculations (Rackwitz

& Fiessler, 1978):

(1) Assume initial values of ðx�1; x�2; . . . x�nÞ and obtain U �
i ¼ X�

i �lXi
rXi

.
(2) Evaluate ðdHðfugÞ

du�i
Þ� and a�i at x�i .

(3) Form x�i ¼ lxi � a�i :rxi :bHL
(4) Substitute above x�i in Gðx�1; x�2; . . . x�nÞ ¼ 0 and solve for bHL.
(5) Using the bHL obtained in step 4, reevaluate u�i ¼ �a�i :bHL.
(6) Repeat step 2 through 5 until convergence is obtained.

The probability of failure Pf is estimated in this case by:

Pf ¼ £ð�bHLÞ ð18Þ

In the case of random Gaussian variables and with linear performance function G
({X}) we obtain the following result:

Pf ¼ PrðGðfxgÞ\0Þ ¼ £ð�bHLÞ ¼ £ð�bCornellÞ ð19Þ

The Monte Carlo Simulation: this method is used when the performance function is
defined over a vector of more than two random variables and when the joint PDF of X
is practically difficult to find.

This last method remains often the only means of taking into account certain non-
linear behaviour. Such procedure is simple, however, it has the drawback to have a
large number of runs possibly required to obtain an accurate result. Its convergence
speed is low and it is proportional to

ffiffiffiffi
N

p
(Ditlevsen & Madsen, 1996).

The reliability R is given by the following relationship:

R ¼ 1� Pf ð20Þ

2.3. Surface response method

The computation of the limit state function or the safety margin G is in general done
numerically. But for calculating the Reliability Index we need an explicit relationship of
the limit state function. The main idea of the surface response method is to construct a
polynomial approximation of the limit state function based on the results obtained by
the design of experiments (DoE) method where a full factorial design plan is used.

The second order of this approximation (quadratic surface response) could be con-
sidered as a good compromise since it includes a possible calculation of the curves
while avoiding a possible fluctuation obtained with a higher order. In the case of the
quadratic surface response with three random variables, the response is written as
follows:
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GðXÞ ¼ b0 þ
Xn

i¼1

bi:Xi þ
Xn

i¼1

bii:X
2
i þ

Xn�1

i¼1

Xn

j¼iþ1

bij:Xi:Xj þ
Xn�1

i¼1

Xn

j¼iþ1

�
Xn

k¼jþ1

bijk :Xi:Xj:Xk ð21Þ

where G(X) is the response of the model, Xi are random variables of the model and
b0, bi, bii, bij, bijk are the coefficients of the mathematical model, determined by the
regression tool.

2.4. Reliability updating based on inspection results

During the cycle life of a component, inspections are scheduled in order to avoid the
risk of failure. During inspections, two types of results could be reported: the crack is
not detected or detected. These two events can be written as following:

a < ad: Crack not detected and aP ad: Crack detected

For the case of no crack detection, during an inspection after Ni loading cycles, the
failure structure probability Pf should be decreased. The safety margin corresponding to
not crack detection could be expressed by the following:

Mi ¼ Nd � Ni ð22Þ

where Nd is the number of cycles corresponding to the detected crack length and Ni is
the number of cycles corresponding to a crack length ai which is calculated by the
equation of the Paris law.

The result of the inspections should be used in order to update the failure
probability Pf . This probability Pd

f ;up could be easily calculated by the Bayesian
approach (Jiao & Moan, 1990) as follows:

Pd
f ;up ¼ PðGðXÞ � 0jMi � 0Þ ¼ PðGðXÞ � 0 \Mi � 0Þ

PðMi � 0Þ ð23Þ

Based on FORM approximation the probability of failure Pf of the basic safety mar-
gin G and the updated probability of failure Pd

f ;up considering the inspection event is
defined by:

PfU ¼ ð�bGÞ and Pd
f ;upU ¼ ð�bupÞ ð24Þ

Jiao and Al. proposed an approximation for calculating the updated Reliability
Index βup with:

bup ¼
bG � qAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2B

p ð25Þ

With q ¼ aTGaMi A ¼ £ �bMið Þ
U �bMið Þ and B ¼ A:ðA� bMi

Þ
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where βup is updated Reliability Index, βG is the Reliability Index corresponding to the
basic safety margin G(X)6 0, βMi is the Reliability Index corresponding to the inspec-
tion event Mi6 0, ρ is the correlation coefficient between the events G({X})6 0 and
Mi6 0, aG, aMiare the direction cosines of the safety margin G and the inspection event
Mi respectively. Φ and £ are the cumulative distribution function and the PDF, respec-
tively, of standard Gaussian random variable.

