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In this paper, fatigue crack growth simulations of bi-material interfacial cracks have been
performed using extended finite element method (XFEM) under thermo-elastic loading.
The material discontinuity (interface) has been modelled by a signed distance function
whereas a strong discontinuity (crack) has been modelled by two functions i.e. Heaviside
and asymptotic crack tip enrichment functions. The values of stress intensity factors are
extracted from the XFEM solution by domain based interaction integral approach. Standard
Paris fatigue crack growth law is used for the life estimation of various model problems.
The results obtained by XFEM for an interfacial edge and centre cracks are compared with
those obtained by finite element method based on a remeshing approach.
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1. Introduction

Bi-materials are widely used in engineering structures/components, which are subjected to
extreme loadings like mechanical, thermal and combinations of both. The residual stresses are
generated in these components as a result of non-uniform thermal expansion of the two
materials during heating and cooling. Bi-materials are designed with an aim to decrease the
residual stresses, and to prevent debonding at the interface. The study of cracks under
thermo-elastic loading is becoming increasingly important in the design of various machine
components. The design against fatigue failure in these types of structures/components is
associated with many challenges due to the complexity in accurately evaluating the fracture
parameters at the interface. The evaluation of fracture parameters such as stress intensity fac-
tors (SIFs) becomes quite essential for the simulation based design. Only a limited number of
studies have been reported in the literature on the interface fatigue crack growth even if the
effect of the thermal loading on the bi-material was studied by several authors. Olsson and
Giannakopoulos (1997) presented a combined analytical and numerical study to investigate
the fracture parameters of plane stress edge cracks in bi-material beam structures. They also
devised the closed form solution for an elasto-plastic material under thermal loading. Guru-
murthy, Jiao, Norris, Hui, and Kramer (1998) have developed a new experimental technique
that uses an optic displacement sensor to investigate the crack growth along polymer inter-
faces under thermal fatigue conditions. Johnson and Qu, (2006) extended the interaction inte-
gral approach so that the effect of non-uniform temperatures can be taken into account while
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calculating the SIFs for cracks in a bi-material interface. Rakin, Kolednik, Medjo, Simha, and
Fischer (2009) have carried out an experimental study on a bi-material compact tension speci-
men to see the effect of residual stress. Drai, Bouiadjra, Meddah, and Benguediab (2009)
have used the finite element method (FEM) to analyse the behaviour of interface cracks at
ceramic-metal interface under thermal residual stresses. They found that the mode II (the slid-
ing mode) is the dominant mode of failure under thermal loading. Khandelwal and Kishen
(2009) have proposed a method to compute the SIFs for a bi-material interface crack sub-
jected to thermal loading. The proposed method is validated by solving the standard problems
with known solutions. Boutabout et al. (2009) have used finite element models to simulate
the mixed mode crack propagation near the bi-material interface under combined thermo
mechanical loading. Petrova and Schmauder (2011) theoretically analysed the thermal
interface crack problem in a bi-material with internal defects. They derived the thermal SIFs
as a function of geometry.

To assess the fracture parameters and fatigue life of the materials, experiments need to be
conducted on specimens with a pre-existing crack. Due to the difficulties and expense associ-
ated with conducting such experiments, considerable efforts have been made to simulate the
cracks using numerical methods. The methods such as FEMs, boundary element methods
(Yan, 2006; Yan & Nguyen Dang, 1995), meshfree methods (Belytschko, Gu, & Lu, 1994;
Belytschko, Lu, & Gu, 1995; Duflot & Nguyen Dang, 2004) are available to solve fracture
problems. Over the years, a number of approaches have been developed in FEM, which
makes it a most suitable method for analysing fracture problems. In finite element analyses,
the geometry is modelled by an adequate mesh. However, the generation of conforming
meshes is an expensive task for complex geometries. In FEM, a crack must coincide with
edges of finite elements i.e. a conformal mesh is required as well as special elements to han-
dle crack tip asymptotic stress fields. FEM often experiences difficulties in remeshing and
adaptive analysis. Hence, the modelling and simulation of discontinuities and defects using
FEM becomes quite cumbersome. To overcome these difficulties, a novel approach known as
the extended finite element method (XFEM) (Belytschko & Black, 1999; Melenk & Babuska,
1996) has been developed to handle discontinuous domain problems with ease. In XFEM, the
standard displacement based approximation is enriched by additional functions using the par-
tition of unity (Melenk & Babuska, 1996). The enrichment functions are added in the
displacement approximation using the partition of unity. XFEM does not require a conformal
mesh for crack growth modelling. The level set method (Stolarska, Chopp, Moës, & Bely-
tschko, 2001; Sukumar, Chopp, Moës, & Belytschko, 2001; Ventura, Xu, & Belytschko,
2002) is combined with XFEM to model the crack growth. It has been widely used to solve
problems of crack growth such as cohesive crack propagation (Asferg, Poulsen, & Nielson,
2007; Unger, Eckardt, & Konke, 2007; Zi & Belytschko, 2003), fatigue crack propagation
(Chopp & Sukumar, 2003; Giner, Sukumar, Denia, & Fuenmayor, 2008; Stolarska & Chopp,
2003), three-dimensional crack propagation (Sukumar, Moës, Moran, & Belytschko, 2000)
and fatigue life of homogenous plate (Singh, Mishra, Bhattacharya, & Patil, 2011) under
mechanical loading.

