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Accurate solution of industrial turbulent flow problems requires very fine meshes resulting
in large systems of non-linear equations and huge computational costs. Efficient iterative
methods are therefore necessary. Mesh adaptation, and in particular anisotropic mesh adap-
tation, allows to reduce considerably meshes size while preserving the accuracy of the solu-
tion. Unfortunately, iterative methods and anisotropic meshes do not come along easily and
convergence problems may occur. In this work, we show how quadratic elements,
expressed in a hierarchical basis, can be used to develop efficient iterative methods for the
numerical simulation of turbulent flows on strongly anisotropic meshes.

La résolution numérique d’écoulements turbulents résulte en des systèmes d’équations non
linéaires de très grande taille et en des coûts de calcul importants, voire prohibitifs. L’util-
isation de méthodes itératives est alors nécessaire. L’adaptation de maillage permet de rédu-
ire considérablement la taille des maillages et encore plus dans le cas d’adaptation
anisotrope où l’on retrouve des éléments de rapport d’étirement très grand. Malheureuse-
ment, maillages anisotropes et méthodes itératives ne font pas toujours bon ménage. Dans
cet article, nous montrons comment l’utilisation d’éléments quadratiques, exprimés dans
une base hiérarchique, permet le développement de méthodes itératives extrêmement effic-
aces pouvant servir pour la simulation précise d’écoulements turbulents sur des maillages
anisotropes.

Keywords: turbulent flows; hierarchical elements; iterative solvers; k – � turbulence model;
logarithmic formulation; anisotropic mesh adaptation
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1. Introduction

Turbulence plays an important role in many mechanical and chemical engineering processes
(fluid flow, mass and heat transfer) which are dominated by convective transport. Accurate
solution of industrial turbulent flow problems generally requires very fine meshes resulting in
huge systems of non-linear equations and thus to large computational costs. Direct solvers are
no longer usable, particularly for three-dimensional problems. Iterative methods become man-
datory but their convergence is delicate, especially for saddle-point problems such as those
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encountered in velocity-pressure formulations of the Navier–Stokes equations at large Rey-
nolds numbers. Convergence problems worsen when using higher order finite element discret-
isations.

A now popular way to reduce computational costs, while preserving the accuracy of the
solution, is mesh adaptation which is widely used for computational fluid dynamics (CFD)
problems. In most cases, however, isotropic meshes are used. This means that only the size of
the elements is controlled but not their elongation. Elements with aspect ratio close to 1 (ratio of
the longest to the smallest element lengths) are therefore produced. This is a first important step
but it is possible to do better.

Anisotropic mesh adaptation allows to further reduce mesh size by stretching elements in
some favourable directions. Elements with large aspect ratios may thus appear in the mesh
wherever the solution allows it. In finite element textbooks, elements with large aspect ratio
are often described as ill shaped and leading to inaccurate solutions. Moreover, it is well
known that these elements have a negative effect on the conditioning of the resulting linear
systems. This is why they are seldom used in conjunction with iterative methods.

In this work, we show how expressing higher order classical Lagrange finite element dis-
cretisations in a hierarchical basis can be exploited to develop very efficient and robust itera-
tive methods that can be used for the accurate solution of turbulent flows on anisotropic
meshes. A classical k � � model in logarithmic formulation is used for comparison purposes
only and can be applied to other Reynolds averaged Navier–Stokes (RANS) equations or
large eddy simulations.

This paper is organised as follows. In Section 2, we present the RANS equations and the
standard k � � turbulence model. We also recall the wall boundary conditions which are
appropriate to this modelling. We then present the change of variables leading to a logarith-
mic form of the turbulence equations. In Sections 3 and 4, we discuss the hierarchical finite
element formulation and the corresponding iterative methods. In Section 5, we describe the
anisotropic mesh adaptation procedure. Finally, we present in Section 6 some numerical
results.

