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This paper demonstrates a modelling approach for graphene and related nanostructures by
embedding molecular mechanics equations into finite element codes. Atomistic interactions
are modelled using specialty finite elements, based on analytical expressions of molecular
mechanics equations. The major advantages of the proposed approach can be summarised
as: (i) direct integration into well-established software; (ii) more realistic representation than
other similar approaches; and (iii) user-friendly way to create an atomistic structure. Exam-
ples of incorporating the developed finite elements into Abaqus are also demonstrated. The
introduced approach does not claim to replace other well-established molecular mechanics/
dynamics software, but to provide a more intuitive structural modelling approach for
graphene.
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Introduction

Graphite monolayer, or graphene, is one of the most theoretically analysed materials in the lit-
erature as the basis for the analysis of other nanocarbons like carbon nanotubes, fullerenes,
etc. The recent discovery of its stable crystalline form (Gaim & Novoselov, 2007) has trig-
gered a whole new research effort targeting graphene itself. Numerous applications have
already been proposed; the already proven mechanical and electrical properties (Geim, 2009)
have boosted the efforts towards the development of nano-electro-mechanical devices
(Poetscke, Rocha, Foa Torres, Roche, & Cuniberti, 2010; Shi et al., 2012), while novel
applications have been envisioned regarding energy production, storage and conversion
(Brownson, Kampouris, & Banks, 2011; Sun, Wu, & Shi, 2011).

The traditional modelling tools including molecular dynamics, Density Functional Theory
(DFT) calculations, tight-binding, ab initio methods, etc. have been successfully implemented
by various researchers and the properties of graphene have been predicted. However, their
use becomes rather impractical for studying a material in microscale. In addition, the assump-
tions made during a molecular simulation, like periodicity and structural integrity, may not
apply in a real case making predictions invalid and leading to faulty material modelling.
Another issue is that microscale material modellers are not always familiar with the details of
nanoscale simulations and their range of validity, leading to scale mismatches and incompati-
bilities. Most of the available molecular mechanics software packages are designed to treat
atomistic structures as a whole and provide no capability to apply concentrated loads on indi-
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vidual atoms or regions. However, sometimes it is necessary to perform localised structural
investigations.

In order to alleviate such issues, various approaches have been proposed. Homogenising
techniques (Caillerie, Mourad, & Raoult, 2006; Le Dret & Raoult, 2011) have become popu-
lar; this approach replaces the discrete graphitic lattice with an effective medium. Graphene is
thus replaced by an equivalent continuum (Avila, Eduardo, & Neto, 2011). Another efficient
approach is the use of finite element methods by taking advantage of similarities in molecular
mechanics. A specialty molecular finite element based on the repetitive hexagonal pattern of
the graphitic lattice has been reported (Theodosiou & Saravanos, 2007). Another common
method is to replace stretching, bending and torsion energy terms with an effective beam
element whose nodes represent carbon atoms (Parvaneh, Shariati, Torabi, & Sabeti, 2012;
Tserpes, 2012). Although these approaches are relatively easy to implement, various questions
rise concerning their degree of realistic representation of the atomic interactions in the
equilibrium equation, especially for the modelling of bending, torsion and non-bonded energy
terms. For instance, for a pair of atoms represented with a two-node beam element, bending
stiffness is expected. However, in nature, this type of interaction is only activated by the
presence of a third atom.

The approach presented in the following sections is based entirely on molecular mechan-
ics equations and has the following advantages: (i) interactions are calculated analytically.
The interatomic potential is calculated using a well-established formulation, whose derivation
directly provides nodal forces without the need of numerical interpolation. (ii) The molecular
mechanics formulation provides analytical expressions for the imbalance vector and stiffness
matrix of the structure, leading to faster solution convergence. (iii) Atomic interactions are
modelled in a realistic way, i.e. as atomic forces/moments and not as an effective continuum.
Moreover, this approach allows for incorporation into well-established commercial software
which provides additional benefits like, (i) use of optimised solvers and computational tech-
niques, (ii) direct connection to other finite element (FE) models, (iii) assembly of nano/
micro-structures, etc.