In all above mentioned studies, the simulation of fatigue crack growth and fatigue life
was limited to homogenous materials under mechanical loading. Therefore, the main aim of
this study is to accurately evaluate the fatigue life of bi-material interfacial cracks under
thermo-elastic loading. The fatigue crack growth is modelled with various small size line seg-
ments. The SIFs of bi-material interface cracks are numerically evaluated using the modified
domain form of interaction integral approach. Generalised Paris’ law is used to compute the
fatigue life. A comparison of XFEM results with those obtained by FEM (remeshing
approach using ANSYS 12.0) is presented for a few model problems.
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2. Review of XFEM

XFEM is a modified form of the partition of unity finite element method (PUFEM) (Melenk
& Babuska, 1996) and the generalised finite element method (GFEM) (Strouboulis, Babuska,
& Copps, 2000; Strouboulis, Copps, & Babuska, 2000). PUFEM is based on a global enrich-
ment technique while GFEM uses different shape functions for classical and enriched approx-
imation. In contrast to PUFEM and GFEM, where the enrichments are usually employed over
the entire domain, XFEM adopts the same procedure on a local level. According to the nature
of the problem, the partition of unity enrichment is applied on the selected nodes to capture
required physical phenomena. The formulation of XFEM is similar to the FEM. In general, it
uses Langrage interpolation functions to approximate the field variables as well as the geome-
try. In FEM formulation, the field variable u is approximated by a Lagrange interpolation
uðxÞ (Möes, Dolbow, & Belytschko, 1999), which is given as:

uðxÞ ¼ pT ðxÞ a ¼
Xn
j¼1

Njuj ð1Þ

where pðxÞ is the complete basis vector, a is a set of unknown coefficient and Nj are the
shape functions.

In XFEM, the primary variables for a crack problem are approximated by Lagrange inter-
polation functions as defined in Equation (1) along with additional enrichment terms (Möes
et al., 1999):

uðxÞ ¼
Xn
j¼1

NjðxÞ uj þ ½HðxÞ � HðxIÞ�aj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
j e ns

þ vðxÞbj|fflffl{zfflffl}
j e nr

þ
X4
a¼1

½baðxÞ � baðxIÞ�caj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j e nt

2
6664

3
7775 ð2Þ

where Nj are the Lagrange shape functions, uj is the field variable for the continuous part of the
XFEM solution, aj is the additional degree of freedom associated with Heaviside function HðxÞ
used for the crack face, bj is the additional degrees of freedom (DOF) associated with signed
distance function v used for simulating material discontinuity and caj are additional DOFs asso-

ciated with the four asymptotic enrichment functions used for the crack tip singularity. n is the
set of all nodes associated with the element, ns is the set of all nodes associated with the crack
face, nr is the set of nodes which belongs to the weak discontinuity and nt is the set of nodes
associated with the crack tip. The additional degrees of freedom associated with the enriched
nodes correspond to either strong or weak discontinuity. No element can have both discontinu-
ities altogether at a particular node. Initially, an element is searched for both types of disconti-
nuities, and if a particular element belongs to the strong (crack) as well as the weak (interface)
then preference is given to the strong discontinuity. Since, the elements having crack as well as
material interface create the spurious singular modes in the linear system of equations therefore
only strong enrichment was recommended (Sukumar, Huang, Prevost, & Suo, 2004) for these
elements. Hence, the set of nodes nr and nt remains always disjointed.

3. Problem formulation

A domain X is separated into two different materials as shown in Figure 1. The equilibrium
and boundary conditions for a linear thermo-elastic problem with small displacement bounded
by � may be described as
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�rqþ Q ¼ 0 where q ¼ �krT ð3Þ

r:rþ b ¼ 0 where r ¼ C : ðe� eT Þ ð4Þ

and thermo-elastic strain tensor may be defined as e ¼ rsu and eT ¼ aðT � Tref Þ I ð5Þ

The boundary conditions for the problem domain can be defined as

T ¼ �T on �T and q : n ¼ �q on �q ð6aÞ

r:n ¼ �t on �t and u ¼ �u on �u ð6bÞ

In the above governing equations, q is the heat flux vector, Q represents the heat source,
k is the thermal conductivity of materials, r is the Cauchy stress tensor, b is the body force
vector, r: is the divergence operator, C is the isotropic fourth order tensor, rs is the symmet-
ric gradient operator, u shows the displacement vector, T is the temperature field within the
domain, eT is the thermal strain vector with respect to reference temperature Tref , a is the
thermal expansion coefficient and I represents the second order identity tensor. The above
boundary conditions satisfy �T [ �q ¼ �u [ �t ¼ � and �T \ �q ¼ �u \ �t ¼ �,
�c � �t; �t ¼ 0 on �c for the crack surface. In case of thermo-elastic adiabatic crack
�c � �q; �q ¼ 0 on �c whereas in case of thermo-elastic isothermal crack �c � �T; �T ¼ �Tc

on �c.

