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The objective of this paper is the prediction of the macroscopic behaviour of
open-cell foams in elasticity and viscoelasticity as function of their microstructure by
using a micromechanical approach. Open cellular materials are characterised by
remarkable mechanical properties with light weight. Such materials are largely used
in various applications mainly in energy absorption. Polyurethane foam is used as an
application once its microstructure is majorly described by an open-cell foam. Finite
Element computations are performed on a unit cell subjected to periodic boundary
conditions. Then, a micromechanical model based on Cosserat homogenisation
framework is performed to predict the macroscopic elasticity. The linear viscoelastic
behaviour is deduced from elastic results by taking advantage of correspondence
principle. Finally, the results are confronted to various models developed in
literature.
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1. Introduction

Mechanical properties of open-cell foam materials in elasticity and viscoelasticity have
been widely studied in the literature. They are used in diverse areas of application such
as energy absorption, soundproofing and thermal isolation. Generally, shapes of cells in
foams (Figure 1(a)) are idealised by regular geometric shape such as rhombic dodecahe-
dron, tetrakaidecahedron Zhu, Knott, and Mills (1997), Li, Gao and Roy (2003) and
cubic cells for more simplicity Gibson (2005), Roberts and Garboczi (2002). The
mechanical behaviour was achieved by homogenising the heterogeneous structure of the
material using several approaches such as the theory of beams Zhu et al. (1997), Li
et al. (2003), Mills (2006) and the semi-empirical method with fitting parameters Gib-
son (2005), Huang and Gibson (1991).

This paper deals with the prediction of the macroscopic behaviour of open-cell
foams in elasticity and viscoelasticity as function of their microstructure. Reliable mac-
roscopic behaviour hinges on accurate understanding of their microstructure. Polyure-
thane (PU) foams, considered as solid-void two-phase cellular medium, are topology-
sensitive and, as a result, their mechanical performance depends on the cell micro-archi-
tecture, the relative foam density and the properties of the PU constitutive strut material.
This implies that micromechanical models must incorporate microstructural features of
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cells. Figure 1(a) shows an SEM observation of a PU foam microstructure. It can be
seen that the microstructure of such a foam has a three-dimensional open-cell topology
and may be represented by a tetrakaidecahedron cells packed in a Body-Centred Cubic
(BCC) lattice. As illustrated in Figure 1(b), the tetrakaidecahedron cell contains six
square and eight hexagonal faces. It is created by truncating the corners of a cube.

Based on this microstructural description, FE model is performed on a unit cell
under periodic boundary conditions. In the second part of this paper, a micromechanical
model using Cosserat homogenisation framework will be conducted to predict the elas-
tic properties and extended to viscoelasticity by taking advantage of the correspondence
principle. Numerical and analytical model will be developed and assessed by comparing
them to results of references.

2. Numerical model

2.1. Elasticity

Finite element simulation is performed on a tetrakaidecahedral cell sitting on a BCC lat-
tice. As noted in the introduction, this model represents well the micro-architecture of
the PU open-cell foam. Since the microstructure of this material is periodic along the
three directions, a unit cell is sufficient to provide the information needed to compute
the effective properties at the macroscopic scale provided that periodic boundary condi-
tions are imposed Bornert, Bertheau and Gilormini (2001). Finite element simulations
are, therefore, performed on a tetrakaidecahedral unit cell generated by Abaqus software
(Figure 2(a)). The struts are modelled by Timoshenko beam elements (Abaqus type
B31) having square cross sections. The relative density R is defined as the density of
the cellular material divided by that of the solid from which the cell walls are made:

R ¼ 3A

2
ffiffiffi
2

p
L2

ð1Þ

where L the length of an edge and A its cross-section area. The variation of the relative
density R is performed by adjusting the beam cross-section area.