Modelling approach

Molecular mechanics formulation

For the needs of the present work, the total energy of the system V due to the atomic
interactions has been expressed as the sum of numerous energy terms:

V ¼ Vstr þ Vang þ Vdih þ Vvdw ð1Þ

following a Morse-type formulation in the respective energy terms included in Equation (1);
subscripts “str”, “ang”, “dih” and “vdw” express bond stretching, angle bending, dihedral
angles and non-bonded interactions, respectively. Alternative energy formulations may be
successfully employed as well (Brenner, 1990). However, the use of Morse-type potential
may easier lead to conclusions about the effects of each interaction mechanism. Analytical
expressions for each term will be reported within the context of element descriptions, while
the parameter set used is enlisted in Table 1 (Natsuki & Endo, 2004; Sakhaee-Pour,
Ahmadian, & Naghdabadi, 2008). The equilibrium state under any loading can be identified
by minimising Equation (1).

The equilibrium equations can be obtained in variational form from the minimisation of
the total energy ðPÞ:
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minðPÞ ¼ minðV � F � uÞ; ð2Þ

where V is the total energy as calculated by Equation (1), F is the vector of the external
forces and u are the atomic displacements, using extended vector notation.

Using a Taylor expansion series, the total energy can be recast:

P ¼ P0 þ oP
ou

� duþ 1

2
� duT � o

2P
ou

� duþ � � � ð3Þ

The following quantities can be then introduced:

w ¼ oP
ou

; ð4Þ

½�K� ¼ 1

2
� o

2P
ou2

: ð5Þ

Therefore, Equation (3) becomes:

P ¼ P0 þ w � duþ duT � ½�K� � du: ð6Þ

From Equations (2) and (4), it is clear that:

w ¼ oP
ou

¼ o
ou

ðV � F � uÞ ¼ oV
ou

� F: ð7Þ

Vector w expresses the equilibrium between internal and external forces and it is termed
Imbalance Vector, while ½�K� in Equation (5) is actually a linearised (tangential) stiffness
matrix.

According to the Principle of Virtual Works, the work produced by a virtual displacement
du will be:

dP ¼ du � wþ du � ð½ �K� � duÞ; ð8Þ

as derived from Equation (6).

Table 1. Parameter set used for the calculations required by Equation (1).

Parameter Value

De 1.807 eV
β 38.43 nm
r0 0.142 nm
kh 5.617 eVrad�2

ks 0.754 rad�4

h0 2π/3
kd 1.735 eVrad�2

u0 0
σ 0.34 nm
ɛ 2.41265e–3 eV
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There are numerous methods to predict the atomic positions in the equilibrium state. The
simplest one is perhaps the Newton–Raphson method or one of its modified variants (Suli &
Mayers, 2003; Ypma, 1995). First, the atomic positions are roughly estimated. A better
estimate is obtained if a corrective term du is added to the vector of atomic positions.
This term is calculated in Equation (8) by setting dP ¼ P�P0 ¼ 0:

½�K� � du ¼ �w: ð9Þ

Equation (9) can be used repeatedly until the optimal equilibrium state is obtained.

Finite element approach

Instead of performing energy minimisation on the whole system, the graphitic lattice can be
diminished to an assembly of special finite elements, each one describing an individual energy
term in Equation (1). Then, the elemental stiffness matrices can be used to assemble the global
ones, which can be used in Equation (9) for the calculation of the equilibrium state.

The following part describes the details of the developed finite elements. Each element is
uniquely identified in this work using the notation “Un”, where n is a unique integer, e.g. U1,
U2, etc. Although this is a custom notation, n has been properly selected to reflect the
number of nodes composing each element. It is assumed that each atom coincides with an
elemental node, so that the solution of the finite element system automatically provides the
respective atomic configuration. Another assumption is that each node has three degrees of
freedom corresponding to motion along the axes of the global Cartesian system ðx; y; zÞ. This
implies that self-rotation of atoms is not accounted for. The latter assumption has no impact
in calculations; as shown later, all needed quantities are expressed in terms of interatomic
distances and nodal Cartesian coordinates, therefore, rotational degrees of freedom have been
ignored, in order to limit the required amount of computational resources.