2. Turbulent flow equations

2.1. Turbulence model in logarithmic form

We consider the time-averaged continuity and momentum equations for an incompressible
fluid in turbulent regime using Boussinesq’s hypothesis:

r � u ¼ 0; ð1Þ

qu � ru ¼ �rpþr � ½2ðlþ lT ÞDðuÞ�; ð2Þ

where q is the density, u is the velocity, p is the pressure, l is the viscosity, lT is the eddy
viscosity of the fluid and DðuÞ ¼ ðruþrT

u Þ=2 is the rate of deformation tensor.
We close this system of equations with the k � � turbulence model of Launder and Spal-

ding (1972). The eddy viscosity is expressed in terms of two turbulence variables, the turbu-
lence kinetic energy k and its rate of dissipation �:

lT ¼ qCl
k2

�
: ð3Þ
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The turbulence quantities are governed by the following transport equations:

qu � rk ¼ r � lþ lT

rk

� �
rk

� �
þ lTPðuÞ � q�; ð4Þ

qu � r� ¼ r � lþ lT

r�

� �
r�

� �
þ C1

�

k
lTPðuÞ � C2q

�2

k
; ð5Þ

where PðuÞ ¼ 2DðuÞ : DðuÞ is the production of turbulence. As recommended in Launder
and Spalding (1972), we set C1 ¼ 1:44, C2 ¼ 1:92, Cl ¼ 0:09, rk ¼ 1:0 and r� ¼ 1:3.

It is an understatement to say that the turbulence Equations (4)–(5) may cause some
numerical difficulties. One of these is that as the eddy viscosity depends on � and k, it may
become negative if � becomes negative, causing the solver to breakdown. Moreover, several
source terms contain division by a turbulence variable. With negative or small values, the
denominator can cause improper sign or overly large values of the source terms. Enhanced
robustness of the algorithm is achieved if one can ensure that turbulence variables remain
positive throughout the domain and throughout the course of iterations. Several types of strat-
egies have been developed to this aim (see for instance Kuzmin & Mierka, 2006; Lew, Bus-
caglia, & Carrica, 2001).

One way to preserve positivity of the dependent variables consists of solving the equa-
tions for their logarithms as in Ilinca and Pelletier (1998). This is done by using the change
of dependent variables K ¼ lnðkÞ and E ¼ lnð�Þ. The following transport equations for the
logarithmic variables are easily deduced from (4) and (5):

qu � rK ¼ r � lþ lT

rk

� �
rK

� �
þ lþ lT

rk

� �
jrKj2 þ F1

KPðuÞ � F2
K;

qu � rE ¼ r � lþ lT

r�

� �
rE

� �
þ lþ lT

r�

� �
jrEj2 þ F1

EPðuÞ � F2
E ;

where the source terms are defined by

F1
K ¼ lTe

�K; F2
K ¼ �q2Cl

eK

lT

; F1
E ¼ qC1Cle

E�K; F2
E ¼ �qC2e

E�K:

Solving for K and E guarantees that k ¼ eK and � ¼ eE , as well as the eddy viscosity lT will
remain positive throughout the computations. Depending on the applications, Dirichlet or free
boundary conditions are imposed for u, K and E at inflow, outflow or fictitious boundaries.
For solid boundaries, we apply the wall boundary conditions described below.

2.2. Wall boundary conditions

The standard k � � turbulence model is not valid for low values of the turbulent Reynolds
number defined as ReT ¼ 1

lT
. This is often the case in the vicinity of solid walls. The strategy
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adopted here uses wall functions which describe the solution in the near wall region. In this
work, we use the two-velocity scale wall law adopted in Chabard (1991) and Lacasse (2004).

The wall law is hereafter evaluated at a distance y from the wall �w in the normal direc-
tion, so that the new computational domain is obtained by removing a layer of thickness y
from the real domain � at the vicinity of �w.