Figure 1. (a) SEM of foam microstructure; (b) Assembly of ideal tetrakaidecahedra, after
Magnenet, Rahouadj, Bacher, and Cunat (2008).
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In order to apply periodic boundary conditions, we placed the unit cell in a fictitious
cube of dimensions L so that the six square faces of the tetrakaidecahedral unit cell are
tangent to the faces of the cube (Figure 2(a)). The origin of the coordinate system
(O; x; y; z) is placed in the centre of the cube. Next, we added a set of master
(Mð�0:5L; �0:5L; �0:5LÞ) and slave nodes (S1; S2 and S3, respectively, of coordi-
nates ð0:5L; �0:5L; �0:5LÞ, ð�0:5L; 0:5L; �0:5LÞ and ð�0:5L; �0:5L; 0:5LÞ. Peri-
odic boundary conditions involve the following conditions on the displacement fields u:

uiðMÞ � uiðS1Þ ¼ uiðnodes 2 face x ¼� L
2Þ � uiðnodes 2 face x ¼þ L

2Þ; i 2 ½1; 3�
uiðMÞ � uiðS2Þ ¼ uiðnodes 2 face y ¼� L

2Þ � uiðnodes 2 face y ¼þ L
2Þ; i 2 ½1; 3�

uiðMÞ � uiðS3Þ ¼ uiðnodes 2 face z ¼� L
2Þ � uiðnodes 2 face z ¼þ L

2Þ; i 2 ½1; 3�
ð2Þ

In order to eliminate the rigid body displacement, vector u is imposed as
uiðMÞ ¼ 0; i 2 ½1; 3� (M is a fixed node), u3ðS2Þ ¼ 0 (no rotation around x),
u1ðS3Þ ¼ 0 (no rotation around y) and u2ðS1Þ ¼ 0 (no rotation around z).

Due to the cubic symmetry, both the effective Young’s modulus and Poisson’s ratio
can be derived from a tensile test applied along one of the cube axes. A displacement
is applied to one of the slave nodes. The macroscopic stress tensor �r is computed from
the external tractions at the master and slave nodes and the strain tensor �e from dis-
placement components of these nodes (deformed shape under tensile test is presented in
Figure 2(b)). Furthermore, the approach is to identify the significant terms of stress �r
and strain �e tensor with those of the constitutive law.

For a PU open-cell foam, the constitutive material of the solid skeleton is consid-
ered as an isotropic solid characterised by Young’s modulus E ¼ 100 MPa and Pois-
son’s ratio m ¼ 0:45. Table 1 represents the variation of computed foam’s Young’s
moduli and Poisson’s ratio as function of the relative density R (1).

x

y

z

σσ

(a) (b)

Figure 2. (a) FE model for tetrakaidecahedral unit cell; (b) Deformed shape under tensile test
(thin lines).

Table 1. Young’s moduli and Poisson’s ratio as function of the relative density R.

Relative density R (%) 1 2.5 5 7.5 10 14

Young’s modulus (Mpa) 0.90 4.96 17.3 34.6 55.8 95.7
Poisson’s ratio 0.49 0.48 0.46 0.45 0.44 0.42
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2.2. Viscoelasticity

Similar to the elastic analysis, we conducted FE computations on different unit cells of
cellular solids. The unit cell undergoes uniaxial compression creep. The viscoelastic
strut material’s stress relaxation data can be approximated by a rheological model
constituted by a set of Maxwell elements (Figure 4(a)). Then, the relaxation Young’s
modulus ERðtÞ is given by a Prony series:

ERðtÞ ¼ E1 þ
Xn

i¼1

Ei expð�t=siÞ ð3Þ

where E1 the modulus at infinity and Ei those associated with relaxation times si. As
an application, we will use for this analysis, the experimental data obtained by Zhu and
Mills (2006) on solid Bulpren PU. They approaximated the relaxation Young’s modulus
with eight relaxation times si ¼ 10 i�3 of moduli Ei ¼ 9:3 MPa for i ¼ 1 to 8 and
E1 ¼ 28 MPa.

The FE macroscopic creep compliance �JðtÞ can be computed using:

�JðtÞ ¼ �eðtÞ=r0 ð4Þ

where �e is the resulting macroscopic strain computed as detailed in Section 2.1. Figure 3
represents the macroscopic creep compliance evolution �JðtÞ for a relative density
R ¼ 0:05 as compared to its approximation by a power function of Atn. The later
proves to be slow time dependent with a low power coefficient n ¼ 0:0741.