3.1. Mechanical loading

In case of mechanical loading, the weak form of governing Equation (4) can be written as
(Möes et al., 1999): Z

X
r : eðvÞdX�

Z
X
b:vdX�

Z
�t

�t:v d� ¼ 0 8v 2 uo ð7Þ

−+ Ω+Ω = Ω

t

tΓ

uΓ

TΓ

+Ω

+n

−n

T

qΓ
q−Ω

q

sΓ

Figure 1. 2D inhomogeneous body.
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where the test function space is uo ¼ fv 2 < : v ¼ 0 on �c; v possibly discontinuous on �cg ð8Þ

Introducing the constitutive equation in the weak form, Equation (7) becomes:Z
X
eðuÞ :C : eðvÞ dX�

Z
X
b:v dX�

Z
�t

�t:v d� ¼ 0 8v 2 uo ð9Þ

The above equation is equivalent to the strong form (4) of the governing equation, which
includes the traction free boundary condition at the crack surface. The discrete equations are
obtained by introducing displacement approximations, weight and shape functions in
Equation (9).

3.2. Thermo-elastic loading

In a thermo-elastic adiabatic crack problem, both temperature and displacement fields are dis-
continuous across the crack surface whereas heat flux is singular at the crack tip (Sih, 1962).
Therefore, displacement and temperature fields may be defined as:

uo ¼ u 2 < : u ¼ �u on �u; u possibly discontinuous on �cf g ð10Þ

To ¼ T 2 < : T ¼ �T on �T; T possibly discontinuous on �cf g ð11Þ

In case of a thermo-elastic isothermal crack domain, a specific temperature is prescribed
at the crack surface; hence essential boundary conditions are imposed at the crack surface. In
contrast with an adiabatic crack, the following salient features have been found for an isother-
mal crack (Duflot, 2008):

• the heat flux is discontinuous across the crack surface;
• the temperature field is continuous across the crack surface; and
• the angular variation of temperature and flux field is different from an adiabatic crack.

In case of an adiabatic crack, they vary in direction of perpendicular to the crack sur-
face, whereas in case of an isothermal crack, they vary in radial direction.

The temperature field may be defined as

To ¼ T 2 < : T ¼ �T on �T =�c; q possibly discontinuous on �cf g ð12Þ

The weak form of governing Equation (3) using constitutive equation becomes (Möes,
Cloirec, Cartraud, & Remacle, 2003):

Z
X
qðSÞ k qðTÞ dXþ

Z
X
S Q dX�

Z
�q

S �qd� ¼ 0 ð13Þ

Z
X
eðuÞ :C : eðvÞdX�

Z
X
b:v dX�

Z
�t

�t:v d� �
Z
X
eT ðuÞ :C : eðvÞ dX ¼ 0 ð14Þ
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In case of an isothermal crack, the essential boundary conditions are applied on the crack
surface. Hence, the weak form is modified accordingly.

After introducing the displacement approximation, trial and test functions, and using the
arbitrariness of nodal variation, a set of discrete equations can be written as:

½K�fug ¼ ff g ð15Þ

where u is the vector of field variables, K and f are the XFEM global stiffness matrix and
external force vector, respectively. The stiffness matrix and force vector are computed on an
element level and are assembled into their global position through usual assembly procedure.
Higher order Gauss quadrature (seventh order quadrature in each sub-elements of tip element
and second order quadrature in each sub-element of split and interface elements) has been
used in discontinuous elements. The additional DOFs arise due to enrichment using the ficti-
tious nodes. The element contribution of K and f are as follows

Ke
ij ¼

Kuu
ij Kua

ij

Kau
ij Kaa

ij

Kub
ij Kuc

ij

Kab
ij Kac

ij

Kbu
ij Kba

ij

Kcu
ij Kca

ij

Kbb
ij Kbc

ij

Kcb
ij Kcc

ij

2
66664

3
77775 ð16aÞ

f e ¼ f f ui f ai f bi f c1i f c2i f c3i f c4i gT ð16bÞ

Krs
ij ¼

Z
Xe
ðBr

i ÞTDBs
j dX; where r; s ¼ u; a; b; c ð16cÞ

f ui ¼
Z
�t

Ni�t d� þ
Z
Xe

Nib dX ð16dÞ

f ai ¼
Z
�t

Ni½HðxÞ � HðxIÞ��t d� þ
Z
Xe

Ni½HðxÞ � HðxIÞ�b dX ð16eÞ

f bi ¼
Z
�t

NivðxÞ �t d� þ
Z
Xe

NivðxÞ b dX ð16f Þ

f cai ¼
Z
�t

Ni½baðxÞ � baðxIÞ� �t d� þ
Z
Xe

Ni½baðxÞ � baðxIÞ� b dX; where a ¼ 1; 2; 3; 4 ð16gÞ

Bu
i ¼

Ni;x 0
0 Ni;y

Ni;y Ni;x

2
4

3
5 ð16hÞ
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Ba
i ¼

ðNi½HðxÞ � HðxIÞ�Þ;x 0
0 ðNi½HðxÞ � HðxIÞ�Þ;y

ðNi½HðxÞ � HðxIÞ�Þ;y ðNi½HðxÞ � HðxIÞ�Þ;x

2
4

3
5 ð16iÞ

Bb
i ¼

ðNivðxÞÞ;x 0
0 ðNivðxÞÞ;y

ðNivðxÞÞ;y ðNivðxÞÞ;x

2
4

3
5 ð16jÞ

Bca
i ¼

ðNi½baðxÞ � baðxIÞ�Þ;x 0
0 ðNi½baðxÞ � baðxIÞ�Þ;y

ðNi½baðxÞ � baðxIÞ�Þ;y ðNi½baðxÞ � baðxIÞ�Þ;x

2
4

3
5; where a ¼ 1; 2; 3; 4 ð16kÞ

D ¼ E

1� t2

1 t 0
t 1 0
0 0 1�t

2

2
4

3
5 for plane stress ð16lÞ

3.3. Enrichment functions

Heaviside function, used for the modelling of discontinuities in displacement and temperature
fields can be defined as (Mohammadi et al., 2008):