In order to express all derivatives in terms of Cartesian coordinates, the chain rule has
been successively applied. The extent of the analytical expressions is prohibitive considering
paper size limitations, thus, only a couple of force and stiffness terms are presented for each
element in order to demonstrate the length and complexity of the derived expressions.
However, all terms may be provided in their analytical form upon request.

Bond stretching interactions

Atomic bonds are pair wise interactions including atoms connected with a covalent bond.
A special two-node element is necessary, termed thereafter as U2. Each atom is represented
by an elemental node (Figure 1). The interaction between the two atoms is described by:

Figure 1. Representation of the bond stretching interaction with a U2 element.
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VstrðrÞ ¼ De � 1� e�bðr�r0Þ� �2�1
n o

: ð10Þ

The element length is actually the interatomic distance required in the previous equation.
Assuming nodes 1 and 2 are located at points p1ðx1; y1; z1Þ and p2ðx2; y2; z2Þ, respectively, the
interatomic distance is clearly:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2

q
; ð11Þ

thus, the force on node 1 along x direction is:

ðf str1 Þx ¼ �oVstr

ox1
¼ �oVstr

or
� or
ox1

¼ 2 � De � b � e�bðr�r0Þ � ½e�bðr�r0Þ � 1� � ðx1 � x2Þ
r

; ð12Þ

while the first term of its stiffness matrix is:

k11 ¼ o2Vstr

ox21
¼ o

ox1

oVstr

ox1

� �

¼ 2 � De � b2 � e2bðr0�rÞ � ðx1 � x2Þ2
r2

� 2 � De � b � ebðr0�rÞ � ½ebðr0�rÞ � 1�
r

þ 2 � De � b2 � ebðr0�rÞ � ½ebðr0�rÞ � 1� � ðx1 � x2Þ2
r2

þ 2 � De � b � ebðr0�rÞ � ½ebðr0�rÞ � 1� � ðx1 � x2Þ2
r3

: ð13Þ

In the same sense, all force and stiffness components can be analytically calculated,
leading to a 6� 1 force vector and a 6� 6 stiffness matrix.

Angle bending interactions

Angle bending is actually the interaction of two bonded pairs sharing a common atom
(Figure 2). A three-node element is therefore necessary, termed thereafter as U3. The energy
term involved can be expressed as:

VangðhÞ ¼ 1

2
khðh� h0Þ2½1þ ksðh� h0Þ4�; ð14Þ

Figure 2. Definition of the angle included in angle bending calculations.
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where h is the angle formed by the two bonds. Assuming nodes 1, 2 and 3 are located at
points p1ðx1; y1; z1Þ, p2ðx2; y2; z2Þ and p3ðx3; y3; z3Þ, respectively, the angle h can be expressed
in terms of the Cartesian coordinates as:

h ¼ cos�1 ðp2 � p1Þ � ðp3 � p1Þ
jp2 � p1j � jp3 � p1j

� �
; ð15Þ

while the atomic distances will be:

r21 ¼ r12 ¼ jp2 � p1j; ð16Þ

r31 ¼ r13 ¼ jp3 � p1j: ð17Þ

The first force term for this element is provided by:

ðf ang1 Þx ¼ �oVang

ox1
¼ 2 � ks � kh � A1 � A5

2

A3
þ kh � A2 � ðks � A4

2 þ 1Þ � A1

A3
; ð18Þ

where

A1 ¼ x2 � 2x1 þ x3
r12 � r13 þ 2 � ðx1 � x2Þ � A4

2 � r312 � r13
þ 2 � ðx1 � x3Þ � A4

2 � r12 � r313
; ð19Þ

A2 ¼ h0 � cos�1 A4

r12 � r13

� �
; ð20Þ

A3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

4

r12 � r13

s
; ð21Þ

A4 ¼ ðx1 � x2Þðx1 � x3Þ þ ðy1 � y2Þðy1 � y3Þ þ ðz1 � z2Þðz1 � z3Þ; ð22Þ

while the first stiffness term:

k11 ¼ o2Vang

ox21
¼ o

ox1

oVang

ox1

� �

¼ 2 � ks � kh � B5
12 � B1ffiffiffiffiffi

B6

p � kh � B4 � B2
2

B5
þ kh � B12 � B4 � B1ffiffiffiffiffi

B6

p � 14 � ks � kh � B4
12 � B2

2

B5

þ ks � kh � B5
12 � B3 � B2ffiffiffiffiffi
B3
6

p þ kh � B12 � B4 � B3 � B2

2
ffiffiffiffiffi
B3
6

p ; ð23Þ

where

B1 ¼ 2

r12 � r13 �
A4

B8
� A4

B7
þ 3 � B2

10 � A4

4 � r512 � r13
þ 3 � B2

9 � A4

4 � r12 � r513
þ B10 � B11

B7
þ B9 � B11

B8
þ B10 � B9 � A4

2 � r312 � r313
; ð24Þ
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B2 ¼ B11

r12 � r13 þ
B10 � A4

2 � r312 � r13
þ B9 � A4

2 � r12 � r313
; ð25Þ

B3 ¼ 2 � B11 � A4

r212 � r213
þ B10 � A2

4

r412 � r213
þ B9 � A2

4

r212 � r413
; ð26Þ

B4 ¼ ks � A4
2 þ 1; ð27Þ

B5 ¼ A2
4

r212 � r2r13
� 1; ð28Þ

B6 ¼ 1� A2
4

r212 � r213
; ð29Þ

B7 ¼ r312 � r13; ð30Þ

B8 ¼ r12 � r313; ð31Þ

B10 ¼ 2ðx1 � x2Þ; ð32Þ

B11 ¼ x2 � 2x1 þ x3: ð33Þ

In the same way, all force and stiffness components can be analytically calculated leading
to a 9� 1 force vector and a 9� 9 stiffness matrix.

Dihedral angle interactions

Interactions become more complicated when dihedral angles are included. Each angle formed
by three atoms (as in angle bending interactions) defines a plane. Two angles sharing a
common side (Figure 3) define two planes intersecting along the direction of the common
side. A four-node element is therefore necessary, termed thereafter as U4. The angle u
formed by the two intersecting planes defines the respective energy term:

VdihðuÞ ¼ 1

2
kdðu� u0Þ2: ð34Þ

Figure 3. Definition of a dihedral angle.
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Assuming that the relative positions of the atoms are

R ¼ p2 � p1 S ¼ p3 � p2 Q ¼ p4 � p3; ð35Þ

where piðxi; yi; ziÞ is the position of the i-th atom, the dihedral angle is defined as:

u ¼ tan�1 S � R � ðS�QÞ
ðR � SÞ � ðS�QÞ

� �
; ð36Þ

where the S denotes the magnitude of vector S and the respective interatomic distances
between atoms i and j are:

rij ¼ rji ¼ jpi � pjj; ð37Þ

Differentiation with respect to atomic coordinates leads to a 12� 1 force vector and a
12� 12 stiffness matrix. The first force term is expressed as:

ð f dih1 Þx ¼ �oVdih

ox1
¼ �kd �

C1�C4
C2

� ðy2�y3Þ�C6þðz2�z3Þ�C5½ ��C3�C1

C2
2

� u0 þ tan�1 C3�C1
C2

	 
h i
C2
3
�C2

1

C2
2

þ 1
; ð38Þ

where

C1 ¼ r23; ð39Þ

C2 ¼ 4

½ðx1 � x2Þðy2 � y3Þ � ðx2 � x3Þðy1 � y2Þ� � C6þ
þ½ðx1 � x2Þðz2 � z3Þ � ðx2 � x3Þðz1 � z2Þ� � C5þ
þ½ðy1 � y2Þðz2 � z3Þ � ðy2 � y3Þðz1 � z2Þ� � C6

8<
:

9=
;
; ð40Þ

C3 ¼ ðz1 � z2Þ � C6 � ðy1 � y2Þ � C5 þ ðx1 � x2Þ � C4; ð41Þ

C4 ¼ ðy2 � y3Þðz3 � z4Þ � ðy3 � y4Þðz2 � z3Þ; ð42Þ

C5 ¼ ðx2 � x3Þðz3 � z4Þ � ðx3 � x4Þðz2 � z3Þ; ð43Þ

C6 ¼ ðx2 � x3Þðy3 � y4Þ � ðx3 � x4Þðy2 � y3Þ; ð44Þ

and the first stiffness term:

k11 ¼ o2Vdih

ox21
¼ o

ox1

oVdih

ox1

� �

¼ kd � D2
1

D2
2

þ
kd � 2�D2

4�D6�
ffiffiffiffi
D7

p

D3
5

� 2�D4�D8�
ffiffiffiffi
D7

p
D2
5

h i
D2

�
kd � 2�D8�D6�D7

D2
5

� 2�D4�D2
6�D7

D3
5

h i
� D1 � D3

D2
2

; ð45Þ

where
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D1 ¼ D8 �
ffiffiffiffiffiffi
D7

p
D5

� D4 � D6 �
ffiffiffiffiffiffi
D7

p
D2

5

; ð46Þ

D2 ¼ D2
6 � D7

2
þ 1; ð47Þ

D3 ¼ u0 þ tan�1 D6 �
ffiffiffiffiffiffi
D7

p
D5

� �
; ð48Þ

D4 ¼ ðy2 � y3Þ � D10 þ ðz2 � z3Þ � D9; ð49Þ

D5 ¼ ½ðx1 � x2Þðy2 � y3Þ � ðx2 � x3Þðy1 � y2Þ� � D10þ
þ½ðx1 � x2Þðz2 � z3Þ � ðx2 � x3Þðz1 � z2Þ� � D9þ
þ½ðy1 � y2Þðz2 � z3Þ � ðy2 � y3Þðz1 � z2Þ� � D8;

ð50Þ

D6 ¼ ðz1 � z2Þ � D10 � ðy1 � y2Þ � D9 þ ðx1 � x2Þ � D8; ð51Þ

D7 ¼ r223; ð52Þ

D8 ¼ ðy2 � y3Þðz3 � z4Þ � ðy3 � y4Þðz2 � z3Þ; ð53Þ

D9 ¼ ðx2 � x3Þðz3 � z4Þ � ðx3 � x4Þðz2 � z3Þ; ð54Þ

D10 ¼ ðx2 � x3Þðy3 � y4Þ � ðx3 � x4Þðy2 � y3Þ; ð55Þ

Non-bonded interactions

Non-bonded interactions include interactions among atoms not connected by a covalent bond.
For the needs of the present approach, only the van der Waals type of interaction is
considered as described by the Lennard-Jones pair potential (Jones, 1924):

VvdwðrÞ ¼ 4e � r
r

	 
12

� r
r

	 
6
� �

: ð56Þ

The parameter values for Equation (56) are enlisted in Table 1, as well. Although a simple
nonlinear truss element like U2 based on Equation (56) would be sufficient, a non-bonded
interactions finite element has been developed targeting computational efficiency. The number
of nodes composing this element can vary depending on the required accuracy. Since the
number of nodes is not strictly defined, this element will be referenced as U99. As stated
before, the obvious formulation of the U99 element would be the same as U2 using Equation
(56) instead of Equation (10). For a system of N atoms, the number of U99 elements to be
defined would be in the order of:
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N
2

� �
¼ N � ðN � 1Þ

2
; ð57Þ

which is both impractical and computationally demanding for large systems. In order to
increase the computational efficiency of the finite element, various assumptions have to be
made: (i) each atom interacts only with atoms within a finite area. This limits the amount of
calculations that need to be performed and is in agreement with other successful models
(Brenner, 1990); (ii) non-bonded interactions among atoms of the same graphene sheet may
be ignored due to the fact that non-bonded terms are weaker than the bonded ones by orders
of magnitude; this can be easily proved by comparing the respective terms as calculated by
the introduced formulation. Subsequently, the special finite element U99 can be used for mod-
elling the atomic interactions between adjacent graphene sheets. Following the notation of
Figure 4, each atom of layer L1 interacts with all atoms of layer L2 within its effective range.
The effective range is visualised using the depicted cone; every atom on layer L1 is assigned
a similar cone.

