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In this paper, we present an analytical model of the kinematics of the spherical
3-UPU parallel manipulator. This model was used to show that up to eight solutions
can be found for the forward kinematic problem. The analytical expression of the
Jacobean matrix is used to analyse the singularity of this manipulator. We show, in
particular, that this manipulator does not have singular configurations within its
workspace. Two case studies, one with three degrees of freedom and a second one
with only two degrees of freedom, are chosen to illustrate the proposed analysis.
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1. Introduction

Parallel manipulators (PMs) have focused a great attention in the last decades for their
complementary characteristics with respect to the serial manipulators. Indeed, these
PMs exhibit a high rigidity, a high payload/weight ratio and a high dynamic perfor-
mance, but a limited workspace and a low dexterous manipulability. Recently, great
attention has been devoted to less than 6-DOF PMs, since many applications do not
necessarily need 6 DOFs, and they have a relatively simple model. Reduced DOF
manipulators are proposed in the literature, where the number of DOF varies from 5,
for applications like laparoscopy surgery (Pisla, Gherman, Vaida, & Plitea, 2012), to
3 DOF (Carricato & Parenti-Castelli, 2003; Di Gregorio & Parenti-Castelli, 1998; Hervè
& Sparacino, 1991; Romdhane, Affi, & Fayet, 2002; Tsai, 1996) for several types of
applications. The special case of 3-DOF spherical PMs have been presented by Gosselin
and Angeles (1989), Innocenti and Parenti-Castelli (1993), Di Gregorio (2003, 2004), Ji
and Wu (2001) and Ceccarelli and Carbone (2002). The 3-DOF PMs that makes the
platform perform a mixed type of motion with respect to the base have been presented
by Yang, Waldron, and Orin (1996) and Arun Srivatsan and Bandyopadhyay (2013).

From the literature, there are three well-known architectures of the spherical manipula-
tor. These PMs provide a pure rotational motion of the platform with respect to the base.
In the architecture proposed by Innocenti and Parenti-Castelli (1993), the platform and the
base are joined by a passive spherical pair and the orientation of the platform with respect
to the base is controlled by three UPS legs (U, P and S stand for universal joint, actuated
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prismatic pair and spherical pair, respectively). The drawback of this architecture is the
reduced workspace because of the passive spherical pairs. The architecture proposed by
Gosselin and Angeles (1989) is made out of a platform connected to the base by three
RRR legs (R stands for revolute pair), where all the revolute pair axes concurrent in a
fixed point. This PM is an over constrained mechanism. The drawback of this architecture
is that the mechanism jams or high internal loads arise in the links due to geometric
errors. The architecture proposed by Di Gregorio (2003), (called 3-UPU spherical manipu-
lator), has the orientation of the platform with respect to the base controlled by three UPU
legs (U and P stand for universal joint and actuated prismatic pair). Each universal pair is
made out of two revolute pairs with orthogonal axes. For this architecture, the first revo-
lute joint connected to the base and the platform must converge to a fixed point.

This paper focuses on the analytical modelling and analysis of the 3-UPU spherical
PM (Di Gregorio, 2003). In Section 2, the kinematic model of the 3-UPU spherical PM
is presented using the roll, pitch and yaw angles to represent the orientation of the mov-
ing platform with respect to the base. Section 3 presents the singularity analysis of the
manipulator. Section 4 presents the kinematic modelling of the new developed spherical
manipulator with two degrees of freedom derived from the 3-UPU SM. Section 5 pre-
sents some results for the 3-DOF and the 2-DOF spherical manipulators. Some conclud-
ing remarks are presented in Section 6.

2. Kinematics of the 3-UPU spherical manipulator

The 3-UPU spherical manipulator is given on (Figure 1). The universal pairs U are cen-
tred at points Bi, and Ai (i= 1, 2, 3) attached, respectively, in the base and the platform.
In order to have a pure rotational motion of the platform with respect to the base, two
conditions have to be fulfilled (Di Gregorio, 2003; Karouia & Hervé, 2000):

• The first three revolute pair axes fixed in the platform (base) must converge at a
fixed point.
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Figure 1. The 3-UPU spherical manipulator.
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• In each leg, the intermediate revolute pair axes must be parallel to each other and
perpendicular to the leg axis that is the line through the universal joints centres.

The first revolute joints connected to the base (platform) are orthogonal and intersect at
point P. The frames Sb(P, xb, yb, zb) and Sp(P, xp, yp, zp) are attached to the base and
the platform, respectively (Figure 1). The xb, yb and zb axes (xp, yp and zp) are along
the line PBi, i= 1, 2, 3, respectively (PAi).