HðxÞ ¼ 1 ifðx� x�Þ:n P 0
�1 otherwise

�
ð17Þ

Level set approach (Sukumar et al., 2001) is used to capture the weak discontinuity,
which arises due to the material interface within the element. An enrichment function for the
material interface is defined as

vðxÞ ¼
X
I

NI jfI j �
X
I

NIfI

�����
����� ð18Þ

where fð�ðxÞÞ ¼ j�ðxÞj is the signed distance function, and � is the level set function, which
is defined as:

�ðxÞ ¼ �minkx� x�k ð19Þ

In this work, a signed distance function along with four crack tip enrichment functions
are used to capture the stress singularity at the crack tip in bi-material domains. This allows
the effective representation of the crack tip fields (Pant, Singh, & Mishra, 2011; Pathak,
Singh, & Singh, 2012). The last enrichment term in Equation (2) consists of four functions
obtained from the displacement solution of a linear elastic fracture problem (Anderson, 1995),
and is defined as:
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baðxÞ ¼
ffiffi
r

p
sin

h
2
;
ffiffi
r

p
cos

h
2
;
ffiffi
r

p
cos

h
2
sin h;

ffiffi
r

p
sin

h
2
sin h

� �
ð20Þ

3.4. Interaction integral for mechanical and thermo-elastic loading

The domain based interaction energy integral method is a very efficient technique to extract
the individual SIFs (KI , KII ) under mixed mode loading conditions. For a bi-material interface
crack, the J-integral remains globally path independent if material homogeneity exists in the
direction parallel to the crack surface under both mechanical and thermo-elastic loading
(Johnson & Qu, 2006). The standard path independent J-integral for a crack domain can be
defined as

J ¼
Z
�

Wsd1j � rij
@ui
@x1

� �
njd� ð21Þ

where � is an arbitrary contour which encloses the crack tip, Ws is the strain energy density,
nj is the outward unit normal to the contour and d1j is the Kronecker delta function. The
coordinate value has been taken as the local coordinate parallel to crack surface. Two inde-
pendent equilibrium states have been taken to evaluate interaction integrals; state 1 corre-
sponds to an actual state while state 2 is taken as auxiliary state, obtained from analytical
solutions of asymptotic stress and displacement fields. After introducing actual and auxiliary
fields, the J-integral can be defined as

J ð1þ2Þ ¼ J ð1Þ þ J ð2Þ þM ð1;2Þ ð22Þ

Here, J ð1þ2Þ is the J-integral of the superimposed state, J ð1Þ is the J-integral in the actual
state, J ð2Þ is the J-integral due to the auxiliary state and M ð1;2Þ is the interaction term.

The domain form of the interaction integral under mechanical loading can be written as

M ð1;2Þ ¼
Z
A

rð1Þ
ij

@uð2Þi

@x1
þ rð2Þ

ij

@uð1Þi

@x1
�W ð1;2Þdij

" #
@q

@xj
dA ð23Þ

W ð1;2Þ ¼ 1

2
ðrð1Þ

ij e
ð2Þ
ij þ rð2Þ

ij e
ð1Þ
ij Þ ð24Þ

where q is a scalar weight function where the value is one at the crack tip and zero at the

contour. rð1Þij and eð1Þij , are the actual Cauchy stress and engineering strain, respectively, while

rð2Þij and eð2Þij are the auxiliary Cauchy stress and engineering strain, respectively. W ð1;2Þ repre-
sents the strain energy density at actual and auxiliary states. Similarly, the thermal interaction
integral proposed by (Sills & Dolev, 2004) as:

M ð1;2Þ ¼
Z
A

rð1Þ
ij

@uð2Þi

@x1
þ rð2Þ

ij

@uð1Þi

@x1
�W ð1;2Þdij

" #
@q

@xj
dAþ a

Z
A

@T

@x1
rð2Þ
kk qdA ð25Þ

For the bi-material crack domain, the interaction integral can be modified due to the
presence of two different materials as:

86 H. Pathak et al.



M ð1;2Þ ¼
X2
m¼1

Z
Ak

rð1Þ
ij

@uð2Þi

@x1
þ rð2Þ

ij

@uð1Þi

@x1
�W ð1;2Þdij

" #
@q

@xj
dAþ

X2
m¼1

a
Z
Ak

@T

@x1
rð2Þ
kk qdA ð26Þ

where m represents a particular material in the bi-material domain. The auxiliary field equa-
tions for the bi-material domain are taken from (Sukumar et al., 2004).