At the new wall, the velocity satisfies the no-penetration boundary condition u � n ¼ 0,
where n is the unit outward normal vector. It is assumed that k satisfies a free boundary con-
dition at the wall, whereas � satisfies a Dirichlet-type boundary condition:

@k

@n
¼ 0; � ¼ u3H

jy
; ð6Þ

where uH is defined by uH ¼
ffiffiffiffiffiffiffiffi
C

1
2
lk

q
. Using the new dimensionless variable yþ ¼ yquH=l,

the two-velocity scale wall law is completed by prescribing the wall shear stress
sw � r � n� ðn � r � nÞn, where r ¼ �pI þ 2ðlþ lT ÞDðuÞ is the Cauchy stress tensor. The
wall law is expressed in the form:

sw ¼ �cðkÞu; ð7Þ

where cðkÞ ¼
l
y; yþ\yþc ;
quH

1
j lnðEyþÞ

; yþc\yþ\300

(

and j ¼ 0:42, E ¼ 9:0 (Schetz, 1993) and yþc is the value ensuring the continuity of c that is
yþc ¼ 11:63. We notice that for a fixed value of k, this is a linear boundary condition of Robin
type, much easier to handle than the more classical wall laws. Note also that these boundary
conditions can easily be rewritten in terms of the new logarithmic variables as done in the
next section with the finite element approximations.

3. Numerical discretisation

In this section, we briefly present the numerical discretisation of the system of equations pre-
sented in the previous section. It is based on a finite element approximation using the Taylor–
Hood (P2�P1) element for velocity and pressure variables and continuous piecewise quadratic
polynomials (P2) for the logarithmic turbulent variables. Finally, the resulting non-linear alge-
braic system is solved with a fixed point algorithm. It involves the resolution of nonlinear
Navier–Stokes and non-linear transport equations solved in a precise sequence described
below.

3.1. Finite element approximation

Let � � R, m = 2 or 3, be the domain occupied by the fluid. As previously described, � denotes
its boundary and �w � � represents a solid wall. For simplicity, in this section, we assume that
free boundary conditions are appended in the remaining part of the boundary.

Let T h be a triangulation of �. If � is non-polygonal, T h is more precisely a triangula-
tion of a polygonal approximation �h of � that has all its boundary vertices in �. Let �h be
the boundary of �h and let �wh be the sub-part corresponding to �w. We denote by nh the
outward unitary normal vector to �h.
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For a triangular element Tk 2 T , let PnðTkÞ denote the space of polynomials of degree n
on Tk . We now define, for n ¼ 1; 2:

Wn
h ¼ fqh 2 C0ð�Þ; qhjTk 2 PnðTkÞ; 8Tk 2 T hg;Vh ¼ ðW 2

h Þm;
Wn

0h ¼ fqh 2 Wn
h ; qh ¼ 0 on �wg; V0h ¼ fv 2 Vh; v � nh ¼ 0 on �wg;

and denote by Ih the quadratic interpolation operator associated to W 2
h . The finite element

approximation of the continuous problem then reads:
Find ðuh; ph;Kh; EhÞ 2 V0h �W 1

h �W 2
h �W 2

h ,
such that for all ðvh; qh;wKh

;wEh
Þ 2 V0h �W 1

h �W 2
h �W 2

0h:

Conservation of momentum:

Z
�h

ðquh � ruhÞ vhd� þ
Z
�h

2ðlþ lT ÞDðuhÞ : DðvhÞ d� þ r

Z
�

ðr � uhÞðr � vhÞ d�

�
Z
�h

phr � vhd� ¼
Z
�wh

cðeKhÞuh � vhd�:
ð8Þ

where the Robin-type wall law (7) was applied. The supplementary term involving the (small)
parameter r is a discretisation of the term rrðr � uÞ which is supposed to vanish, thus the
formulation is still consistent. Moreover, since r is chosen small and r � uh ’ 0, it has negli-
gible effect on the numerical solution but enhances drastically the convergence properties of
the iterative solver described in Section 4.2.

Conservation of mass:

Z
�

r � uh qh d� ¼ 0: ð9Þ

Transport of turbulent variables:
It is well known that solving convection–diffusion equations such as those governing K and
E is difficult and that the standard Galerkin method is inadequate. Therefore, a Streamline-
Upwing-Petrov-Galerkin method introduced by Hughes and Brooks (1979, 1982) was used.
The weighting functions denoted as, respectively, wKh

and wEh
are then replaced by:

ŵKh
¼ ðwKh

þ s
u

k u k � rwKh
Þ and ŵEh

¼ ðwEh
þ s

u

k u k � rwEh
Þ

where the parameter s depends essentially on the size of the element. Multiplying by these
tests functions, one easily obtains the following consistent variational formulations:Z

