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This paper presents the development of a new 6-node solid wedge element with three
translational and three rotational degrees of freedom per node. It is based on the model
Space Fibre Rotation (SFR). Using the rotation of a material fibre in 3D space, the SFR
approach allows to get a more accurate displacement field, which becomes quadratic with-
out changing the number of nodes of the element. It is economical since only two integra-
tion points are used. In order to evaluate the usual element stiffness, a small penalty
stiffness is introduced so that no zero energy modes appear while preserving the advantage
of reduced integration. Several benchmark tests have demonstrated the improved perfor-
mance of the present element.

Cet article présente le développement d’un élément fini volumique à 6 nœuds avec six
degrés de libertés (trois translations et trois rotations) par nœud. Cet élément est basé sur le
concept SFR (Space Fiber Rotation). En exploitant la rotation d’une fibre matérielle
élémentaire dans l’espace, ce nouveau modèle crée de la valeur en enrichissant la définition
du champ des déplacements qui devient quadratique, tout en maintenant le nombre de
nœuds de l’élément prismatique linéaire. Pour éliminer les modes à énergie nulle dus à
l’intégration réduite (2 points), une matrice de pénalité est introduite. Plusieurs tests
d’évaluation ont démontré l’amélioration des performances de cet élément.
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1. Introduction

In the recent years, large-scale finite element analyses are extensively used in simulating real
three-dimensional (3D) engineering applications. The finite element method is an efficient
technique of analysing the complex physical phenomena of most structures, because it can
reduce dramatically the cost of design process and help engineers to better understand the
deformation processes and to control the quality of the products. The application of this
method in a large class of problems demands for suitable and robust tools for a flexible and
efficient implementation. In the context of the finite element method, in order to meet these
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requirements, it is essential to choose and develop appropriate elements to speed up the
design processes and reduce the computational costs for these problems. With the advent of
more powerful and faster computers, considerable progress has been achieved in developing
fast and reliable elements.

The motivation for the development of the 6-node solid wedge element is based on the
successful application of corner rotation of two-dimensional (2D) membrane elements. A num-
ber of membrane and plate/shell elements using Allman’s rotation (Allman, 1984) have been
presented in Allman (1984, 1988), Bergan and Felippa (1984), Cook (1986) and MacNeal and
Harder (1988). Soon after this, a simple formulation of these 2D elements with rotational
degrees of freedom using the hybrid approach has also been studied in Cook (1987) and Yunus
(1988). Another recent approach for 2D membrane element is developed by Ayad (1993) which
used a virtual plane fibre incorporated at the nodal level, the fibre rotation represented by the
fictitious rotation degree of freedom at the 2D element nodes. It also was used by Ghomari,
Talbi, Ayad, Kerdal, and Ziane (2006) for improving the accuracy of the standard 4-node
element with applications to forming processes of hollow plastics. This method exploits the
reduced integration (RI) scheme with the aid of the zero-energy modes control technique so that
it can maintain the computational efficiency. The two elements developed by application of this
approach are described as: (1) a 3-node triangular element (FRT) does not exhibit hourglass
mechanisms and its equal-rotation mechanisms are stabilised by the stabilisation scheme of
MacNeal and Harder (1988) and (2) a 4-node quadrilateral element (FRQ) exhibits two unusual
types of zero-energy modes (hourglass and equal-rotation mechanisms), in addition to the rigid
body movements, but this is very easily suppressed also by the stabilisation schemes of
MacNeal and Harder (1988).

The following gives a brief review of the solid elements with rotational degrees of freedom
(DOF): much attention has been shifted to the 3D elements; for example, Yunus, Saigal, and
Cook (1989) developed a 3D hybrid element with rotational DOF. The equal-rotation
mechanisms are left unattended. Other works have followed, such as the one in Yunus, Pawlak,
and Cook (1991) and Pawlak, Yunus, and Cook (1991) are solid elements hexahedron and
tetrahedron with rotational DOF. The hourglass mechanisms due to the subintegration and the
equal-rotation mechanisms were suppressed by generalising the 2D stabilisation schemes of
MacNeal (MacNeal, 1989; MacNeal & Harder, 1988). Later, two brick elements equipped with
Allman’s rotation were developed by Sze, Soh, and Sim (1996). These elements are also
plagued by the zero-energy modes that were suppressed by the explicit hybrid stabilisation
scheme. It is interesting to note that Sze and Pan (2000) also proposed two hybrid stress tetrahe-
dron elements with Allman’s rotational DOF. These elements are improved with the aid of the
rotation formulations originating from the work of Allman (1984, 1988) and exhibit four zero-
energy modes. The zero-energy modes are controlled by using four skew symmetric stress
modes. More recently, Tian, Matsubara, and Yagawa (2006) developed a general purpose
tetrahedral element with only corner nodes and using vertex rotational DOF, knowing that, the
boundary treatment method removed the zero-energy modes. Other types of the advanced
tetrahedron element are developed by Matsubara, Iraha, Tomiyama, Yamashiro, and Yagawa
(2004). This element contains also zero-energy modes that are similar to those in tetrahedron
element proposed by Pawlak et al. (1991). Further work with 3D case, an 8-node solid element
SFR8, developed by Ayad (2003) is based upon the Space Fibre Rotation (SFR) concept. Con-
ceptually, the idea of this method is similar to the 2D membrane element FRQ (Ayad, 1993),
knowing that the zero-energy modes corresponding to the RI disappear after the assembly of
several elements without introducing stabilising matrices.

In this paper, a 6-node solid wedge element SFR6 based upon the SFR including
translations and fictive rotations as nodal DOF is developed for the analysis of 3D elasticity
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problems. The intent is to introduce a 6-noded element that is computationally attractive
when compared with the 6- and 15-node wedge elements with translations only as DOF.
The proposed wedge element SFR6 is developed by exploiting the space rotation of a
virtual fibre, this model is called SFR. The classical finite element displacement approxima-
tion is enriched by employing additional terms based on the SFR concept. These terms,
represented by the fictitious rotational degrees of freedom, would result in the creation of
an interesting added value by providing a reliable and accurate solution. This element uses
a RI scheme with only two-points (one-point rule in n� g-plane and the second-order
quadrature along f). Although the RI methods are more advantageous in numerical prob-
lems because of their low computational cost, these techniques can lead to instability due
to zero-energy modes. In order to eliminate the instability of RI methods, a small penalty
stiffness matrix is introduced, using the procedures given by Yunus et al. (1991), Pawlak
et al. (1991) and Zienkiewicz (1977).