For linear elastic problems, the interaction integral is related to the mixed mode SIFs by
the following relation:

M ð1;2Þ ¼ 2

H
ðKð1Þ

I Kð2Þ
I þ Kð1Þ

II Kð2Þ
II Þ ð27Þ

where;
1

H
¼ 1=E1 þ 1=E2

2 cosh2 pe
ð28Þ

In Equation (27), Kð2Þ
I and Kð2Þ

II are the auxiliary field SIFs and e is the bi-material con-
stant defined as:

e ¼ 1

2p
log

1� �b

1þ �b

� 	
ð29Þ

where b is the second Dundurs parameter given by,:

�b ¼ l1ðj2 � 1Þ � l2ðj1 � 1Þ
l1ðj2 þ 1Þ þ l2ðj1 þ 1Þ ð30Þ

ji ¼ 3� ti
1þ ti

for plane stress ð31Þ

where li; ti and ji are the shear modulus, Poisson’s ratio and Kolosov constants for corre-
sponding materials. The mixed mode SIFs can be calculated from Equation (27) using

Kð2Þ
I =1, Kð2Þ

II =0 and vice versa.

3.5. Fatigue analysis

In the present work, fatigue crack growth simulations are performed under constant amplitude
cyclic loading. The bi-material interfacial crack domain is subjected to two different types of
cyclic loading, namely mechanical and thermo-elastic. For the cyclic mechanical loading
problems, the discrete equations are solved for displacement fields then SIFs are evaluated
using the modified form of the interaction integral method. In the thermo-elastic problems,
thermal discrete equations are solved for temperature distribution. These results are used as a
load input for the elastic discrete equations, which are further solved for the displacement
field. In the post processing phase, thermal interaction integral in Equation (26) is used for
evaluating the SIFs. The range of SIF for constant amplitude cyclic loading is defined as:

DK ¼ Kmax � Kmin ð32Þ
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where, Kmax and Kmin are the SIFs corresponding to maximum and minimum applied loads,
respectively. In general, a crack path is curved in nature but it can be modelled accurately
using many small straight crack segments. The crack growth direction has been obtained by
using a maximum principal stress criterion which assumes that the crack may grow in a direc-
tion perpendicular to the maximum principal stress. Therefore, for each crack increment, a
crack growth direction hc has been obtained as (Erdogan & Sih, 1963):

KI sin hc þ KIIð3 cos hc � 1Þ ¼ 0 ð33Þ

After solving (33), we obtained:

hc ¼ 2 tan�1 KI �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

I þ 8K2
II

p
4KII

 !
ð34Þ

Equation (34) gives two values of hc. One of these values corresponds to a maximum and
the other one corresponds to a minimum. The value of hc corresponding to the maximum
equivalent SIF may be used to find �KIeq using Equation (35) given below:

DKIeq ¼ DKI cos
3 hc

2

� 	
� 3DKII cos

2 hc
2

� 	
sin

hc
2

� 	
ð35Þ

In the present work, it is assumed that the interface toughness is relatively high; so a crack
may kink into anyone of the bulk materials depending upon the loading, boundary condition
and material properties (Hutchinson, 1992). Crack kinking behaviour has been studied for two
dissimilar bulk materials without considering the effect of interface material. The kinking crite-
rion presented by (Hutchinson, 1992) to select a particular bulk material is given as:

Gkink

Gint
[
ðGcÞkink
ðGcÞint

ð36Þ

where, Gkink is the energy release rate at crack kinked position, Gint is the energy release rate
for crack advance along its interface, ðGcÞkink is the critical energy release rate of the bulk mate-
rial in which the crack kinks in and ðGcÞint is referred to as the interface toughness. In the pres-
ent work, this kinking criterion has been modified in terms of SIFs, and is given below:

Depending on hcvalue
ðDKIeqÞm1
ðKICÞm1

or
ðDKIeqÞm2
ðKICÞm2

� 

[
ðDKIeqÞint
ðKICÞint

ð37Þ

In the above equation, the values of hc and DKIeq obtained using Equations (34) and (35)
belong to either material-1 (m1) or material-2 (m2). If Z1>Z2 then the crack propagates in
either first or second material along 0=0c otherwise it propagates along the interface at 0=0.
For the interface, the maximum DKIeq will be equal to DKI corresponding to h ¼ 0. To imple-
ment this modified criterion, two ratios Z1 and Z2 are calculated as:

Z1 ¼ ðDKIeqÞm1
ðKICÞm1

or
ðDKIeqÞm2
ðKICÞm2

depending on hc; Z2 ¼ ðDKIeqÞint
ðKICÞint

ð38Þ
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where m1 and m2 signify material l and material 2 of the bi-layer. If Z1 [ Z2 then the crack
propagates in either first or second material along h ¼ hc otherwise it propagates along the
interface at h ¼ 0.

For quasi-static crack propagation, (Paris, Gomez, & Anderson, 1961) have been proposed
a mathematical mode to obtain fatigue life under cyclic loading:

da

dN
¼ CðDKIeqÞm ð39Þ

where a is the crack length, N is the number of loading cycles, C and m are the material con-
stant for the Paris model. After determining the magnitude and direction of the crack seg-
ment, the crack length, tip and split nodes get modified by the level sets. Two separate level
sets have been used in this work to track and update a moving discontinuity. The first level
set is used to track the crack while the second one is used for the bi-material interface. An
optimal value of the crack segment needs to be taken for the simulation. If a crack segment
is taken too small then it requires a very fine mesh near the crack tip so that the tip must fall
in a new element at each step. A large size of crack increment would not represent the real
crack path. Therefore, an increment of 2mm (one tenth of the initial crack length) has been
taken for the crack growth simulations.