After expressing Mi using an explicit relationship, the direction cosines aMi and the
reliability index bMi

of the inspection event are calculated similarly to the safety margin
G as presented previously.

For the case of crack detection, during an inspection, the failure probability should
be increased. We notice that the crack detection event Mi is the complementary of the
no crack detection event Mi. Therefore, the safety margin of crack detection is obtained
by reversing the sign of event Mi.

Mi ¼ �Mi ¼
Z ad

a0

da

DKm � C:Ni ð26Þ

Using the total probability theorem (Jiao & Moan, 1990), the updated failure proba-
bility Pnd

f ;up for this case is:

Pnd
f ;up ¼ PðGðXÞ � 0jMi � 0Þ ¼ PðGðXÞ � 0Þ � PðGðXÞ � 0jMi � 0ÞPðMi � 0Þ

1� PðMi � 0Þ ð27Þ

3. Methodologies of FCG reliability updating

The general procedure of the determination of the FCG updating reliability diagrams is
detailed trough the three different steps.

Step1: Determination of crack growth length and the lifespan.
The integration of the Paris law allows to compute the FCG length in terms of the

number of loading cycles. Figure 1 shows clearly the flowchart of the crack growth
length and the lifespan assessment in the mixed mode.

Step2: Building the explicit limit state functions (G(x) and Mi(x)) based on surface
response method.

The computation of probability of failure in Equation (10) is not easy. For this rea-
son approximate methods based on Reliability Index are developed. An explicit limit
state function G (or inspection event Mi) depending on different random parameters
based on the surface method is then needed. In this study, the DoE based on a full fac-
torial design plan is used. The flowchart, in Figure 2, presents the steps to follow to
build an explicit relationship of the basic safety margin (or inspection event Mi) by the
response surface method using the regression tool.

Step3: Reliability updating assessment.
In the case of a non-linear limited state function the computation of the Reliability

Index of Hosfer–Lind βHL is required and an iterative calculation to find the optimal βG
index value relative to the G limit state based on Rackwitz-Fiessler (Rackwitz & Fiess-
ler, 1978) algorithm is carry out. The flowchart in Figure 3, describes the necessary
steps to determine the Reliability Index βG. The same flowchart is used to compute the
reliability index bMi

of the inspection event relative to the Mi limit state.
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Once βG and bMi
are determined, the updated probability of failure Pf ;up is calcu-

lated according to (Equations (24) and (25)) in the case of no crack detection or accord-
ing to (Equation (27)) in the case of crack detection.

4. The optimisation of inspection time based on minimal total cost: dynamic
method

We present a methodology to determine the optimal time inspection for a cracked com-
ponent submitted to a fatigue loading. In that case, the optimisation is realised by mini-
mising the global cost function which represents the failure cost and the inspection
cost.

In order to formulate mathematically the cost function, we adopt the following
assumptions:

• The lifespan Tf of the component is known.

• The component is failed if ai> ac

Figure 1. Computation the length of the crack in mixed mode.
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• The inspection is realised without reparation.

• The cost of a failure (Cf) and the cost of each inspection (Ci) are known.

We describe the formulation of the cost function for the case of one, two and multi-
ple inspections and provide more details for evaluation. The used method in this study
is a dynamic method which consists in treating the problem in a sequential way starting
with the initial crack.

In this case and based on the decision tree for the case of a single inspection, we
define the total cost between t= 0 and t1 time of the first inspection. Then, we determine
the date t1optimal of the first inspection for which the total cost is minimal.

For the case of two inspections, we define the total cost between t1optimal and t2 time
of the second inspection. Then, by minimising this total cost, we compute t2optimal cor-
responding to the optimal time of the second inspection and we do the same way in the
case of the multiple inspection.