The organisation of the remainder of the paper is as follows: Section 2 presents basic
developments. The variational formulation for solid element is presented herein. The principle
of the SFR model and its adaptation to a 6-node wedge element, named SFR6 is also stated.
Additionally, examines the RI element which is integrated by the 1� 2 rule. Section 3 intro-
duces the penalty stiffness for the zero-energy modes control. In Section 4, 10 examples are
presented: firstly, a numerical verification of the patch test is obtained. Nine additional exam-
ples, namely, plane bending of a cantilever beam, Cook’s membrane problem, clamped circu-
lar plate, simply supported 30° skew plate under uniform load, twisted beam, pinched
hemisphere, pinched cylindrical shell, clamped beam and a simply supported square plate
(shear locking test), illustrate the accuracy increase and efficiency of the presented approach
in comparison to the classical displacement-based finite element formulations. Finally,
Section 5 presents concluding remarks.

2. Basic formulation

2.1. Variational formulation

We consider a linear elastic body problem in a state of small strains that occupies the domain
X and its boundary @X; as shown in Figure 1. The equilibrium equation in the mixed config-
uration for a body subjected to body forces f v is then given by:

DivðrÞ þ f v ¼ 0 ð1Þ

where r is the mechanical stress tensor. In order to complete the boundary value problem, the
displacement boundary conditions on @Xu and the traction boundary conditions on @Xt must
be satisfied.

N

tΩ

uΩ

Ω∂

Ω

Figure 1. Domain.
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ui ¼ Ui on @Xu

rijnj ¼ Ti on @Xt

�
ð2Þ

where ni is the ith component of the normal N to the surface of the body in the initial config-
uration, as shown in Figure 1.

The weak form dP of the equilibrium Equation (1) is obtained by introducing the admis-
sible test function du verifying du ¼ 0 on @Xu and integrating by parts, using the divergence
theorem. The following weak form is obtained:

dP ¼
Z
X
rijdeijdX�

Z
X
f vi duidXþ

Z
@Xt

TiduidS

� �
¼ dWint � dWext ¼ 0 ð3Þ

where dWint and dWext are, respectively, the internal and external mechanical virtual works.
The virtual gradient field de is related to du by the following expression:

de ¼ 1

2
ðgradðduÞ þ gradTðduÞÞ ð4Þ

From Equation (3), the weak form can be rewritten as follows:

dP ¼
Z
X
fdegTfrgdX�

Z
X
f vi duidXþ

Z
@Xt

TiduidS

� �
¼ dWint � dWext ¼ 0 ð5Þ

where frg and feg are, respectively, the Cartesian stress and strain vectors given by:

frg ¼ f rxx ryy rzz sxy sxz syz gT ð6aÞ

feg ¼ f exx eyy ezz cxy cxz cyz gT ð6bÞ

with cxy ¼ 2exy, cxz ¼ 2exz and cyz ¼ 2eyz.

2.2. Principle of the SFR model

The SFR model is based on the space rotation of a virtual fibre. Figure 2 shows the geometry
of 6-node wedge element, in which a virtual space fibre iq is incorporated at the nodal level
(Ayad, 2003). The fibre rotation, represented by the rotation vector h, will generate an addi-
tional displacement vector f ðhi; iqÞ (Equation (7)) that would enrich the classical displacement

field uq of point q, used to formulate the standard 6-node solid wedge element.
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Figure 2. Geometry and kinematics of a virtual space fibre (SFR approach).
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The final displacement field will take the following form:

uq|fflfflffl{zfflfflffl}
Displacement field

¼
X
i

Niui|fflfflfflffl{zfflfflfflffl}
Classical approximation of uq

þ f ðhi; iqÞ|fflfflfflffl{zfflfflfflffl}
Additional displacement

ð7Þ

where Ni is the elementary shapes functions and ui is the vector of nodal displacements.

2.3. Approximation of the displacement field for SFR6

The introduction of the rotation vector h of the virtual space fibre iq (Figure 2(b))
leads to an improved expression of the approached displacement field uq of q (Ayad,
2003):

uq ¼
X6

i¼1

Ni ui þ f ðhi; iqÞ ð8Þ

where

f ðhi; iqÞ ¼
X6

i¼1

Niðhi ^ iqÞ; fiqg ¼
x� xi
y� yi
z� zi

8<
:

9=
; ð9Þ

and

fuig ¼
ui
vi
wi

8<
:

9=
;; hif g ¼

hxi
hyi
hzi

8<
:

9=
; ð10Þ

Ni is the usual 6-node wedge shape functions (Batoz & Dhatt, 1990):

hNi ¼ hCA nA gA CB nB gB i ð11Þ

where

C ¼ 1� n� g; A ¼ 1� f
2

; B ¼ 1þ f
2

ð12Þ

with n � 0, g � 0; 1� n� g � 0 and �1 � f � 1.
(xi, yi and zi) are the Cartesian coordinates of node i and (x, y and z) are the
Cartesian coordinates of any point q of the element SFR6 given by the following
approximations:

x ¼
X
i¼1;6

Nixi ; y ¼
X
i¼1;6

Niyi ; z ¼
X
i¼1;6

Nizi ð13Þ

By performing the vector product hi ^ iq, we obtain the following approximation of uq:
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fuqg ¼
u
v
w

8<
:

9=
; ¼

X6

i¼1

Niui þ Niðz� ziÞhyi � Niðy� yiÞhzi
Nivi � Niðz� ziÞhxi þ Niðx� xiÞhzi
Niwi þ Niðy� yiÞhxi � Niðx� xiÞhyi

8<
:

9=
; ð14Þ

or in a matrix form:

fuqg ¼ ½Nq�fung; ½Nq� ¼ � � �
\Nui[
\Nvi[
\Nwi[

� � � i ¼ 1; 6

2
4

3
5 ð15Þ

where

\Nui[ ¼ hNi 0 0 0 Niðz� ziÞ �Niðy� yiÞi
\Nvi[ ¼ h0 Ni 0 �Niðz� ziÞ 0 �Niðx� xiÞi
\Nwi[ ¼ h0 0 Ni Niðy� yiÞ �Niðx� xiÞ 0 i

ð16Þ

and fung is the nodal degrees of freedom vector of SFR6, containing six DOF (three transla-
tions and three fictive rotations) per node:

\un[¼\� � � ui vi wi hxi hyi hzi � � � i ¼ 1; 6 > ð17Þ

From the standard displacement-based finite element functions, the strain vector feg and
the stress vector frg can be expressed as:

feg ¼ ½B�fung ð18aÞ

frg ¼ ½H �½B�fung ð18bÞ

where [B] is the strain–displacement matrix, which is:

½B� ¼ ½L�½Nq� ð18cÞ

with the 3D strain operator given by:

½L� ¼
@
@x 0 0 @

@y
@
@z 0

0 @
@y 0 @

@x 0 @
@z

0 0 @
@z 0 @

@x
@
@y

2
64

3
75

T

ð18dÞ

Therefore, the strain-displacement matrix can be written in the following form:

½B� ¼

hNu;xi
hNv;yi
hNw;zi

hNu;yi þ hNv;xi
hNu;zi þ hNw;xi
hNv;zi þ hNw;yi

2
6666664

3
7777775
ðDim: 6� 36Þ ð19Þ
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The derivatives of the shape functions with respect to the global axes (x, y and z) are
obtained in the standard way as:

hNa;xi ¼ j11hNa;ni þ j12hNa;gi þ j13hNa;fi
hNa;yi ¼ j21hNa;ni þ j22hNa;gi þ j23hNa;fi; a � u; v;w
hNa;zi ¼ j31hNa;ni þ j32hNa;gi þ j33hNa;fi

ð20Þ

where jlk are the inverse Jacobian matrix components.
The Jacobian matrix is defined as follows:

½J � ¼
x;n y;n z;n
x;g y;g z;g
x;f y;f z;f

2
4

3
5 ð21Þ

where it is calculated from the Cartesian coordinates of point q (Equation (13)).
The minimisation of the total potential energy with respect to the nodal displacements

fung results in:

dPe

fdung ¼
R
V e ½B�T ½H �½B�dV e

� �fung � R
V e ½N1�TffvgdV e þ R

Se ½N1�TfTgdSe
� 	

¼ ½Ke�fung � fFeg ¼ 0
ð22Þ

where ½N1� is a (3� 36)-sized matrix relating the mechanical displacement vector of q to the
nodal degrees of freedom vector fung, fFeg is the equivalent nodal force vector and ½Ke� is
the stiffness matrix written as follows:

½Ke� ¼
Z
V e

½B�T½H �½B�dV eðDim: 36� 36Þ ð23Þ

The elasticity matrix for a 3D problem can be written, for a homogeneous and isotropic
material, as:

½H � ¼

2Gþ k k k 0 0 0
k 2Gþ k k 0 0 0
k k 2Gþ k 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

2
6666664

3
7777775

ð24aÞ

The Lamé coefficients are expressed in terms of Young’s modulus, E, and Poisson’s ratio,
m, by:

k ¼ Em
ð1þ mÞð1� 2mÞ and G ¼ E

2ð1þ mÞ ð24bÞ
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2.4. Numerical integration implementation

The integration domain for a 6-node wedge element (SFR6) consists of a prism with triangu-
lar lower and upper surface (Figure 3). The approximation of the part corresponding to the
rotation of space fibre is quadratic in terms of n, g and f.

This 6-node wedge element is usually integrated with a nine-points scheme (Dhondt,
2004). We found that the RI scheme with two points makes the element SFR6 particularly
effective, without affecting the numerical results.

3. Zero-energy mode control

The stiffness matrix for the 6-node wedge element has 18 unknown fictive rotational degrees
of freedom at the nodes. An examination of the properties of the stiffness matrix indicates
that it has zero-energy modes in addition to the six rigid body modes. These zero-energy
modes can be controlled through the introduction of penalty stiffnesses. The element stiffness
matrix integrated exactly using a nine-point rule (Dhondt, 2004) has five zero-energy modes
and when reduced integrated using a two-point rule (Dhondt, 2004) has 18 zero-energy
modes. The stabilisation technique used in SFR6 is designed to suppress the zero-energy
modes, this technique is taken from Yunus et al. (1991) and Pawlak et al. (1991) based on
penalty stiffnesses in each of the faces.

The five equal rotations zero-energy modes (Figure 4) and the three hourglass modes
(Figure 5) can easily be controlled by using a small penalty stiffness similar to that proposed by
MacNeal and Harder (1988) for each of the five faces of the wedge. The remaining 10 zero-
energy modes are suppressed by associating a fictitious rotational stiffness (Batoz & Dhatt,
1992; Zienkiewicz, 1977) to the in-plane rotational degree of freedom of all the faces of the
wedge element, but there is no physical reasoning for the use of such fictitious stiffness.
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η

ξ

ζ

8
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1
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7 9
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Figure 3. Two and nine integration point locations for wedges.

Figure 4. Equal rotation zero-energy mode for a single wedge element.
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Three penalty stiffnesses are developed per face, one to control the face’s equal rotation
zero-energy mode, second to control the face’s hourglass mode only for the quadrilateral face
and another to control the face’s fictitious rotational. These face by face penalty stiffnesses
define a local zero-energy mode control scheme.

To introduce penalty stiffnesses in order to control the zero-energy modes, consider any
face of a wedge and assume that the face lies in a local �x� �y plane (see Figure 6).

Although the face plane of a wedge may be warped, requiring 3D surface definition, for
the purpose of introducing the penalty stiffnesses, a flat projected plan through the centre of
the face is defined and Figure 6 represents such a projected face (Pawlak et al., 1991; Yunus
et al., 1991).

3.1. Equal rotation control

The zero-energy displacement modes have equal rotations and zero displacements at all
nodes, as shown in Figure 4. To eliminate these modes, it is only necessary to add a rank

Figure 6. Zero-energy modes in single face of wedge elements.

Figure 5. Hourglass mode for single wedge element.
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one matrix to all five faces (one of such mode is shown in Figure 6(a) and (c)) for wedge ele-
ment stiffness matrix that has stiffness associated with these modes.

The relative rotation �hr is defined to be the difference between the average of the out-of-
plane nodal rotation degrees of freedom and the average rotation �h0 computed directly from
the element shape functions as:

�hr ¼ 1

n

Xn

i¼1

ð �xi � �h0Þ ð25Þ

where n is the number of nodes (4) for the quadrilateral face and (3) for the triangular face
and �xi is the out-of-plane rotation at any node i.

From the elasticity definition of rotation, the average rotation �h0 is evaluated as the rota-
tion of the 4-node quadrilateral and 3-node triangular element computed at the element centre
and is only function of the translational degrees of freedom:

�h0 ¼ 1

2

@�v

@�x
� @�u

@�y


 �
ð26Þ

�u and �v are the in-plane translations in the face coordinate system and �x; �y are the face system
coordinates.

The relative rotation �hr can be expressed in terms of face system nodal DOF �ui, �vi and �xi:

�hr ¼ hQif�dg ð27Þ

where f�dg ¼ f �ui �vi �xi gT are the face system nodal unknowns and hQi is the relative rota-
tion in terms of face system unknowns (hQi ¼ hQqi for quadrilateral face or hQi ¼ hQti for
triangular face).

The energy penalty (P1) is:

P1 ¼ ða1VGÞh�difQghQif�dg ð28Þ

where a1 is a scaling small factor (10�6 in MacNeal and Harder (1988), Yunus et al. (1991)
and Pawlak et al. (1991)), G is the shear modulus and V is the volume of the wedge element.