Based on the cycle PBiAiP, we have:

PBi þ BiAi þ AiP ¼ 0 i ¼ 1; 2; 3 ð1Þ

Let:

bi ¼ ½PBi�Sb ð2Þ

l i ¼ ½BiAi�Sb ð3Þ

pi ¼ ½AiP�Sp ð4Þ

where bi and li, i= 1, 2, 3, are two vectors expressed in the fixed reference frame Sb and
pi, i= 1, 2, 3, is expressed in the frame Sp.

The vector pi, i= 1, 2, 3, expression in the fixed frame Sb is given by:

½ pi�Sb ¼ Qpi i ¼ 1; 2; 3 ð5Þ

In this case, Equation (1) gives the following:

l i ¼ �bi þQpi i ¼ 1; 2; 3 ð6Þ

where Q be the rotation matrix that takes Sp into Sb, given by:

Q ¼
ch cw �cu swþ su sh cw sw suþ cw sh cu
ch sw cw cuþ sw sh su �su cwþ cu sh sw
�sh su ch cu ch

2
4

3
5 ð7Þ

c is the cosine and s is the sine of the corresponding angle, respectively.
u, h and ψ are, respectively, roll, pitch and yaw angles.
The vectors bi and pi, i= 1, 2, 3, contain, respectively, the base and the platform geo-

metric parameters in their local frame.
The vector li, i= 1, 2, 3, is a variable vector, which represents the length and the ori-

entation of the ith leg.
Squaring both sides of Equation (6), gives:

l2i ¼ b2i þ p2i � 2bTi Qpi i ¼ 1; 2; 3 ð8Þ
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where li, bi and pi, i= 1, 2, 3, are the norm of the vectors li, bi and pi,
respectively.

The base is defined by the three following vectors representing the locations of the
three universal joints:

½b1�Sb ¼ b1½1 0 0�T; ½b2�Sb ¼ b2½0 1 0�T; ½b3�Sb ¼ b3½0 0 1�T ð9Þ

The platform is defined by the three following vectors representing the locations of the
three universal joints:

½ p1�Sp ¼ p1½0 � 1 0�T; ½ p2�Sp ¼ p2½0 0 � 1�T; ½ p3�Sp ¼ p3½�1 0 0�T ð10Þ

This choice of the locations of the points Ai, i= 1, 2, 3, is necessary for a closed form
solution to exist (Chebbi, Affi, & Romdhane, 2013).

Replacing the expression of the rotation matrix Q in Equation (8), the following set
of equations can be obtained:

�cu swþ su sh cw ¼ l21 � p21 � b21
2b1p1

�su cwþ cu sh sw ¼ l22 � p22 � b22
2b2p2

�sh ¼ l23 � p23 � b23
2b3p3

8>>>>>><
>>>>>>:

ð11Þ

By solving the third equation of the system (11) given above, two solutions for the
angle h, can be obtained:

h ¼ � arcsin
l23 � p23 � b23

2b3p3

� �
or

h ¼ �pþ arcsin
l23 � p23 � b23

2b3p3

� �

8>>><
>>>:

ð12Þ

These two solutions can exist, if the following condition is fulfilled:

j b3 � p3 j� l3 � b3 þ p3 ð13Þ

According to the solutions obtained for the angle h, the first two equations of the set of
Equations (11) can be solved:

sinðw� uÞ ¼ c1 � c2
c3 � 1

ð14aÞ

sinðwþ uÞ ¼ � c1 þ c2
c3 þ 1

ð14bÞ
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where ci, i= 1, 2, 3 are given:

ci ¼ l2i � p2i � b2i
2pibi

i ¼ 1; 2; 3 ð15Þ

The solution of the set of Equations (14a) and (14b), which derived from the two
solutions of the angle h is given by:

w ¼ 1
2 arcsin � c1þc2

c3þ1

� �
þ arcsin c1�c2

c3�1

� �� �
u ¼ 1

2 arcsin � c1þc2
c3þ1

� �
� arcsin c1�c2

c3�1

� �� �
8<
: ð16Þ

w ¼ p� 1
2 arcsin � c1þc2

c3þ1

� �
þ arcsin c1�c2

c3�1

� �� �
u ¼ 1

2 � arcsin � c1þc2
c3þ1

� �
� arcsin c1�c2

c3�1

� �� �
8<
: ð17Þ

w ¼ p
2 þ 1

2 � arcsin � c1þc2
c3þ1

� �
þ arcsin c1�c2

c3�1

� �� �
u ¼ p

2 � 1
2 arcsin � c1þc2

c3þ1

� �
� arcsin c1�c2

c3�1

� �� �
8<
: ð18Þ

w ¼ p
2 þ 1

2 arcsin � c1þc2
c3þ1

� �
� arcsin c1�c2

c3�1

� �� �
u ¼ p

2 þ 1
2 arcsin � c1þc2

c3þ1

� �
þ arcsin c1�c2

c3�1

� �� �
8<
: ð19Þ

Thus, eight solutions of the orientation of the platform with respect to the base exist for
one given set of li′s.