Since macroscopic creep compliance and relaxation modulus are related in Laplace
transform by: Z t

0

�Jðt � sÞ�ERðsÞds ¼ t ð5Þ

The creep compliance and relaxation modulus are inverse for the initial and long
time:

Figure 3. Effective creep compliance predictions of relative density R ¼ 0:05.
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�Jð0Þ �ERð0Þ ¼ 1 and �Jð1Þ �ERð1Þ ¼ 1 ð6Þ

For times between these extremes and a creep compliance variation represented by
a power function of time:

�JðtÞ ¼ Atn ð7Þ

the relaxation modulus yields Findley, Lai, and Onaran (1976):

�EðtÞ ¼ 1
�JðtÞ FðnÞ with FðnÞ ¼ sinðnpÞ

np
ð8Þ

For slow time dependence creep compliance function (n ! 0 in ð7ÞÞ; ð8Þ leads to
FðnÞ ! 1 and an approximated simple inversion relation can be deduced between the
creep compliance and the relaxation modulus:

�ERðtÞ ’ 1=�JðtÞ ð9Þ

This approximation is valid when the variation of creep compliance is slow over
time (Figure 3). The FE macroscopic relaxation modulus is then deduced by combining
(9) and (4).

3. Micromechanical model

Several studies tried to find a link between microscopic and macroscopic properties of
foams by using beam models as a scale transition Gibson (2005), Zhu et al. (1997),
Warren and Kraynik (1997), Li et al. (2003). Among the unit cells used in literature
and regarding the microstructural investigation presented in introduction, we will focus
on the model of tetrakaidecahedron cells packed in a BCC lattice which is well appro-
priate for PU open-cell foams. As illustrated in Figure 1(b), the tetrakaidecahedron cell
contains six square and eight hexagonal faces and is created by truncating the corners
of a cube. Consider a coordinate system (xyz) whose axes are parallel to the truncated
cube axes, whereby the BCC lattice possesses cubic orthotropy and could be
periodically extended in the three orthogonal directions. The Young’s moduli in the

(a) (b)

Figure 4. (a) Rheological model for the strut’s material; (b) RVE under tensile stress.
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lattice vector directions are equal, so only one needs to be evaluated. In order to calcu-
late the homogenised Young’s modulus in the z direction �Ezz, a pair of tensile stress r
is applied in the z-direction as shown in Figure 4(b). The homogenised Young’s modu-
lus is then simply noted by �E. Regarding the mirror symmetry of the loading and geom-
etry on dashed outlines of planes in Figure 4(b), we define a representative volume
element (RVE) cell bounded by the symmetry planes (let (XsYsZs) be the coordinate
system of RVE cell structure).

All the struts of the tetrakaidecahedron cell are assumed to be uniform, elastic and
isotropic (of Young’s modulus E) beams satisfying the classical beam theory. The rela-
tive density R is defined in Section 2 (Equation (1)).

3.1. Elastic behaviour

Our calculation is based on the general Cosserat homogenisation framework presented
in Onck (2002). This concept is based on the idea of considering the translational and
rotational degrees of freedom of material particles as independent variables. The mate-
rial description is then defined by the couple stresses in addition of the ordinary Cauchy
stresses. The Cosserat model is used in description of complex microstructure like gran-
ular and powder material, cellular media, bones and foams. For open-cell foams, the
microstructure can be considered as a system of elastic beams where the force and cou-
ple interaction is essential. By taking into account these rotational degrees of freedom,
the homogeneous medium inherits the couple stress properties of the constituted beam
system. The transition from the microscopic scale to macroscopic one is detailed in
Onck (2002) and resumed in the context of pen cell foams.