The matrix ½T � transforms the global DOF into the local face DOF:

f�dig ¼ ½T �fdig ð29Þ

[T] consists of direction cosines between the global and local face coordinate systems. At
each node, i, the relation between the local face and global DOF is expressed as:

�ui
�vi
�xi

8<
:

9=
; ¼

l11 l12 l13 0 0 0
l21 l22 l23 0 0 0
0 0 0 l31 l32 l33

2
4

3
5

ui
vi
wi

hxi
hyi
hzi

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð30Þ
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where lij is the direction cosine between the local face axis and the global axis.
ui; vi;wi; � � � ; hzi are the global unknown at node i.

Then the relationship for the quadrilateral face unknowns f�dg with the related global
unknowns fdg is:

f�dg ¼
½T �

½T �
½T �

½T �

2
664

3
775fdg ¼ ½sq�fdg ð31aÞ

and for the triangular face:

f�dg ¼
½T �

½T �
½T �

2
4

3
5fdg ¼ ½st�fdg ð31bÞ

Equations (28) and (31) are now combined to obtain:

P1 ¼ ða1VGÞhdi½s�TfQghQi½s�fdg
¼ hdi½Kr�fdg ð32Þ

where

½Kr� ¼ ða1VGÞ½s�TfQghQi½s� ð33Þ

and ½s� ¼ ½sq� for quadrilateral face and ½s� ¼ ½st� for triangular face.
The penalty stiffness ½Kr� is added to the appropriate terms of element stiffness matrix

½Ke� and the resulting stiffness matrix is free from zero-energy equal rotation. It should be
clear that if the new 6-node wedge element is integrated using a nine-point rule then no other
zero-energy modes will appear.

3.2. Hourglass control

The application of RI (two points) may produce a mesh distortion which is related to zero
energy or so-called hourglass modes (Flanagan & Belytschko, 1981). The hourglassing
modes are usually identified with a right parallelepiped and are represented by alternating
rotations plus additional corner translations (one of these zero-energy modes is shown in
Figure 6(b)). The method was developed previously by Yunus et al. (1991) and is applica-
ble to all the quadrilateral faces of the wedge element. Hourglass control is included to
remove the three zero-energy modes from an element. For certain finite element meshes,
these modes may not exist after the element stiffness matrices have been added and bound-
ary conditions applied.

The mode configuration for the quadrilateral face of the wedge element is written as:

�hh ¼ ð �x1 � �x2 þ �x3 � �x4Þ ð34aÞ

European Journal of Computational Mechanics 11



hh ¼ h 0 0 1 0 0 �1 0 0 1 0 0 �1 i

�u1
�v1
�x1

..

.

�x4

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

ð34bÞ

Symbolically,

hh ¼ hHifdg ð35Þ

The penalty function associated with each quadrilateral face is:

P2 ¼ ða2VGÞh�difHghHif�dg ð36Þ

where a2 is a scaling small factor (10�3) in MacNeal and Harder (1988) and Yunus et al.
(1991).

Now by using the transformation relation between the face and global element systems
(Equation 31(a)), the penalty function is rewritten as:

P2 ¼ ða2VGÞhdi½sq�TfHghHi½sq�fdg ¼ hdi½Kh�fdg ð37Þ

where

½Kh� ¼ ða2VGÞ½sq�TfHghHi½sq� ð38Þ

The penalty stiffness matrix ½Kh� for the hourglass modes for each of the faces is then
added to the appropriate location of the global stiffness matrix ½Ke�, so that this new aug-
mented stiffness matrix does not have any hourglassing modes.

3.3. The fictitious rotational stiffness

The use of fictitious rotational stiffness has been proposed by Zienkiewicz (1977) and used
by Batoz and Dhatt (1992) to avoid the problem of singularity in element stiffness matrix.
The fictitious rotational stiffness available to control the remaining 10 (two for face) zero-
energy modes is calculated in the local coordinate system for all faces. This matrix of rank
equal two is associated with local rotation variables �xi. The fictitious rotational stiffness is
evaluated of the 4-node quadrilateral and 3-node triangular Laplacian elements (Batoz &
Dhatt, 1990). The penalty function associated with each face lying in a local �x; �y plane is:

P3 ¼ a3C
Z
A

ð �x	
;x � �x;x þ �x	

;y � �x;yÞ dA ¼ h �x	
ni½K �x�f �xng ð39Þ

where ½K �x� is fictitious rotational stiffness associating to the in-plane rotational degree of free-
dom �xi of the face coordinates.

f �xng ¼ f �x1 �x2 �x3gT for triangular face or f �xng ¼ f �x1 �x2 �x3 �x4gT for quadri-
lateral face.

a3 ¼ 2V
L2max

is a scaling small factor inspired of Ayad (1993).

C ¼ EV
12 is a value inspired of Batoz and Dhatt (1992).
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Lmax is the maximum length of the edges of the wedge element.
The matrix ½T3� transforms the global fictive rotational degrees of freedom into the local

face fictive rotational degrees of freedom with each node i is:

f �xig ¼ ½T3�fhig ð40Þ

f �xig ¼ ½ l31 l32 l33 �
hxi
hyi
hzi

8<
:

9=
; ð41Þ

where lij is the direction cosine between the local face axis �z and the global axis.
The relationship between the local face unknown fictive rotational DOF f �xg and the glo-

bal fictive rotational DOF fhg is:

f �xg ¼ ½s3�fhg ð42Þ

where ½s3� ¼
½T3�

½T3�
½T3�

2
4

3
5 for 3-node triangular face.

or ½s3� ¼
½T3�

½T3�
½T3�

½T3�

2
664

3
775 for 4-node quadrilateral face.

So, the fictitious rotational stiffness associated in unknowns fictive rotational DOF is
rewritten as:

½Kf � ¼ ½s3�T½K �x�½s3� ð43Þ

The penalty stiffnesses ½Kf � for the fictitious rotational for each of the quadrilateral face
and triangular face are then added to the appropriate location of the global stiffness matrix
½Ke� and this new augmented stiffness matrix will not have zero-energy modes.

We conclude the section that the zero-energy modes in SFR6 using the RI, which are the
18 zero-energy modes, are identified to be the rigid body modes. They can be suppressed by
including small penalty stiffness to augment the usual element stiffness. To address the issue of
selecting a penalty parameter value for a1; a2 and a3, a set numerical experiment is performed.