Figure 2. Determining an explicit expression of the safety margin by the method of response
surface.
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4.1. Case of a single inspection

The Figure 4 illustrates the decision tree in the case of single inspection realised at the
time t1 with 0 < t1 < Tf

Based on the decision tree, we can identify two types of cost:

• CFðt1Þ: the expected cost of failure in the interval [0, t1] with 0 < t1 < Tf
• CIðt1Þ: the inspection cost realised at the time t1

Figure 3. Computation the reliability index by applying the optimization algorithm of Rackwitz-
Fiessler.
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Being situated in the interval [0,t1], the determinist total cost is defined as follows:

CTðt1Þ ¼ CFðt1Þ þ CIðt1Þ
t1

ð28Þ

By integrating for each term, the probability of occurrence of each event, the total
cost becomes:

CT ðt1Þ ¼ Cf :Pf ðt1Þ þ ci:Rðt1Þ
t1

¼ Cf :Pf ðt1Þ þ Ci:ð1� Pf ðt1ÞÞ
t1

ð29Þ

where Pf ðt1Þ is the failure probability at the time t1 and Rðt1Þ is the survival probability
at the time t1. Cf is the cost of a failure and Ci is the cost associated to each inspection.
The date t1optimal of the first inspection is such as CT ðt1optimalÞ is minimal.

4.2. Case of two inspections

As in the case of a single inspection, two different costs are considered (see Figure 5):

• CFðt1optimal; t2Þ: the expected cost of failure in the interval [t1optimal, t2] with
t1optimal < t2 < Tf

Figure 4. The decision tree in the case of a single inspection.

Figure 5. The decision tree in the case of two inspections.
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• CIðt1optimal; t2Þ: the inspection cost realised at the time t2.

Being situated in the interval [t1optimal; t2], the total cost in the case of the second
inspection is defined as follows:

CT ðt1optimal; t2Þ ¼ CFðt1optimal; t2Þ þ CIðt1optimal; t2Þ
t2 � t1optimal

ð30Þ

The result of the first inspection at the time t1optimal gives two different cases rela-
tive to crack detection results:

Case 1
In this case, when the crack is detected and by integrating every term the probabil-

ity of occurrence of each event, the total cost in the interval [t1optimal; t2] becomes:

CT ðt1optimal; t2Þ ¼
Cf :Pd

f ;upðt1optimal; t2Þ þ Ci:Rd
upðt1optimal; t2Þ

t2 � t1optimal

¼ Cf :Pd
f ;upðt1optimal; t2Þ þ Ci:ð1� Pd

f ;upðt1optimal; t2ÞÞ
t2 � t1optimal

ð31Þ

where Pd
f ;upðt1optimal; t2Þ is the updated failure probability in the case of detected crack

between the time t1optimal and t2.
Case 2
In this case, when the crack is not detected we have:

CT ðt1optimal; t2Þ ¼
Cf :Pnd

f ;upðt1optimal; t2Þ þ Ci:Rnd
upðt1optimal; t2Þ

t2 � t1optimal

¼ Cf :Pnd
f ;upðt1optimal; t2Þ þ Ci:ð1� Pnd

f ;upðt1optimal; t2ÞÞ
t2 � t1optimal

ð32Þ

where Pnd
f ;upðt1optimal; t2Þ is the updated failure probability in the case of not detected

crack between the time t1optimal and t2.

4.3. Case of multiple inspections

Two different costs are defined as follows:

• CFðtðn�1Þoptimal; tnÞ: the expected cost of failure in the interval [t(n� 1)optimal ,tn]
with t(n� 1)optimal < tn < Tf

• CIðtðn�1Þoptimal; tnÞ: the inspection cost realised at the time tn.

The total cost of the nth inspection is defined as follows:

CTðtðn�1optimalÞ; tnÞ ¼ CFðtðn�1Þoptimal; tnÞ þ CIðtðn�1Þoptimal; tnÞ
tn � tðn�1Þoptimal

ð33Þ
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4.4. Flowchart of computing the optimal inspection time

A computing the optimal inspection time is determined according to total cost minimi-
sation and presented in a flowchart in Figure 6.

5. Numerical application

To validate the proposed approach, two applications are carried out, the first one deals
with the crack propagation in mode 1, in which the sensitivity of the different Paris law
parameters will be shown, then the computation of the Pf and the updated Pf are deter-
mined in the case of detectable and undetectable crack length according to one and
multiple inspection.

The second application concerns the crack growth in mixed mode where the Pf and
the Pd

f ;up are calculated, then the computed optimal time for the first and the second
inspection will be carried out.

5.1. Application 1: mode I

A rectangular plate is considered containing an emergent rectilinear crack loaded with a
constant amplitude cyclic stress r: For this case, the stress intensity factors KI corre-
sponding to mode I is calculated analytically using the following expression (Riahi
et al., 2011):

KI ¼ 1:12:r:
ffiffiffiffiffiffiffi
p:a

p ð34Þ

Figure 6. Flow chart of computing the optimal inspection time.

146 M. Eltaief et al.



Table 1. Data FCG characteristics.