Each material point of the macroscopic continuum body is seen as the centre of a
RVE (volume V ) made of a cellular material. The macroscopic stress rij is transmitted
to the cellular RVE through local forces at the RVE’s boundary:

f ðkÞi ¼ rij n
ðkÞ
j dsðkÞ ð10Þ

where f ðkÞi is the force acting on node ðkÞ associated with surface area dsðkÞ and nðkÞj the
unit vector normal to surface dsðkÞ. We solve the equilibrium problem on a microme-
chanical scale by determining displacements. The computation of equivalent macro-
scopic deformation uses an energetic equivalence between the average external work on
the discrete material sample �W and the strain energy density W in the macroscopic
material point:

�W ¼ 1

V

X
k

f ðkÞi uðkÞi � W ¼ 1

2
rmleml ð11Þ

where uðkÞi the node displacement due to the force acting f ðkÞi and eml the effective mac-
roscopic strain measure identified as:

eij ¼ 1

V

X
k

1

2
nðkÞj uðkÞi þ nðkÞi uðkÞj

� �
dsðkÞ ð12Þ

Considering the symmetry of the base tetrakaidecahedra cell and sitting on a BCC
lattice (Figure 4(b)), we define a new coordinate system (XYZ) related to the edges with
unit vectors ði; j; kÞXYZ which are related to those of the BCC lattice ðe1; e2; e3Þxyz by:
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i ¼ e1; j ¼ 1ffiffiffi
2

p e2 � 1ffiffiffi
2

p e3 and k ¼ 1ffiffiffi
2

p e2 þ 1ffiffiffi
2

p e3 ð13Þ

Regarding the large web radius at the junction between edges, it will be assumed in
this calculation that there is no vertex distorsion.

Using the notation of Figure 4(b), the effective macroscopic strain e33 reads:

e33 ¼ 1

V

X
k

nðkÞ3 uðkÞ3 dsðkÞ
� �

ð14Þ

Within this tensile test, the nodes subjected to extension force f ðkÞ are 1, 2, 4 and 5.
We attach to each node ðkÞ an elementary area dsðkÞ (w.r.t. the force equilibrium (10)):
dsð1Þ ¼ dsð2Þ ¼ dsð4Þ ¼ dsð5Þ ¼ 2L2. Substituting in (14) and noting that the node abso-
lute displacement is the same, the effective macroscopic strain e33 leads to:

e33 ¼ 1

4
ffiffiffi
2

p
L
ð8 uð1Þ3 Þ ð15Þ

where the only displacement component uð1Þ3 needs to be determined.
Using the force equilibrium f ð1Þ3 ¼ r33 nð1Þ3 dsð1Þ ¼ 2rL2 and projecting into the

(XYZ) coordinate system gives:

f ð1Þ ¼ t ð0; 0; 2rL2Þxyz ¼ t ð0; FY ; FZÞXYZ with FZ ¼ �FY ¼ 2rL2ffiffiffi
2

p ð16Þ

As we suppose that the rotation of node 1 relative to node 3 about the X axis is
zero, it follows from equilibrium of moments that MX ¼ �FZL

2 .
Making use of the principle of superposition, one may check that:

uð1Þ ¼t 0;
FYL

AE
;
FZL3

12EI

� �
XYZ

ð17Þ

Substituting (16) in (17) and projecting into coordinate system (xyz), the displace-
ment of node 1 in the z direction reads:

uð1Þ3 ¼ r
L3

AE
þ L5

12EI

� �
ð18Þ

and finally, using (15), the homogenised Young’s modulus in the z direction �Ezz

yield:

�E ¼ �Ezz ¼ r
e33

¼ v E with v ¼ 6
ffiffiffi
2

p
I

L4 1þ 12I
AL2

� � ð19Þ

v is a constant depending on the geometrical microstructure parameters.
A similar work can be conducted for the homogenised Poisson’s ratio:
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�m ¼ � e22
e33

¼ 1

2

AL2 � 12I

AL2 þ 12I
ð20Þ

This result shows explicitly the dependence of the effective mechanical properties
on the foam density R, the elastic properties of the constitutive material and the edge
cross section shape which is characterised by the length L of each edge, the cross-sec-
tional area A and the second moment of area I . For square sections with side a, A ¼ a2

and I ¼ a4=12. Using (1), the homogenised Young’s modulus (19) and Poisson’s ratio
(20) for square sections edge reads:

�E ¼ 4
ffiffiffi
2

p
R2

9þ 12
ffiffiffi
2

p
R
E and �m ¼ 3� 4

ffiffiffi
2

p
R

6þ 8
ffiffiffi
2

p
R

ð21Þ

It is worth noting that this result is identical to that obtained by Zhu et al. (1997)
using an energetic method. This result is also close to that of Li et al. (2003) which
used Castigliano’s energy. Its analysis is performed on a tertrakaidecahedral unit cell
and the expressions of Young’s modulus and Poisson’s ratio are, respectively:

�E ¼ c R2

0:0787þ ð1:1719þ 1:2187kð1þ mÞcR E

�m ¼ 0:3421þ 0:2977ð1þ 6ð1þ mÞkÞcR
1þ 0:5955ð25þ 26ð1þ mÞkÞcR

ð22Þ

where c ¼ I=A2 and k are two geometric parameters which depend on the shape of the
edge’s section. For square sections, c ¼ 0:0833 and k ¼ 1:2.

3.2. Viscoelastic behaviour using Laplace Carson Transform (LCT)

At small strains, open cellular materials have a linear viscoelastic response. In other
words, creep strains are proportional to the stress under a constant load at any given
time. Therefore, by taking advantage of the correspondance principle, we will employ
the elastic solutions for solving linear viscoelastic behaviour. The macroscopic visco-
elastic behaviour of cellular materials will be defined in terms of effective relaxation
moduli and equivalently creep compliances using the microscopic ones and the geomet-
ric properties. For a homogeneous linear viscoelastic solid, the three-dimensional consti-
tutive equation is given by Boltzmann’s superposition principle as follows:

rðtÞ ¼
Z t

�1
Cðt � sÞ : _eðsÞds ð23Þ

where CðsÞ is the fourth order viscoelastic relaxation tensor and _e is the second order
strain rate tensor.

The viscoelastic strut material’s behaviour obey the relaxation law presented in
Section 2.2 (Equation (3)).

Using the LCT, the viscoelastic response can be written as the elastic solution when
a change of variables is made. The following correspondence relates the elastic con-
stants to the relaxation functions in the Laplace Carson domain (Salençon, 1983):
E $ s ERðsÞ. Subsequently, we apply this methodology to extend the effective elastic
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moduli obtained in Section 3.1 to linear viscoelastic behaviour. Since the effective
elastic moduli is linear w.r.t. the strut moduli, the application is found to be simple. As
we apply the correspondance principle on elastic solution given by Equation (19), we
have in Laplace–Carson domain:

s �ERðsÞ ¼ v s ERðsÞ with v ¼ 6
ffiffiffi
2

p
I

L4 1þ 12I
AL2

� � ð24Þ

Appling Laplace transform, (24) then yield:

d �ERðtÞ ¼ v d ERðtÞ )
Z t

0

d �ERðsÞ ¼ v
Z t

0

d ERðsÞ ð25Þ

where it was assumed that the material has been stress free for times anterior to zero.
Considering that �ERðþ1Þ ¼ �E and using the relationship between �E and E (19), we
obtain:

�ERðtÞ ¼ v ERðtÞ ð26Þ

This means that, as well as the elastic behaviour, the foam’s relaxation is also line-
arly related by the ratio v to the one of the constitutive solid and that it is sufficient to
replace the elastic modulus by the time-dependent relaxation function. A similar result
was founded by Huang and Gibson (1991) who, starting from the proportionality
between the elastic constants of the open-cell foams and an empirical equation describ-
ing the viscoelastic behaviour of solid polymer, ended with a relative creep compliance
of the foam: �JðtÞ ¼ ðE=�EÞ JðtÞ. Micromechanical foam model of Li et al. (2003) (22)
is also generalised, by means of LCT, to linear viscoelasticity.