4. Numerical examples

Ten various benchmark problems, selected from the literature (Batoz & Dhatt, 1990; Cook,
Malkus, & Plesha, 1989; Lindberg, Olson, & Cowper, 1969; MacNeal & Harder, 1985; Tay-
lor, Simo, Zienkiewicz, & Chan, 1986; etc.), which are listed in Table 1, have been used to
evaluate the performance of the proposed solid element. Firstly, some variants of the Patch
test are satisfied. After that, several linear elastic tests are performed. We compare the conver-
gence of the results solved by other element models. Table 2 gives the 2D and 3D elements
used here as reference, as well as the abbreviations used in the text. RI scheme with two
points is used to evaluate all the numerical examples. All the computations were carried out
in code REFLEX (Batoz & Dhatt, 1990), a Fortran 90 code developed by the first author of
this work.
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The mechanical boundary conditions used for SFR6 element are exactly the same as that
used for shell finite elements. For example, for clamped boundary conditions, we restrained
the displacements and rotational degrees of freedom.

4.1. Patch test

The Patch test A and C for solids introduced by Taylor et al. (1986) is here explored. The
purpose of this test is to verify the correctness of the computer implementation of the
element. The tests are performed on a distorted hexahedral patch composed of two wedge
elements shown in Figure 7. Initial coordinates (x, y and z) at the eight nodes of the patch are
given in Table 3. The material is linear, elastic and isotropic with properties of Young’s
modulus E = 1000N/mm2 and the Poisson coefficient m is .3.

The Case A is materialised by a homogeneous state of stress with:

rx ¼ 2N=mm2; ry ¼ rz ¼ 0 ð44Þ

The analytical solution is obtained by substituting the strain calculated using Hooke’s
Law, we have the constitutive relations:

Table 1. List of eight benchmark problems.

No. Benchmark problems, Figure number Results

1 Patch test, Figure 7 Tables 3 and 4
2 Plane bending of a cantilever beam, Figure 8 Table 5
3 Cook’s membrane problem, Figure 9 Table 6
4 Clamped circular plate, Figure 10 Table 8; Figure 11
5 Simply supported 30° skew plate, Figure 12 Table 9; Figure 13
6 Twisted beam, Figure 14 Table 11
7 Pinched hemisphere, Figure 15 Table 12; Figure 16
8 Pinched cylindrical shell, Figure 17 Table 13; Figure 18
9 Clamped beam, Figure 19 Table 14
10 Simply supported square plate, Figure 20 Table 15; Figure 21

Table 2. List of element models for comparison.

Symbols Explanation Integration points Refs.

2D elements
T3 (CST) 3-node linear triangular element 1 (EI) –
T6 (LST) 6-node quadratic triangular element 3 (EI) –
FRT 3-node triangular element based

upon the “Plane Fibre Rotation”
concept

1 (RI) Ayad (1993)

3D elements
W6 6-node linear wedge element 2 (EI) –
W15 15-node quadratic wedge element 9 (EI) –
SHB6 6-node solid-shell finite element

based on the assumed strain method
5 Trinh et al. (2011)

SFR6 6-node wedge element based upon
the “Space Fibre Rotation” concept

2 (RI) This paper

Note: RI = reduced integration and EI = exact integration.
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ex ¼ 1

E
ðrx � mðry þ rzÞÞ ¼ rx

E
¼ :002 ð45aÞ

ey ¼ 1

E
ðry � m ðrx þ rzÞÞ ¼ �m

rx

E
¼ �:0006 ð45bÞ

ez ¼ 1

E
ðrz � mðrx þ ryÞÞ ¼ �m

rx

E
¼ �:0006 ð45cÞ

Into the strain-displacement relations:

u ¼ exx; v ¼ eyy; w ¼ ezz ð46Þ

The resulting values for the displacements (u, v and w) at all eight nodes are given in
Table 3. Next, these displacements field is imposing at all nodes for the finite element
backward calculation with the hexahedral patch (Mahnken, Caylak, & Laschet, 2008). For
Case A, whose results are presented in Table 4, the analytical values are reproduced
exactly, a condition established in MacNeal and Harder (1985) and known to ensure con-
vergence of results as mesh is refined (Areias, Cesar, Antonio, & Fernandes, 2003). As
expected, the stresses state with: rx ¼ 2N=mm2, ry ¼ rz ¼ 0 are obtained in two integra-
tion points.

Table 3. Patch test: nodal point coordinates (x, y and z), steady-state displacements, forces and
moments at eight nodes.

Node no.

Coordinates Displacements Forces Moments

x y z u v w Fx Fy=Fz Mx My Mz

1 1.5 1.0 .0 .003 �.0006 .0 �1.3749 .0 .0 �.9131 1.2083
2 4.5 1.5 .0 .009 �.0009 .0 2.3125 .0 .0 1.5260 �1.2847
3 4.0 3.5 .0 .008 �.0021 .0 1.4374 .0 .0 .9826 1.2786
4 1.5 3.0 .0 .003 �.0018 .0 �2.5833 .0 .0 �1.9027 �1.3576
5 2.0 1.5 2.0 .004 �.0009 �.0012 �1.0000 .0 .0 .6788 .4036
6 4.25 1.75 2.0 .0085 �.00105 �.0012 2.0416 .0 .0 �1.2256 �.6788
7 3.75 3.0 2.5 .0075 �.0018 �.0015 1.2708 .0 .0 �1.2829 .5980
8 2.0 2.5 2.5 .004 �.0015 �.0015 �2.1041 .0 .0 2.1371 �.1675

1

2

3

4

5

6
7

8

Figure 7. Patch test: distorted hexahedral patch composed of two wedge elements.
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Finally, Case C is tested using the forces and moments obtained from the finite element
calculation presented in Table 3. The nodes 1, 2, 3 and 4 are fixed in the w-direction, nodes
1 and 2 in u-direction and node 2 in v-direction. The results are presented in Table 4 which
verifies the patch test.

Table 4. Homogeneous stress obtained at all integration points with SFR6.

Stress component

rx ry rz

Case A
Max. value 2 ≈ 0 ≈ 0
Min. value 2 ≈ 0 ≈ 0
Theory 2 0 0

Case C
Max. value 1.99 ≈ 0 ≈ 0
Min. value 1.93 ≈ 0 ≈ 0
Theory 2 0 0

z 

y 

x Pz

100 
10 

1 

A 

B 

C 

A(1,25,0) ; B(1,75,10) ; C(1,16.7,0) ; D(1,50,10) ; E(1,50,0) ; F(1,83.3,10)  

(a) Regular meshes 

(M3)(M2)(M1)

(b) Distorted meshes 

(M5)(M4)

B 

A C 
E 

D 
F 

Figure 8. Plane bending of a cantilever beam and 3D meshing.
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4.2. Plane bending of a cantilever beam

A cantilever beam subjected to a uniform vertical load at the free end is examined as shown
in Figure 8 and is a famous benchmark for testing the sensitivity to mesh distortion. The five
mesh shapes are adopted and are shown in Figure 8. The material properties are: Young’s
modulus E = 107 and the Poisson’s ratio m= .3. We investigate the maximum displacement of
the beam, which is modelled with two, four and six elements and compare the results with
those obtained using the engineering beam theory: wref

C = 4.03. This problem was dealt with
by Batoz and Dhatt (1990) in order to test the performances of 2D membrane elements (CST,
LST …). Ayad (1993) made a similar study to test the reliability of these new 2D elements
FRQ and FRT based on the concept (Plane Fibre Rotation). For comparison reasons, reduced
and exact integration (EI) techniques have also been implemented.