4. Results and discussion

The fatigue analyses of bi-material interfacial crack problems under cyclic mechanical and
cyclic thermo-elastic loadings have been performed by XFEM. A generalised MATLAB code
has been developed to obtain the results. Extrinsic enrichment technique has been used to
capture the effect of discontinuities in the problem domain. To capture the effect of strong
discontinuities in the domain, Heaviside and crack tip enrichment functions are used, whereas
to model the effect of weak discontinuity, a signed distance enrichment function has been
used. In case of thermo-elastic loading, the problem is decoupled into thermal problem and
elastic problem. First, the temperature distribution is obtained for the entire domain by solv-
ing the thermal problem, then it used as input in the elastic problem. Finally, the displacement
based discrete equations are solved for the displacement field variables. Lagrange multiplier
approach has been used to impose the essential boundary conditions i.e. temperature. For
numerical integration, two point Gauss quadrature has been used in those elements which do
not have any discontinuity, while higher order Gauss quadrature along with sub-triangulation
is used in discontinuous elements. The distribution of Gauss points for the entire domain is
shown in Figure 2 whereas Figure 3 shows the Gauss point distribution for the crack tip ele-
ment. Three different fatigue cases of bi-material interface cracks have been considered in this
study. The results are presented in the form of number of life cycles and SIFs ðMPa

ffiffiffiffi
m

p Þ. For
all cases, the crack faces are taken parallel to the material interface. The FEM results are
obtained by ANSYS software using remeshing. A plane stress condition has been assumed in
all the simulations.

4.1. Mechanical loading

A bi-material rectangular plate of size 100mm� 200mm containing an interfacial centre or
an edge crack is considered for the simulation. The problem domain is discretized using four
noded Lagrangian type quadrilateral elements. The uniformly distributed 30 nodes in x -
direction and 60 nodes in y -direction i.e. total 1800 nodes have been created in the domain.
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The model problem contains an edge crack of length a ¼ 10 mm and centre crack of length
2a ¼ 20mm, and is solved under cyclic mechanical loading. The boundary conditions along
with other parameters used in modelling of bi-material plates are shown in Figures 4 and 5.
A cyclic load of rmin ¼ 0 N=mm and rmax ¼ 100 N=mm is applied at the top edge of the
plate whereas the bottom edge is constrained in y-direction. The values of Poisson’s ratio and
Paris exponent for both materials of the plate are taken as m ¼ :3 and m ¼ 3, respectively.
The other material properties such as Young’s moduli, fracture toughness and Paris constant
for both materials of the plate are taken as E1 ¼ 74 GPa, E2 ¼ 200 GPa, KIC1 ¼ 40MPa

ffiffiffiffi
m

p
,

KIC2 ¼ 60MPa
ffiffiffiffi
m

p
, C1 ¼ 2:087136� 10�11 and C2 ¼ 2:087136� 10�12 , respectively. The

quasi-static crack propagation and fatigue life of plate are calculated with XFEM and FEM
(remeshing approach). The value of the crack increment is taken as 2mm at each step of the
crack growth. This problem is also solved with FEM using a remeshing approach where
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Figure 2. Gauss point distribution and sub-triangulation for numerical integration.
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Figure 3. Crack tip element sub-triangulation with Gauss point distribution for numerical integration.
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fatigue crack propagation is simulated in steps. In case of the centre crack problem, the val-
ues of the SIFs at both tips are found to be similar, therefore an equal crack increment is
taken at both of the crack tips. The SIFs at each step of the crack growth are then used to
evaluate fatigue life using Paris law. The SIFs and fatigue life obtained with XFEM and FEM
for an edge crack and centre crack problems are presented in Figures 6–9. Figure 6 presents
the plot of SIFs with crack extension for an edge crack problem whereas Figure 7 shows the
fatigue life with crack extension for an edge crack problem. The star marked in the figure
indicates the final fatigue life of the plate. The fatigue life and critical crack extension
obtained with XFEM are found as 5484 cycles and 14.51mm, respectively, whereas the fati-
gue life and critical crack extension obtained with remeshing approach are found as 5406
cycles and 14.99mm, respectively. Figures 8 and 9 show the SIFs and fatigue life for a bi-
material centre crack problem. These plots show that the fatigue failure life and corresponding
crack extension obtained with XFEM are 16,649 cycles and 40.81mm whereas the fatigue
life and crack extension obtained with the remeshing approach are found as 16,327 cycles
and 41.36mm, respectively. From the results presented in these figures, it is clear that the
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Figure 4. Physical domain of bi-material edge crack under cyclic mechanical loading.
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Figure 5. Physical domain of bi-material centre crack under cyclic mechanical loading.
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fatigue life of an edge cracked plate is reduced to 67.06% compared to the one of the same
length centre cracked plate under an equivalent mechanical loading. The fatigue life of an
edge crack is found to be 67.06% less as compared to the same length centre crack problem
under the same mechanical load. From the cracked domain, it is found that the crack kinks
out of the interface towards the soft material. From these results, it is also observed that the
results obtained from XFEM are quite close to the one of the remeshing approach (ANSYS).
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Figure 6. SIFs for a bi-material edge crack under cyclic mechanical loading.
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4.2. Thermo-elastic loading