Parameters Law Average Coefficient of variation

a0 (m) Normale 2.1�10�4 3%
ac (m) Normale 5.5� 10�4 3%
C (m/cycle/MPam1/2)m Log-normale 6.8� 10�12 10%
ad (m) Normale 4.5� 10�4 3%
m Deterministic 3 –
σ (MPa) Deterministic 75 –
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Figure 7. Evolution of crack length vs. the number of cycles N: (a) deterministic case and (b)
random case.
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The crack growth follows the Paris law expressed as:

da

dN
¼ C:ðDKIÞm ð35Þ

The random parameters, their law and their characteristics are given in the Table 1:
The crack growth is performed by using a constant increment length such as

Da ¼ 10�6m.
Figure 7(a) and (b) shows the evolution of the crack size depending on the cycle’s

number in the deterministic and random cases, respectively.
In a second step, we calculated the Pf (Figure 8) using the flowchart in Figure 3.
Once the inspection operations is realised at N ¼ 2 � 106 cycles, we distinguish

two cases:
The first case where the crack is not detected during the inspections therefore the

Pf decreases (Figure 9). The second case where the crack is detected then the Pf
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Figure 8. Evolution of Pf vs. the number of cycles N.
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Figure 9. Evolution of Pf and Pnd
f ;up vs. the number of cycles N.
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increases (Figure 10). Using the additional information provided by the inspections
results, the Pf is re-evaluated following the Bayesian procedure described previously.

In the case where more than one inspection is carried out, we follow the same steps
and we use the same equations (Equations (24), (25), and (27)) to calculate the Pf ;up

(Figures 11 and 12).

5.2. Application 2: mixed mode

A rectangular plate is considered, of length 2L= 100mm and width 2W= 50mm of con-
taining a crack rectilinear central of length 2W= 50mm and inclined at an angle β = 30°
to the horizontal loaded with an amplitude cyclic stress σ. The mechanical properties of
the plate is assumed to have an elastic behaviour with a young’s modulus
E = 2� 104MPa and a poison’s ratio ν= 0.3 (see Figure 13).

The random parameters, their law and their characteristics are given in the Table 2.
The Figure 14 shows the evolution of the Pf and Pd

f ;up depending on the cycle’s
number after an inspection operation in the case of crack detection.
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Figure 10. Evolution of Pf and Pnd
f ;up vs. the number of cycles N.
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Figure 11. Evolution of Pf and Pnd
f ;up vs. the number of cycles N after two inspections.
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Figure 12. Evolution of Pf and Pnd
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Figure 13. Plate with an inclined central crack.

Table 2. Data FCG characteristics.

Parameters Law Average Coefficient of variation

a0 (mm) Normale 0.2 –
ac (mm) Normale 1.8 –
C (m/cycle/MPam1/2)m Log-normale 6� 10�12 10%
ad (mm) Normale 0.6 –
m Deterministic 3 3%
σ (MPa) Deterministic 100 3%
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Optimal time inspection of the first inspection t1optimal, is determined using the equa-
tions (Equations (28) and (29)) Where the time t1 is in the interval [0,Tf]. This method-
ology is well explained in the flowchart of Figure 6.

The Figure 15(a) shows the evolution of the total cost of the first inspection depend-
ing on the variation of the time inspection Δt.

The Figure 15(b) shows the evolution of the total cost of the second inspection
depending on the Δt.

The Figure 15(c) presents the evolution of the total cost of the first and the second
inspection at the same time vs. on the Δt.

6. Discussion

(1) Referring to Figure 7(a) and (b), for a target critical crack length ac a very sig-
nificant scattering of the life cycles is observed, hence the necessity to take into
account the uncertain parameters affecting the propagation.

(2) Figure 8 shows that for a cycle’s number N less than 106, the Pf is equal to
zero, it could be explained by the fact that the crack length a is always much
lower than the critical length. For a cycle’s number N higher than 106 the Pf

increase significatively. Therefore, the inspections operations should be sched-
uled in order to control (repair, replacement) the evolution of the crack length
and thus avoiding the crash of the structure.

(3) Figure 9 shows the evolution of Pf and Pnd
f ;up vs. the number of cycles N after an

inspection operation in the case of no crack detection. We denote by ti is the
inspection time, Tv is lifespan calculated in the case without inspection and Tvi
is lifespan calculated in the case with inspection.

For example for Pf of design equal to 10�6 and at ti equal to 2� 106 we have:

Pf design ti (cycles) Tv (cycles) Tvi (cycles) ΔT= Tvi� Tv

10�6 2.02� 106 2.035� 106 2.065� 106 3� 104

Figure 14. Evolution of Pf and Pnd
f ;up vs. the number of cycles N.
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We note that the no crack detection delay the increase in Pf consequently an additional
operational life cycle is gained.