The results obtained for different meshes are presented in Table 5. The present results cor-
respond to the SFR6 element with exact and RI rules. It is found that using RI rule tends to
overestimate displacements. Also, the SFR6 and FRT elements do not present significant dif-
ference in the numerical solutions. For regular mesh, the new element presented in this paper
using SFR possesses the best performance compared by classical 6-node wedge element.
Besides, the SFR6 solution is shown to be equivalent to that of the 15-node wedge element
for the same total degrees of freedom number. For the distorted meshes, it can be seen again
that the model is insensitive to mesh distortion than 6-node wedge element with translations
only as DOF.

4.3. Cook’s membrane problem

This example, in which a skew cantilever was proposed by Cook et al. (1989), the geometry
and the finite element discretisation are shown in Figure 9, shear distributed load at the free
edge. This test also displays the effects of mesh distortion and showing the shear-dominated

Table 5. The resultants of plane bending of a cantilever beam.

Meshes

3D elements 2D elements

SFR6 W6 W15 T3 (CST) T6 (LST) FRT

EI: RI: EI: EI:
EI: 1 EI: 3 EI: 3 RI: 13� 3 2� 1 2� 1 3� 3

M1 .24 2.32 .05 3.00 .05 3.00 .24 2.32
(48) (48) (24) (66) (8) (18) (12) (12)

M2 .89 2.92 .14 3.70 .14 3.70 .89 2.92
(72) (72) (36) (108) (12) (30) (18) (18)

M3 1.54 3.07 .26 3.84 .26 3.84 1.54 3.07
(96) (96) (48) (150) (16) (42) (24) (24)

M4 .44 1.99 .06 3.02 .06 3.02 .44 1.99
(72) (72) (36) (108) (12) (30) (18) (18)

M5 .65 2.02 .10 3.09 .10 3.09 .65 2.02
(96) (96) (48) (150) (16) (42) (24) (24)

Analytical (Engineering Beam Theory): wref
C = 4.03

Note: Number of degrees of freedom denoted in parenthesis.
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behaviour. The results of vertical deflection at point C, the maximum principle stress at point
A and the minimum principle stress at point B are listed in Table 6. In this problem, the pres-
ent element is also compared to the 2D elements and 3D elements. The presented element
exhibits the best convergence of displacements and stresses compared to the corresponding
non-rotational element W6. The performance of the element is comparable with that of the
W15 element. Judging from three significant meshes, FRT and the present element yield iden-
tical results.

Table 6. Results of Cook’s problem.

Elements

Mesh: (elem. along the
length� elem. along the width� thick. Elem.)� 2

2� 2� 1 4� 4� 1 8� 8� 1

Deflection at point C: VC (reference solution: 23.96 Yuqiu &Yin, 1994)
2D elements FRT 21.20 22.88 23.57

CST 11.99 18.28 22.02
LST 23.07 23.75 23.87

3D elements W6 11.99 18.28 22.02
W15 23.07 23.75 23.87
SFR6 21.20 22.88 23.57

Max. principle stress at point A: rAmax (reference solution: .2362 Yuqiu &Yin, 1994)
2D elements FRT .175 .213 .233

CST .076 .149 .199
LST .261 .260 .242

3D elements W6 .076 .149 .199
W15 .261 .260 .242
SFR6 .175 .213 .233

Min. principle stress at point B: rBmin (reference solution: �.2023 Yuqiu &Yin, 1994)
2D elements FRT �.308 �.176 �.200

CST �.059 �.099 �.156
LST �.216 �.205 �.202

3D elements W6 �.059 �.099 �.156
W15 �.216 �.205 �.202
SFR6 �.308 �.176 �.200

CB

h = 1 

48

16 

44 

q =1

A

Y

X
Z

Figure 9. Cook’s Problem (E= 1.0, m= 1/3): Left, geometry. Right, finite element mesh consisting of
(2� 2� 1)� 2 wedge elements.
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4.4. Clamped circular plate

Figure 10 shows a quadrant of a clamped circular plate under uniform loading modelled by
N = 8, 18, 76 and 128 elements. For W15, only one element is used in the through-thickness
direction, while for W6 and SFR6 two elements are considered. This classical benchmark
problem is used to demonstrate that 3D solid elements are free from shear locking when
irregular shaped elements are used. The geometric and material data are specified in Table 7.
The reference solution is quoted by Timoshenko and Woinowsky–Krieger (1961). Some
results of the given problem solution are given in Table 8 and are compared with the results
by W6 and W15 elements. The performance of our element is quite satisfying and demon-
strates a rather quick convergence to the exact values compared by the W6 element. For the
ratio R/h= 50 and 5, the numerical results are always more accurate than the W6 element in
all mesh configurations which get closer to that of W15 element. For the ratio R/h= 2, the
SFR6 element is more accurate than the 15-node wedge element W15. The normalised central

Table 8. Central deflections for clamped circular plate.

Elements

N

Theory8 18 76 128

R/h = 50
W6 215.24 578.29 1591.3 2337.2 9783.51
W15 6395.4 7717.2 9430.5 9541.8
SFR6 7385.3 8159.2 9368.2 9504.6

R/h = 5
W6 7.001 8.701 9.951 10.11 11.55
W15 10.45 10.55 10.99 11.26
SFR6 9.175 10.03 11.04 11.32

R/h = 2
W6 1.126 1.153 1.171 1.180 1.339
W15 1.177 1.186 1.204 1.211
SFR6 1.237 1.237 1.333 1.337

Figure 10. Circular plate meshes.

Table 7. Geometric and material data.

Radius R= 5
Thickness h = .1, 1.0 and 2.5 (R/h= 50, 5 and 2)
Young’s modulus and Poisson’s ratio E= 10.92; m= .3
Load q = 1.0
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deflection for plate thickness h = .1 (R/h= 50) with respect to the total number of degrees of
freedom in a log scale is shown in Figure 11. From this figure, it can be found that the pres-
ent element can converge to the exact solution more quickly.