These solutions can exist, if and only if the following conditions are fulfilled:

�1 � c1þc2
c3þ1 � 1

�1 � c1�c2
c3�1 � 1

c3 6¼ �1

8<
: ð20Þ

Thus, we can conclude that the orientation workspace of the manipulator is determined
by Equations (13) and (20), which corresponds to the existence of the solution of the
orientation of the platform with respect to the base.

3. Singularity of the 3-UPU spherical manipulator

In this section, the singularity of the manipulator is analysed. The Jacobean matrix
relates the angular velocity of the moving platform to the velocities of the actuators.
Singularities occur, when the Jacobean matrix becomes singular. Taking advantage from
the closed form of the developed kinematic model of the spherical 3-UPU manipulator,
the Jacobean matrix is given by:
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J ¼
� l1

2p1b1
ðAþ BÞ � l2

2p2b2
ðA� BÞ l3

2p3b3
ðC þ DÞ

0 0 � 2l3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b23p

2
3�ðl23�p23�b23Þ

2
p

� l1
2p1b1

ðA� BÞ � l2
2p2b2

ðAþ BÞ l3
2p3b3

ðC � DÞ

0
BB@

1
CCA ð21Þ

where the expression of A, B, C and D are given by:

A ¼ 1

ðc3 þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc1þc2Þ

ðc3þ1Þ2
q ð22Þ

B ¼ 1

ðc3 � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc1�c2Þ

ðc3�1Þ2
q ð23Þ

C ¼ c1 þ c2

ðc3 þ 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc1þc2Þ

ðc3þ1Þ2
q ð24Þ

D ¼ c1 � c2

ðc3 � 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðc1�c2Þ

ðc3�1Þ2
q ð25Þ

The determinant of the Jacobean matrix J is given by:

A2A3
A1

B1 B2

Figure 2. Over constrained PM.
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detðJÞ ¼ 2l1l2l3AB

p1b1p2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b23p

2
3 � ðl23 � p23 � b23Þ2

q ð26Þ

According to Equation (26), the manipulator is far from singularity in the permissible
domain of the length of the three legs.

Studying the case, when the point P (corresponds to the intersection of the first rev-
olute joint axes connected to the base and the platform) coincides with one of the cen-
tres of the universal joints, i.e. point A3 (p3 = 0). In this condition, the platform and the
base are joined by a passive spherical pair centred at point P (Figure 2). The platform
orientation is controlled by two UPU legs (U and P stand for universal joint and pris-
matic pair, respectively). In this case, the number of degrees of freedom of the corre-
sponding manipulator can be computed by the following equation:

m� h ¼ 6ðS � 1Þ � NS ð27Þ

where m is the mobility of the manipulator, h the degree of overconstraints, S the num-
ber of links and NS the number of the constraints introduced by the joint, which yields:

m� h ¼ 1 ð28Þ

since m = 2, we get h= 1.
According to the equation given above, the corresponding manipulator is an over-

constrained mechanism. One way of removing this overconstraint is to replace one of
the universal joints connected to the base or the platform by a spherical joint. In this
case, Equation (27) yields:

m� h ¼ 2 ð29Þ

which yields h = 0.
Thus, this manipulator becomes a non-overconstrained mechanism with two degrees

of freedom.
As a conclusion, if point P coincides with one of the centres of the universal joints

connected to the base or the platform, a reduction of one degree of freedom of the
manipulator occurs.

4. Kinematics of the spherical manipulator with two degree of freedom

In this section, the kinematic model of the spherical manipulator with two degrees of
freedom (2-SM) is developed.

Let S0bðP; x0b; y0f ; z0bÞ be a reference system fixed to the base. The x0b and y0b axes are
along the lines PBi, i= 1, 2. The z0b axis is taken according to the right-hand rule.
S0pðP; x0p; y0p; z0pÞ is taken as a reference system fixed to the platform. The x0b axis is

along the line PB1. The y0p axis on the plane of the platform and the z0p axis is taken

according to the right-hand rule.
Starting from the loop closure equation of (PBiAiP), i= 1, 2, which can be written as

follows:
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l 0i ¼ �b0i þQ0p0i i ¼ 1; 2 ð30Þ

where b0i (p
0
i), i= 1, 2, corresponds to the vectors through the points P and Bi (points P

and Ai), l
0
i, i= 1, 2, is a variable vector, which represents the length and the orientation

of the ith leg and Q′ represents the rotation matrix that takes the reference system fixed
to the platform S0p to the reference system fixed to the base S0b.