Figure 15. Evolution of the total cost vs. Δt: (a) first inspection, (b) second inspection, (c) first
and the second inspection at the same time.
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(4) Figure 10 shows the evolution of Pf and Pnd
f ;up vs. the number of cycles N after

an inspection operation in the case of crack detection. We note that the crack
detection accelerates the increase in Pf thus a gain of the cost of a disaster that
would have happened due to that failure, is obtained. For example for Pf of
design equal to 10�3 and at ti = 2.10

6 we have:

Pf design ti (cycles) Tv (cycles) Tvi (cycles) ΔT= Tv� Tvi

10�3 2.02� 106 2.155� 106 2.09� 106 6.5� 104

(5) Figures 11 and 12 show, respectively, the evolution of the Pf ;up after two inspec-
tions for the case of no crack detection and also for the detection crack case.
Taking into account the crack detection changes significantly the updating reli-
ability and consequently, the value of the inspection time. This approach leads
to improve a maintenance optimal inspection programme

(6) By analysing the curve in the Figure 15(a), the optimal inspection time of the
first inspection is t1optimal = 1,6� 106 cycles. In the Figure 15(b), the optimal
inspection time of the second inspection t2optimal is:

ðt2 � t1optimalÞoptimal ¼ t2optimal � t1optimal ¼ 1; 6 � 105cycles

t2optimal ¼ 1; 96 � 106cycles

These results show the benefits of this approach to actualise the optimal time
inspection

(7) From the Figure 15(c), we see that the optimal Δt corresponding to the second
inspection decreases comparing to the first inspection one. This result is physi-
cally coherent since the crack growth increases first slowly then increases expo-
nentially until the rupture. For the case of multiple inspections if Δt optimal is
very low, the maintenance programme should be changed from inspection to
replacement or repair. In this case, we can deduce the maximum number of
inspections to be performed.

7. Conclusion

In this study, we have proposed a general approach integrating the coupling of fatigue-
reliability and its application to the FCG. Based on the Rackwitz-Fiessler algorithm and
the Bayesian approach, the failure probability and the updated failure probability are
determined using the FORM method. Taking into account the results of previous
inspections and based on the approach of minimising the total cost, an optimal mainte-
nance schedule is implemented. A sequential approach starting by the initial crack is
applied to build the total cost function. It is seen that, the inspection of the crack
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growth length result gives an accurate updating reliability values leading to predict the
optimal inspection time. This method can be generalised for complex cases and for
multiple inspections scheduling of mechanical component. Two applications have been
presented to show the efficiency of this approach. The first one is applied to the crack
growth in mode I and the second one is applied to the FCG in a mixed mode.

Nomenclature
KI, KII The stress intensity factor in mode I and mode II, respectively
KIeq The equivalent stress intensity factor
ΔK The stress intensity factor range
σ The applied load
a The crack length
a0, ad, ac The initial, detectable and the critical crack lengths, respectively
Δa The increment of the crack length
F(a) Correction factor
G Strain energy release rate
πc Total potential energy
h0 The crack growth angle
h The crack orientation angle
σhh The maximum circumferential stress criterion
N The number of cycles
ΔN The increment of the number of cycles
Nf The lifespan (the number of cycle at failure)
C, m The materials parameters of the Paris low
fXg A vector of random variables
xi Element of the vector fXg
fXiðxiÞ Probability density function of the variable xi
ffXgðfxgÞ Joint probability density function of the vector fXg
G, S, L Performance, strength and load functions, respectively
Pf Probability of failure
Pf ;up The updated probability of failure
Pd
f ;up;P

nd
f ;up

The updated probability of failure in the case detectable and non detectable crack,
respectively

βG The reliability index
βup The update reliability index
Mi Inspection event corresponding to crack detection
Mi Inspection event corresponding to no crack detection
ρ The correlation coefficient between the G and Mi

CF(ti,tj) The expected cost of failure in the interval [ti, tj]
CI(ti) The inspection cost at the time ti
CT(ti,tj) The total cost in the interval [ti, tj]
Cf The cost of a failure
Ci The cost of each inspection
Δt The variation of the time inspection
FCG Fatigue crack growth
FORM First Order Reliability Method
DoE The design of experiments
HCF The High Cycle Fatigue
LEFM Linear Elastic Fracture Mechanics
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