4.5. Skew plate under uniform load

We consider the plate bending problem shown in Figure 12, this model was first studied by
Morley (1963). The square plate of dimension L� L, with uniform thickness h, material prop-
erties E= 10.92, m= .3, is a simply supported 30° skew plate subject to uniform pressure. Five
meshes are used consisting of N= 4, 8, 16, 24 and 32 elements on each side. For that case,
only one W15 element in the thickness direction is used, while two for W6 and SFR6. The
typical geometry of the skew plate analysed are shown in Figure 12, where an example of a
4� 4 (N= 4) mesh which consists of (4� 4� 1)� 2 elements is also shown. The normalised
values of the deflection at the central point are given in Table 9 for different plate thickness
(h= .1 and 1.0). The results obtained for the SFR6 element are significantly better than the
standard 6-node wedge element. We also compare the results obtained with the SFR6 element
and
15-node wedge element. Figure 13 presents the convergence of the normalised central deflec-
tions under the total number of degrees of freedom in a log scale. It is found that the SFR6
element used is slightly more accurate than the W15 element for thin plate (L/h = 1000). In
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Figure 11. Normalised central deflection for clamped circular plate (R/h = 50).
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Mesh: (4×4×1) ×2 SFR6 

Figure 12. The 30° skew plate: subjected to uniform load (q= 1.0), and is simply supported on all four
edges (boundary condition: w= 0).
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the thick plate case (L/h = 100), the performance of the present element is comparable with
that of the W15 element.

4.6. Twisted beam

The clamped thick twisted beam shown in Figure 14, under in-plane and out-of-plane unit
loading at its free end, is analysed. This problem was proposed by MacNeal and Harder
(1985). Originally, this test was introduced to investigate the performance of finite elements in
case of warped structures. The geometric and material data are specified in Table 10. The beam
is gradually twisted, so that its free end is rotated by 90° in accordance to its clamped end.
This problem constitutes a good test for membrane locking (Belytschko, Wong, & Stolarski,
1989). To test whether the element exhibits membrane locking, two thickness h’s are consid-
ered. The normalised results are summarised in Table 11. In this example, the present element
is also compared to the assumed strain element SHB6 developed by Trinh, Abed-Meraim, and
Combescure (2011). These results are in agreement with those obtained by SHB6 element. It
is clear that superior accuracy of the SFR6 elements over the standard 6-node element is
observed. Although the twisted beam is very thin (for h= .0032), the results of the SFR6
element are not corrupted by the membrane locking compared with W6 element. It is observed
that only the W6 element exhibits membrane locking.

Table 9. Normalised central deflections for 30° skew plate.

Elements

N
Reference

4 8 16 24 32 [wc ¼ wc103D=qL4]

L/h = 1000
W6 .001 .005 .022 .046 .145 Kirchhoff plate theory Morley (1963)
W15 .632 .691 .794 .865 .912 .408
SFR6 .752 .870 .922 .943 .972

L/h = 100
W6 .130 .306 .553 .691 .732 3D solution (Babuska & Scapolla, 1989)
W15 .781 .946 1.010 1.012 1.001 .4235
SFR6 .755 .872 .929 .948 .985
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Figure 13. Normalised central deflection for 30° skew plate (R/h= 1000).
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4.7. Pinched hemisphere

The pinched hemispherical shell with an 18° circular cutout at its pole is under alternating
radial point forces at 90° intervals, proposed by MacNeal and Harder (1985), is further used
to evaluate the performance of the proposed element in doubly curved structures. According
to symmetry boundary conditions, only one quarter of the shell is modelled by uniform
meshes as illustrated in Figure 15. The shell’s dimensions are: radius R = 10.0m and thickness

Figure 14. Twisted beam modelled by (12� 2� 1)� 2 elements.

Table 10. Geometric and material properties of the twisted beam problem.

Length; width; and thickness L= 12; b = 1.1; h = .32 and .0032
Young’s modulus; Poisson’s ratio E= 29� 106; m ¼ :22
Applied load p = 1.0

Table 11. Normalised displacement at point A of the twisted cantilever beam problem.

Elements

Mesh: (elem. along the length� elem. along the
width� thick. elem.)� 2

Reference12� 2� 1 24� 4� 1 36� 6� 1

In-plane loadings: PZ = 1.0, PY = 0
h= .32
W6 .47 .73 .83 WA= .005424
W15 .99 .99 .99
SHB6 .78a .93 .97b

SFR6 .86 .91 .93

h= .0032
W6 .000 .001 .002 WA= 5316
SFR6 .65 .73 .89

Out-of-plane loadings: PY = 1.0, PZ = 0, h= .32
W6 .45 .73 .83 VA= .001754
W15 .99 1.00 1.00
SFR6 .91 .94 .96

aMesh = (12� 4� 1)� 2
bMesh = (36� 8� 1)� 2.
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h= .04m. The material properties are: Young’s modulus is E= 6.825� 107Pa and the Pois-
son’s ratio is m = .3. The reference solution is UA=�VB = .094m when p = 1.0N, which was
obtained by MacNeal and Harder (1985). Simo, Fox, and Rifai (1989) found, however, that
the analytical solution of this problem yields a value of .093m, which is used as a reference
solution. Regular meshes with N = 2, 4, 6, 12 and 24 elements on each side of the hemisphere
have been considered. The predicted radial displacements at the points of loading are com-
pared with the converged solution of W6 and W15 elements. The comparisons between the
calculated displacements are given in Table 12 and plotted in Figure 16. We also remark that
SFR6 results are better than those of all the non-rotational elements (W6 and W15) and it
converges quickly to the reference solution.

Figure 15. A quarter of the hemispherical shell with an 18° circular cutout at its pole.
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Figure 16. Pinched hemispherical shell. Convergence of the normalised displacement under the load
with respect to the total DOF number (log scale).

Table 12. Results of the hemispherical shell with 18° hole.

Elements

Mesh: (N�N� thick. elem.)� 2

Ref.2� 2� 1 4� 4� 1 6� 6� 1 12� 12� 1 24� 24� 1

W6 .00003 .00005 .0001 .0003 .0014 .093
W15 .0009 .0049 .0167 .0681 .0908
SFR6 .0426 .0482 .0655 .0820 .0910
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4.8. Pinched cylindrical shell

Figure 17 shows a pinched cylinder subjected to a pair of concentrated loads. The cylinder is
covered with rigid diaphragms so that only the displacement in the axial direction is allowed
at the ends. Taking the advantage of the symmetry, only one octant of the cylinder is mod-
elled and an N = 2, 4, 8, 12, 14 and 24 regular mesh is employed. The analytical solution of
the problem given by Lindberg et al. (1969) is: �1.82488� 10�7m. The computed displace-
ments at the loading point are compared to the analytic solution given in Table 13. And the
convergence test of this element is also plotted in Figure 18. Obviously, the present element
appeared to be the best performers compared to the W6 and SHB6 elements. For N = 2 and 4,
the SFR6 element results are better than those of W15 element. Besides is of comparable pre-
cision to W15 element for N= 8, 12, 14 and 24. SFR6 element works well in this problem,
indicating that this element can avoid not only shear locking but also membrane locking; this
is not unexpected since membrane locking occurs primarily in curved elements (see, e.g.
Stolarski & Belytschko, 1983).