In general, the size of the effective range must be appropriately selected balancing
computational efficiency and numerical accuracy. However, in practical problems, the
effective range is determined primarily by the employed molecular potential equation and the
loading conditions. For instance, if the potential function diminishes after e.g. 0.5 nm, it is
rather meaningless to define an effective range of 100 nm. Moreover, the selection of the
effective range is also effected by the expected atomic displacements – which depend on the
loading conditions. If large displacements are expected, then a wider effective range is more
suitable; atoms coming in and out of the effective area may cause numerical convergence
issues, thus a wider effective range may be used to minimise such effects.

Considering the case presented in this paper (Figure 11), the effective range has been
chosen to include all atoms in the opposite layer for the following reasons: (i) the atomic
structure is relatively small and the computational load for U99 is very little; (ii) all possible
interactions are included, so that more realistic results are obtained; (iii) atoms being too far
away are automatically neglected, since the Lennard–Jones diminishes after 0.34 nm; (iv) in
the case of “neglected” atoms, the only computational cost induced by the U99 element is
the calculation of interatomic distances, which is practically negligible compared to the
computational power required by the other finite elements. Clearly, this implements the

Figure 4. An assembly of two graphene layers, namely L1 and L2. The effective range of interactions
for every atom on L1 is visualised by a cone. The identified atom on L1 should interact with atoms
included in the cone base on L2.
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computationally worst case scenario, but in this way the upper limit of the required
computational may be estimated.

This approach has also the advantage that the atomic pairs to be included in calculations
are automatically identified during the analysis; the set of included atomic pairs is appropri-
ately modified and updated based on lattice deformation and relative atomic motion.

Graphene assembly

It has to be clarified that the developed elements cannot, and should not, act independently or
unrealistic results will be obtained. For instance, in Figure 2, if the atomic triplet is modelled
using only a U3 element and atom “2” moves along the 1–2 direction leaving h unchanged,
this motion will be totally ignored, because U3 “senses” only variations of h. Therefore, as
also implied by the formulation introduced earlier, each graphene layer has to be modelled as
an assembly of overlapping U2, U3 and U4 finite elements, while interlayer interactions are
represented by U99 elements.

Regarding the implementation of this “element overlap”, various techniques may be
employed, including coupled nodal motion, etc. Such methods induce, however, additional
computational cost and raise questions about the application of loads. In this work, the “over-

Figure 5. Graphene system with numbered atoms for defining the developed finite elements enlisted in
Table 2.

Table 2. List of finite elements required for the representation of the interactions among atoms 1–2–3–
4 in Figure 5.

ID Interaction type FE type Involved atoms/nodes

1 Bond stretching U2 1,2
2 Bond stretching U2 2,3
3 Bond stretching U2 3,4
4 Angle bending U3 2,1,3
5 Angle bending U3 3,2,4
6 Dihedral angle U4 1,2,3,4
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lapping elements” have been implemented by defining finite elements sharing common nodes.
Using this approach, additional computational cost is avoided, since no additional degrees of
freedom are included nor any restraining equations are required.

An example is demonstrated in Figure 5. A small group of atoms is depicted, in order to
keep the figure simple and clear. As already mentioned, carbon atoms coincide with the nodes
of the FE model. Numbering has been used in order to uniquely identify each atom. For this
example, only the atoms 1–4 will be considered, therefore, all others have been marked in
grey. The following interactions may be identified among these atoms: (i) bond stretching
between atoms 1 and 2; (ii) bond stretching between atoms 2 and 3; (iii) bond stretching
between atoms 3 and 4; (iv) angle bending for the angle formed by bonds 2–1 and 2–3; (v)
angle bending for the angle formed by bonds 3–2 and 3–4; and (vi) dihedral angle interaction
affecting atoms 1–2–3–4. These interactions can be expressed in the FE formulation by
defining finite elements enlisted in Table 2. All atomic interactions in a graphene sheet may
be represented in the same way.

Incorporation into FE codes

The introduced formulation has been developed targeting incorporation into well-established
FE codes. As an example, incorporation into Abaqus® (Dassault Systemes) will be discussed.
Four different user-defined finite elements have been developed using the subroutine UEL,
each one expressing an individual type of interaction in Equation (1). For simplicity reasons,
they are termed as U2, U3, U4 and U99, respectively, following the nomenclature used for
the developed finite elements earlier.