The thermo-elastic problems are solved by decoupling them into thermal and structural prob-
lems. First, heat equations are solved for temperature distribution within the domain; then this
temperature data is used as boundary conditions to solve elastic equations. The thermal inter-
action integral approach is implemented to extract mixed mode SIFs. According to the type
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Figure 8. SIFs for a bi-material centre crack under cyclic mechanical loading.
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Figure 9. Fatigue-life for a bi-material centre crack under cyclic mechanical loading.
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of thermal boundary conditions used in the model problems, thermo-elastic problems are sub-
divided into two groups: adiabatic crack and isothermal crack.

4.2.1. Adiabatic crack

For an adiabatic crack, both displacement and temperature fields are discontinuous across the
crack surface, and heat flux becomes singular at the crack tip. Heaviside function has been
used to capture discontinuity in temperature as well as in displacement fields; whereas four
crack tip functions are used to model singularity in heat flux and stress fields. The approxima-
tion of temperature and displacement fields can be written as

TðxÞ ¼
Xn
j¼1

NjðxÞ Tj þ ½HðxÞ � HðxIÞ�aj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
j e ns

þ vðxÞbj|fflffl{zfflffl}
j e nr

þ
X4
a¼1

½baðxÞ � baðxIÞ�caj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j e nt

2
6664

3
7775 ð40Þ

uðxÞ ¼
Xn
j¼1

NjðxÞ uj þ ½HðxÞ � HðxIÞ�aj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
j e ns

þ vðxÞbj|fflffl{zfflffl}
j e nr

þ
X4
a¼1

½baðxÞ � baðxIÞ�caj|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j e nt

2
6664

3
7775 ð41Þ

A bi-material plate of size 100mm� 200mm containing an interfacial centre or an edge
crack is considered for the simulations. The interfacial edge and centre cracks of length
a ¼ 10mm and 2a ¼ 20mm, respectively, are solved under cyclic thermal loading. The
boundary conditions along with other parameters are shown in Figures 10 and 11 for an edge
and centre crack, respectively. In case of cyclic thermal loading, T1 =�200 °C and T2 = 200 °C
are imposed on the plates for maximum thermal load whereas for minimum thermal load T1
and T2 becomes zero. A constant heat flux is applied across the crack surface. The uniformly
distributed 30 nodes in x-direction and 60 nodes in y-directions i.e. total 1800 nodes have been
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Figure 10. Physical domain of bi-material adiabatic edge crack with cyclic heat flux.
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created within the rectangular domain of the plate. The thermal material properties such as
thermal conductivity and thermal expansion coefficient are taken as Kth1 ¼ 250 W=mK,
Kth2 ¼ 50 W=mK, α1 = 20� 10�6/°C and α1 = 15� 10�6/°C in all the simulations. A crack
increment of 2mm (one tenth of the initial crack length) is taken at each crack tip. The quasi-
static crack growth and fatigue life of plates are obtained from XFEM and FEM using reme-
shing approaches. The results obtained with XFEM and remeshing approaches are presented in
Figures 12 and 13 for an edge crack problem. From these figures, the fatigue life and corre-
sponding crack extension obtained with XFEM are found to be 4120 cycles and 18.82mm,
whereas the fatigue life and crack extension obtained with the remeshing approach are found
to be 4229 cycles and 18.71mm, respectively. Figures 14 and 15 present the SIFs and fatigue
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Figure 11. Physical domain of bi-material adiabatic centre crack with cyclic heat flux.
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Figure 12. SIFs for a bi-material adiabatic edge crack under cyclic heat flux.
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life obtained with XFEM and remeshing for a centre crack problem. The fatigue failure life
and corresponding crack extension obtained with XFEM are found to be 3571 cycles and
36.45mm, respectively, whereas the fatigue life and corresponding crack extension obtained
with the remeshing approach are found to be 3430 cycles and 37.02mm. The crack path trajec-
tory for an adiabatic edge crack has been presented in Figure 16(a) and (b) whereas the trajec-
tory for an adiabatic centre crack has been shown in Figures 17(a) and (b). The magnified
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Figure 13. Fatigue-life for a bi-material adiabatic edge crack under cyclic heat flux.
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Figure 14. SIFs for a bi-material adiabatic centre crack under cyclic heat flux.
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views of crack trajectory show that the crack kinks towards the soft material. On the basis of
these simulations it is observed that the reduction in the fatigue life of the edge cracked plate
is quite significant as compared to the same length centre crack plate for thermo-elastic load-
ing. It is also seen that the results obtained with XFEM and remeshing approaches are quite
close to each other.

4.2.2. Isothermal crack

In case of an isothermal crack, the essential boundary condition i.e. temperature is prescribed
at the crack surface T ¼ �T on �c. In FEM, the essential boundary conditions can be easily
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Figure 15. Fatigue-life for a bi-material adiabatic centre crack under cyclic heat flux.