The expression of the rotation matrix Q′ is given by the following:

Q0 ¼
ch su sh sh cu
0 cu �su

�sh su ch cu ch

2
4

3
5 ð31Þ

where c and s are the cosine and the sine of the corresponding angle, respectively. u
and h are the rotation angles around x0b, and y0b axes, respectively.

Squaring both sides of Equation (30), yields:

l02i ¼ b02i þ p02i � 2b0Ti Q
0p0i i ¼ 1; 2 ð32Þ

where l0i , b
0
i and p0i, i= 1, 2, are the norm of the vectors l0i, b

0
i and p0i, respectively.

The base is defined by the two following vectors representing the locations of the
two joints centred at point Bi, i= 1, 2:

½b01�Sb ¼ b01½1 0 0�T; ½b02�Sb ¼ b02½0 1 0�T ð33Þ

The platform is defined by the two following vectors representing the locations of the
two universal joints centred at point Ai, i= 1, 2:

½ p01�Sp ¼ p01½1 0 0�T; ½ p02�Sp ¼ p02
1

2

ffiffiffi
3

p

2
0

� �T
ð34Þ

This choice of the locations of the points Ai, i= 1, 2, is necessary for a closed form
solution to exist.

Replacing the expression of the rotation matrix Q′ in Equation (32), the following
system can be obtained:

ch ¼ �l012þp021 þb021
2b01p

0
1

cu ¼ �l022 þp022 þb022ffiffi
3

p
b02p

0
2

8<
: ð35Þ

Thus, the possible solutions of the set of Equations (35) are given by the following:

h ¼ � arccos
�l021 þp021 þb021

2b01p
0
1

� �
u ¼ � arccos

�l022 þp022 þb022ffiffi
3

p
b02p

0
2

� �
8<
: ð36Þ

The equation given above represents the different possible solutions of the orientation
of the platform of the 2-SM with respect to the base. In the other side, the orientation
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Figure 3. Different possible solutions of the orientation of the platform of the 3-UPU SM.
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workspace of the 2-SM corresponds to the existence of the solution given in Equation
(36), which are given as follows:

�1 � �l021 þp021 þb021
2b01p

0
1

� 1

�1 � �l022 þp022 þb022ffiffi
3

p
b02p

0
2

� 1

8<
: ð37Þ

5. Case study

In this section, an example of a 3-UPU spherical manipulator is presented. The given
data are the following:

• the radius of the circle through points Bi, i= 1, 2, 3, which define the base of the
manipulator rb = 100mm (bi = 122.47mm);

• the platform is defined by the coordinates of points Ai, i= 1, 2, 3 ( pi = 80mm):
For a given length of the three legs of the 3-UPU SM, l1 = 150mm, l2 = 105mm,
l3 = 130mm, the possible solutions of the kinematic model (orientation of the

Figure 3. (Continued).

Figure 4. The variation of the angle h with function of the length of the third leg.
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platform with respect to the base) are shown in (Figure 3). Based on the mount-
ing conditions, there are only two solutions that can be accepted (solutions 1 and
3). In order to show the shape of the orientation workspace of the manipulator,
the model of solution 1 is considered.

Figure 5. (a) The variation of the angle ϕ. (b) The variation of the angle ψ.

Figure 6. Different possible solutions of the orientation of the platform of the 2-SM.
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According to Equation (12), the angle h is a function only of the length of the third
leg of the manipulator. The representation of this function is shown in (Figure 4). For
each value of the angle h, the variation of the two other angles (ϕ and ψ) can be repre-
sented, which are function of the length of the first and the second leg (Figure 5).

For a given length of the three legs of the 2-SM, l01 = l
0
2 = 100mm, the four possible

solutions of the kinematic model (orientation of the platform with respect to the base)
are shown in (Figure 6), (the base has a pyramid form defined by the points B1, B2, B3,
A3). Based on the mounting conditions, there is only one solution that can be accepted
(solutions 3). In order to show the shape of the orientation workspace of the manipula-
tor, the equations of the solution 3 are considered.

6. Conclusion

The forward geometric analytical model for the 3-UPU spherical PM was derived. We
showed that the forward geometric model has up to eight possible solutions. This ana-
lytical model allowed us to investigate the singularity of this type of manipulators and
conclude that its workspace is free from any singularity. A novel 2-DOF spherical
manipulator was then presented and analysed. This mechanism is intended to be used
as sun tracker to convert sun energy to electrical one. Two case studies, one with 3
DOF and one with 2 DOF, showed the efficiency of the presented method.
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