The definition of each element requires: (i) the calculation of internal forces and (ii) the
calculation of the element stiffness matrix:

fi ¼ �oV
oui

; Aij ¼ o2V
ouiouj

; ð58Þ

where fi is the force component due to the ith degree of freedom and Aij is the contribution
of the ith and jth degrees of freedom to the global stiffness, following the notation of Abaqus.
The assembly of the global matrices and application of external loads is performed
automatically by the FE Solver.

Abaqus has no means to identify the geometrical details of a user defined element and its
visualisation capabilities are limited to plotting nodes. Thus, an alternative visualisation
method has to be pursued. Using simple truss element overlapping, every U2 element
provides a very simple way to visualise atomic bonds (Figure 6(a)). If multiple graphene
layers are modelled, the “truss visualisation” becomes confusing, and membrane elements are
used to fill the hexagonal lattice (Figure 6(b)). In both cases, the material assigned to the
“visualisation elements” has practically no stiffness (E= 1e�30 Pa), so that there is no
contribution to the response of the structure.

Regarding the solver, the general static solver of Abaqus® is used for the simple demon-
stration cases that follow. Loads are incrementally applied. Although the load increment has
no impact on the final results, it affects the convergence of the solution. A large load incre-
ment will lead to large atomic displacements; in this case, various energy terms are elimi-
nated and cause the stiffness matrix to become singular and the simulation to be prematurely
terminated. On the other hand, the selection of too many small load increments may lead to
very long solution times. It has been observed that good convergence is obtained if the
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atomic displacements do not exceed 10% of the undeformed bond length at each load
increment. Work in progress focuses on local instabilities and failure under compressive loads
using the Riks Solver, but these results have not been validated yet and they are left out of
this paper.

Application cases

A series of simple load cases have been examined to evaluate the capabilities of the presented
approach. It has to be noted that the employment of analytical equations for molecular
mechanics and the avoidance of any approximation or interpolation schemes ensures that the
energy calculations for every atomic configuration will be the same as if calculated by a
dedicated molecular mechanics code.

The load cases presented in following are applied on relatively small structures for visual-
isation purposes. The size of the investigated atomic configuration is practically limited only

Figure 6. Visualisation of graphene in Abaqus. (a) A single graphene layer is visualised using truss
elements. (b) Complex structures are better visualised using membrane elements.
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by the availability of computational resources. Graphene modelling with user elements has
practically no limitations other than those imposed by the molecular mechanics formulation.

Figure 7. Graphene subjected to tension. (a) Undeformed lattice; arrows show the applied load. (b)
Deformed lattice; arrows show the resultant atomic displacements.

Figure 8. Tip displacement in Angstroms vs. the normalised value of the applied load.
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Figure 10. Out-of-plane displacement of the loaded atom vs. the normalised value of the applied load.
Displacement is expressed in Angströms.

Figure 9. Graphene subjected to out-of-plane loading. (a) Initial configuration. (b) Deformed shape.
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This means that graphene models in Abaqus will continue to run even if the valid range of
the molecular equations is exceeded, resulting, of course, to non-realistic atomic configura-
tions. It is, therefore, the analyst’s responsibility to interpret results; future work will focus on
the inclusion of bond breaks and nanoscale failure issues.

For each load case presented in the following, it is implied that loading is applied on a
relaxed atomic structure. When dealing with structures like graphene, where – ideally –
atomic distances and angles are well known, it is feasible to define an initial configuration
very close to the relaxed state of the system. If this initial configuration is left unloaded, the
proposed modelling approach will eventually bring it to a relaxed state. After the relaxed state
has been obtained, load may be applied.

Figure 11. Bilayer structure. (a) Initial configuration. (b) Deformed shape.
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In all cases, load appears as a normalised value, i.e. the ratio of the force magnitude in
each load step over the magnitude of the maximum force applied.