Figure 16. (a) Adiabatic edge crack domain with final crack trajectory. (b) Magnified view of crack
trajectory.
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imposed using the Lagrange multiplier approach as the crack faces coincides with element
edges, whereas in XFEM, the crack faces do not coincide with element edges, thereby the
imposition of temperature at the crack faces becomes more burdensome. Due to the difficul-
ties associated with imposing essential boundary condition in non-conformal meshed domain;
various approaches have been developed by Möes, Béchet, and Tourbier (2006), Géniaut,
Massin, and Moës (2007), and Béchet, Moës, and Wohlmuth (2009) to solve this issue. In
the present work, an approximate approach based on the Lagrange multiplier is used to
impose the essential boundary conditions. First, the elements intersected by the crack are
identified using the level set approach, and then the temperature is directly prescribed at the
nodes of these elements using the Lagrange multiplier approach. Since these nodes are
aligned with the mesh interface (exactly not lying at crack surface), the EBC can be easily

Figure 17. (a) Adiabatic centre crack domain with final crack trajectory. (b) Magnified view of crack
trajectory.
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Figure 18. Physical domain of bi-material isothermal centre crack with cyclic heat flux.
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implemented using the Lagrange multiplier approach. Moreover, these elements have been
subdivided into triangular sub-elements to accurately perform the numerical integration. Thus,
the conventional approach of interpolation based Lagrange multiplier efficiently take care of
essential boundary condition (EBC) without compromising on the accuracy of the solution.
To demonstrate the accuracy of this approach, temperature contours are provided in Figures
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Figure 19. SIFs for a bi-material isothermal centre crack under cyclic heat flux.
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Figure 20. Fatigue life for a bi-material isothermal centre crack under cyclic heat flux.
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21–24, respectively, for four different sets of nodal data (30� 60, 50� 100, 70� 140 and
90� 180).

The leading terms of temperature and heat flux near an isothermal crack are as follows
(Duflot, 2008):
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Figure 21. (a) Temperature contour at 30� 60 nodes. (b) Magnified view of temperature contour at
30� 60 nodes.
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Figure 22. (a) Temperature contour at 50� 100 nodes. (b) Magnified view of temperature contour at
50� 100 nodes.
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T ¼ �KT
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Figure 23. (a) Temperature contour at 70� 140 nodes. (b) Magnified view of temperature contour at
70� 140 nodes.
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Figure 24. (a) Temperature contour at 90� 180 nodes. (b) Magnified view of temperature contour at
90� 180 nodes.
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q ¼ KTffiffiffiffiffiffiffiffi
2p r

p ðcosðh2Þ
sinðh2ÞÞ

ð43Þ

The approximation of the temperature field and displacement field may be written as:

TðxÞ ¼
Xn
j¼1

NjðxÞ Tj þ
ffiffi
r

p
cos

h
2
cj|fflfflfflfflfflffl{zfflfflfflfflfflffl}

j e nt

2
664

3
775 ð44Þ

uðxÞ ¼
Xn
j¼1

NjðxÞ uj þ ½HðxÞ � HðxIÞ�aj|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
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þ vðxÞbj|fflffl{zfflffl}
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A bi-material plate of size 100mm� 200mm containing an interfacial centre crack of
length 2a ¼ 30mm has been simulated under cyclic thermal loading. The boundary conditions
along with other parameters are shown in Figure 18. A constant amplitude cyclic thermal load
has been applied over the domain. For maximum heat flux, the outer edge is exposed to
T2 = 100 °C, while T1 = 0 °C is maintained at the crack surface. Uniformly distributed 50 nodes
in x -direction and 100 nodes in y -directions i.e. total 5000 nodes have been created in the rect-
angular plate. The quasi-static crack growth and fatigue life of the plate are obtained with
XFEM and remeshing (ANSYS) approaches. The increment at each crack tip is taken as 2mm.
The SIF values and fatigue life obtained with XFEM and the remeshing approach are presented
in Figures 19 and 20, respectively. The fatigue life obtained with XFEM is found to be 791
cycles with a corresponding crack extension of 32.26mm whereas the fatigue life and crack
extension obtained with the remeshing approach are found to be 819 cycles and 32.89mm,
respectively. From the results presented in these figures, it is seen that these obtained with
XFEM are found quite close to those obtained with a remeshing approach.

5. Conclusions

In the present work, bi-material interfacial crack problems are studied and analysed with
XFEM under mechanical and thermo-elastic loadings. The fatigue life of bi-material crack
plates is evaluated by generalised Paris law under mechanical and thermo-elastic loadings.
XFEM based on extrinsic partition of unity enrichment has been successfully used to model
both material and geometric discontinuities. The maximum principal stress criterion has been
implemented to obtain crack growth direction. A generalised MATLAB code has been devel-
oped to obtain the results for various quasi-static crack growth problems. Various bi-material
crack problems have been solved under mechanical as well as thermo-elastic loading. These
simulations show that the fatigue life of an edge crack plate is found to be quite small as
compared to the centre crack plate under similar loading and boundary conditions. In case of
thermo-elastic loading, fatigue life of an isothermal crack has less fatigue life as compared to
an adiabatic crack for similar loading conditions. The results obtained with extrinsic PU
enriched XFEM were found to be in agreement with those obtained with the remeshing
approach. During simulations, it was also noticed that XFEM can be easily and accurately
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used to simulate both strong and weak discontinuities. Therefore, this work can be extended
further to simulate complex quasi-static and stable crack growth problems.
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