4. Application to PU foams

A Bulpren PU open-cell foam is considered as an application to compare predictions of
elastic constants given by FE simulation (Section 2.1) and analytical model
(Section 3.1). The constitutive material of the solid skeleton is considered as an

(a) (b)

Figure 5. Effective properties of a foam w.r.t. the relative density: (a) normalised Young’s
modulus, (b) Poisson’s ratio.
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isotropic solid characterised by Young’s modulus E ¼ 100 MPa and Poisson’s ratio
m ¼ 0:45. The variation of foam’s Young’s moduli and Poisson’s ratio predicted by the
homogenisation models (Equations (21) and (22)) w.r.t. relative density R (1) is plotted
in Figure 5, along with FE results.

It is seen in Figure 5(a) that at low relative densities, all predictions of Young’s
modulus are close. For higher densities, the model based on the Cosserat homogenisa-
tion framework, which is coincides with the Zhu et al. (1997) prediction, gives a good
agreement with FE and the difference with Li et al. (2003) predictions increases with
relative density. As shown in Figure 5(b), despite the fact that the analytical models
emanate from the same idealised microstructure (tetrakaidecahedral cell), there is an
unexpected difference between the Poisson’s ratios predicted by each one. For lower
relative densities, Poisson’s ratio predicted by Cosserat homogenisation framework
comes close to 0:5 and, therefore, an incompressible behaviour. This result agrees well
with that obtained by FE simulations.

For the viscoelastic behaviour, we compare the effective relaxation modulus
obtained by FE simulation (Section 2.2) and analytical model (Section 3.2). The visco-
elastic strut material’s stress relaxation data are approximated by the rheological model
described in Section 2.2 (Figure 4(a)). The rheological model parameters (Equation (3))
are identified using the experimental data obtained by Zhu and Mills (2006) on solid
Bulpren PU. They approaximated the relaxation Young’s modulus with eight relaxation
times si ¼ 10 i�3 of moduli Ei ¼ 9:3 MPa for i ¼ 1 to 8 and E1 ¼ 28 MPa.

We report in Figure 6 the different predictions of the effective relaxation modulus
from different models confronted to FE computations for polymer foams having,
respectively, 0.05 and 0.025 of relative density. As depicted in Figure 6, FE results are
bounded by the analytical predictions.

5. Conclusion

In the first part of this paper, microstructural description of the open-cell foams is pre-
sented. Based on the cell micro-architecture, FE model is performed on a unit cell
under periodic boundary conditions in order to compute the macroscopic elastic and
viscoelastic behaviour. Then, a micromechanical model using Crosserat homogenisation
framework was conducted to predict the properties of open-cell foams. Analytical
model was developed and assessed by comparing them to FE computations. The macro-

(a) (b)

Figure 6. Effective relaxation modulus predictions of polymer foams: (a) Polymer foam of
relative density 0.05; (b) Polymer foam of relative density 0.025.
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scopic elastic behaviour was found to be linearly dependent to the elastic properties of
the strut material. This proportionality depends on both the shape of the edges and the
relative density of the foam. For the low relative density, the analytical predictions of
Young’s modulus and Poisson’s ratio was close to those of FE, but small discrepancy
was observed with increasing relative density particularly for the Li et al. (2003) model.

Elastic solutions were extended to linear viscoelasticity using LCT. The macroscopic
relaxation function follows the same proportional factor that of the elastic behaviour;
the elasticity of the strut material is simply replaced by its relaxation function. The ana-
lytical results have been compared with the Li et al. (2003) model (extended to visco-
elasticity via LCT) and FE computations.

It is worth mentioning that while we modelled open-cell cellular solids by a periodic
model, the real material is random and its microstructure is more complex. The limita-
tion of previously discussed models is that they do not account for the natural irregular-
ities due to imperfect geometry or/and irregular arrangement of cells. This is out of the
scope of the current study, for a thorough analysis of the effect of cell irregularities on
the overall mechanical behaviour, refer for instance to Li, Gaon and Subhash (2006)
and Zhu, Hobdell and Windle (2000).
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