4.9. Clamped beam

This example was proposed by Areias et al. (2003). As shown in Figure 19, there is a
clamped beam with Young’s modulus E = 1500 and Poisson ratio m = .25. The clamped
beam of dimension 2� 10� 2 is modelled by three meshes with 4, 8 and 12 wedge ele-
ments. The effect of the sensitivity to mesh orientation of the SFR6 solid element on the
accuracy of results can be conveniently addressed by studying the two mesh types (see
Figure 19) of clamped beams. It is also a cantilever beam under pure bending (case A) or
transverse bending (case B) loads. The results in the beam and the effect of the sensitivity
to mesh orientations on the accuracy of results are investigated in detail. The normalised

Table 13. Displacement for the pinched cylinder with diaphragms.

Elements

Mesh: (N�N� thick. elem.)� 2

Ref.2� 2� 1 4� 4� 1 8� 8� 1 12� 12� 1 14� 14� 1 24� 24� 1

Wref =�WC Eh/P
W6 2.434 5.553 12.401 21.116 24.177 64.081

164.24
W15 15.46 43.22 107.01 137.74 145.47 154.05
SHB6 – – 39.417a – 107.82b –
SFR6 23.16 66.90 106.59 121.83 127.35 150.75

aMesh (10� 10� 1)� 2.
bMesh (30� 30� 1)� 2.

Geometry and material:  
L = 6 m , R = 3 m, h = 0.03 m
Ε = 3 1010 Pa, ν = 0.3  
Boundary condition:  
U = W = θY  = 0  along AD 
Sym.:
W= θX  = θY = 0  along AB 
V = θX  = θZ = 0  along BC 
U = θY  = θZ = 0  along CD 
Load:
PZ  = − 0.25 N of point C 

R X, U  

Z, W 
Y, V 

P=1 

A 

B 
D 

C 

P=1 

L Diaphragm 

Mesh N = 2: (2×2×1)×2 

Figure 17. Pinched cylindrical shell.
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results of deflection at point C are listed in Table 14. It can be seen that for the mesh type
(2), the proposed solid element SFR6 produced acceptable answers. As to the mesh type
(1), the accuracy obtained is not as good as that in mesh type (2). Obviously, the proposed
SFR6 element is the more accurate compared to the classical six node wedge element for
the two mesh types. From the observation of the table, it is possible to conclude that the
SFR model is less sensitive to mesh orientation than 6-node wedge element with
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Figure 18. Pinched cylinder with end diaphragms. Convergence of the normalised displacement under
the load with respect to the total DOF number (log scale).

Table 14. The normalised results of deflection at point C for clamped beam tests.

Mesh

Elements

W6 W15 SFR6

Type 1 Type 2 Type 1 Type 2 Type 1 Type 2

Load case (A): normalised deflections at point C, exact solution: 100
(1� 2� 1)� 2 .09 .64 .96 .97 .58 .89
(1� 4� 1)� 2 .19 .86 .98 .98 .69 .92
(1� 6� 1)� 2 .24 .90 .99 .99 .86 .95

Load case (B): normalised displacements at point C, exact solution: 102.6
(1� 2� 1)� 2 .11 .59 .93 .95 .56 .80
(1� 4� 1)� 2 .21 .83 .97 .97 .69 .90
(1� 6� 1)� 2 .25 .88 .98 .98 .88 .96

Figure 19. Clamped beams, 3D meshes with eight SFR6 elements. Left, mesh type (1), load case (A).
Right, mesh type (2), load case (B).
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translations only as DOF, much better than W6 element for mesh type (1). From this exam-
ple, we see that even for the mesh type (1), the W15 element gives very accurate results
when compared with the exact solution.

4.10. Simply supported square plate problem

The purpose of this test is to see if shear locking occurs as the thickness of a square
plate is reduced in comparison to its lateral dimensions. A square plate with a simply
supported boundary condition at all edges is considered. This problem is illustrated in
Figure 20. The plate is subjected to uniformly distributed load q= 1. Owing to symmetry,
one quarter of the plate is considered and discretised with (6� 6� 1)� 2 SFR6 elements.
Central deflections are normalised with Kirchhoff plate theory solution (see Timoshenko
& Woinowsky-Krieger, 1961). The normalised results of the central deflection are shown
in Table 15. And the convergence tests of the normalised transverse displacement in terms
of the length to thickness ratio are also plotted in Figure 21. It can be recognised that
W6 element still shows considerable shear locking, whereas the SFR model renders suffi-
cient results even for an extremely thin plate. Though SFR6 element does not suffer from
shear locking, its accuracy is inferior to that of W15. Nevertheless, SFR6 seems to suffer
from the Poisson’s thickness locking due to the use of more than one element across the
thickness. Therefore, more than one element (two elements here) should be used across
the thickness in order to obtain a good result in bending dominated problems.

Table 15. Normalised central deflection for simply supported square plate under a distributed load.

L/h SFR6
SFR6

W6
W6

W152 th. el. 2 th. el.

5 1.08 1.23 1.01 1.11 1.32
10 .91 1.05 .75 .84 1.11
50 .84 .98 .19 .21 1.01
100 .83 .97 .07 .07 1.00
200 .83 .97 .02 .02 .99
250 .83 .97 .01 .01 .99
103 .82 .96 .00 .00 .99
104 .80 .91 .00 .00 .98

Note: th. el., elements across the thickness.

L 

L = 1000

Sym. 

y 

x

Sym. 

E = 210000 
ν = 0.3 
L/h = 5, 10, 50, 100, 200, 250, 103 and 104 

Figure 20. Simply supported square plate with uniform loading – plan view.
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5. Summary and conclusions

In this paper, a new 6-node solid wedge element called SFR6 with six degrees of freedom
(three translations and three fictive rotations) per node based upon the SFR concept is devel-
oped. To this, SFR is introduced to enrich the displacement field. After identifying all the
zero-energy modes, stabilisation scheme is formulated by using the penalty stiffnesses. The
new element passes the patch test and with mode control does not contain any zero-energy
modes. The goal of this paper is to present a new 6-node solid wedge element with only two
integration points which is significantly superior to the classical 6-node wedge element with
translation only and is not computationally as expensive as a 15-node wedge element. From
numerical simulations, it is found that the present element exhibits favourable behaviour in
3D structures. Additionally, the present formulation is less sensitive to mesh distortion com-
pared with the linear 6-node wedge element and is free of shear locking and membrane lock-
ing. Overall, the present element has proven its capability to solve different structural
problems successfully and efficiently. The results presented in this paper are concerned with
linear elasticity at small strains support this effort.
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