Case 1: tension

The graphene part depicted in Figure 7(a) is subjected to tension. The three left side atoms are
fixed in place. A horizontal force of magnitude 1.6022 nN (i.e. 1 eV/Å) is applied on each of
the three right side atoms. The structure containing 20 atoms has been modelled using 23 U2,

Figure 12. Atomic displacements. (a) The length of the arrows is correlated to the displacement
magnitude. (b) Displacement at the layer tip along x-direction. (c) Displacement at the layer tip along z-
direction. All displacements are expressed in Angströms.
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36 U3 and 54 U4 elements. Load is applied incrementally and results are depicted in Figure 7
(b). The arrows on nodal positions denote the magnitude of atomic displacements. Figure 8(a)
shows the axial displacement on the right edge of the structure vs. the normalised value of the
applied load; linear response is exhibited, while Poisson’s effect is obvious (Figure 7(b)).

Case 2: out-of-plane loading

The system depicted in Figure 9(a) is subjected to a more complex load. The atoms on the
right and bottom edges are fixed in place, while an out-of-plane concentrated force is applied
on the upper right atom. Results are shown in Figures 9(b) and 10 where the deformed shape
and the out-of-plane displacement of the loaded atom vs. the applied load, respectively, are
depicted.

Case 3: graphene bilayer

Two graphene layers separated by 0.34 nm, i.e. the interlayer distance of graphite, are
modelled (Figure 11(a)). The atoms of both layers are fixed in place along the left side of the
structure. Load is applied on the atoms of the front layer along the right side; force has com-
ponents along the positive z-axis and the negative x-axis. Although this is a very simple
model for demonstration purposes only, this “pealing process” resembles the exfoliation of
graphite for the production of graphene. The deformed shape is shown in Figure 11(b). The
major difference compared to the previous cases is the existence of non-bonded interaction
finite elements (U99) to model the interlayer interactions. The displacement of atoms is moni-
tored (Figure 12). Initially, the bottom layer follows the motion of the upper one due to the
van der Waals forces developed between the two layers. As the displacement of the upper
atoms increases, the interlayer forces become weaker and due to the dominant in-plane inter-
actions the lower layer seems to have increased flexural stiffness. The snapshot depicted in
Figures 11 and 12 is the final stable configuration under the loading condition applied; after

Figure 13. Results validation for the case of tensile loading. Circles denote the atomic positions at the
Initial Configuration (undeformed lattice). The predictions of Abaqus and HyperChem are practically the
same, within a reasonable range of numerical accuracy. The atomic bonds are left out of this plot for
clarity reasons.
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that local instabilities and nanobuckling initiate, but further investigation for validity is
required before results are presented.

Validations

Results have been validated using HyperChem 7.5. The same atomistic system has been mod-
elled once using the introduced approach, and once using HyperChem and the MM+molecu-
lar mechanics potential. Figure 13 demonstrates comparisons for Case 1 (Tension). Atomic
positions for each atomic configuration are plotted on the same coordinate system. Circles
denote the atomic positions in the Initial Configuration – termed as undeformed lattice. After
loads have been applied, atoms move to their new equilibrium positions. These are depicted
using “� ” for Abaqus predictions and “+ ” for HyperChem predictions. For clarity reasons,
atomic bonds have been left out of this plot. Results are almost identical, within the range of
reasonable numerical accuracy.

The same behaviour can be observed for the other cases as well, but due to the 3D
geometry involved, the corresponding figures are difficult to read and rather confusing.
Therefore, the corresponding equilibrium state for out-of-plane loading is depicted separately
in Figure 14 in order to demonstrate that the same trend is observed.

Summary

Graphene has been modelled using specialty finite elements based on analytical expressions
of molecular mechanics. The goals of the proposed approach are: (i) to be user-friendly for
users without long experience in molecular modelling; the creation of an atomistic model is
practically the same as the modelling of truss structure, with the addition, of course, of the
overlapping user-elements and (ii) to provide some capabilities not available in many
dedicated molecular mechanics software packages, like the application of concentrated loads
on individual atoms. The introduced method can analyse systems of any size, limited only by
the available computational equipment and resources. As an example, the developed finite

Figure 14. Deformed shape for out-of-plane loading; the response predicted by HyperChem follows
the one depicted in Figure 9 (Abaqus prediction).
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elements have been incorporated into Abaqus and various load cases have been demonstrated.
Results have been validated using HyperChem 7.5. Future work will focus on bond breaking
and crack propagation.
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