�h

ðquh � rKhÞŵKh
d� ¼

Z
�h

lþ lT

rk

� �
ðrKh � rKhÞŵKh

d�

þ
Z
�h

r � lþ lT

rk

� �
rKh

� �
s

u
k u k � rwKh

� �
d�

�
Z
�h

lþ lT

rk

� �
rKh � rwKh

d� þ
Z
�h

ðF1
KPðuÞ þ F2

KÞ ŵKh
d�; ð10Þ
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and similarly for the equation for Eh, we find:

Z
�h

ðquh � rEhÞŵEh
d� ¼

Z
�h

lþ lT

r�

� �
ðrEh � rEhÞŵEh

d�

þ
Z
�h

r � lþ lT

rk

� �
rEh

� �
s

u
k u k � rwEh

� �
d�

�
Z
�h

lþ lT

r�

� �
rEh � rwEh

d�h þ
Z
�h

ðF1
EPðuÞ þ F2

EÞŵEh
d�; ð11Þ

with Eh ¼ Ih log
C3=4

l

jy

 !
þ 3Kh

2

 !
on �wh; ð12Þ

and lT ¼ qCl e
2Kh�Eh : ð13Þ

3.2. Fixed point algorithm

The global non-linear system is solved by the following algorithm:

(1) Initialie variables u, p, K and E.
(2) Calculate the initial distribution of lT using (13).
(3) Until convergence of all variables:

(a) Solve Navier–Stokes Equations (8) and (9) for u and p.
(b) Using u calculated at the previous step:

(i) Solve Equation (10) for K and update K.
(ii) Solve Equations (11)–(12) for E and update E.
(iii) Update lT using (13).
(iv) Return to Step (3b) if the stopping criterion is not satisfied. Otherwise go to Step (3c).

(a) Return to Step (3a) if the stopping criterion of global convergence is not satisfied.
Otherwise, stop the calculations.

Newton’s method is used for Equations (10) and (11) and for the RANS Equations (8)
and (9). In all cases, the resulting linear systems are solved by the iterative methods described
in the following section.

4. Iterative methods based on hierarchical elements

In this section, we introduce two types of iterative methods, the first one for scalar equations
such as (10) and (11) and the second one for saddle-point problems such as (8) and (9). The
proposed methods were introduced, respectively, in El maliki, Guénette, and Fortin (2011) for
scalar equations and in El maliki and Guénette (2010) for the Navier–Stokes equations. In
these papers, the proposed iterative methods were tested on a number of rather academic
problems and on more or less uniform meshes at low Reynolds numbers. One of our
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objectives is to modify these methods and test their performance on more realistic applica-
tions at high Reynolds numbers and on general anisotropic meshes.

As described in Section 3.1, we are using quadratic (second-order accurate) finite element dis-
cretiations and therefore, the different iterative methods must be chosen carefully. All quadratic
variables (uh;Kh and Eh) are expressed using a hierarchical basis typically on triangles and tetra-
hedra. The idea is very simple and can be generalised to higher order discretisations as described
in Zaki (1993) and Pelletier, Zaki, and Fortin (1994). The hierarchical basis can be described in
terms of the barycentric coordinates k1; k2; k3; k4 for a tetrahedral element. The first four (linear)
basis functions are given by /i ¼ ki for 1 � i � 4 and are associated to the four vertices of the
tetrahedra. The six remaining (quadratic) basis functions associated to midside nodes are:

/5 ¼ 4k1k2; /6 ¼ 4k2k3; /7 ¼ 4k3k4; /8 ¼ 4k1k3; /9 ¼ 4k1k4; /10 ¼ 4k2k4:

On each element, any quadratic finite element field uh (not necessarily the velocity) can thus
be decomposed into a linear part ul and a quadratic correction uq, i.e. uh ¼ ul þ uq, where:

ul ¼
X4
i¼1

ui/i; uq ¼
X10
i¼5

ui/i:

In other words, the finite element approximation space can be written as Vh ¼ Vl 	 Vq, where
Vl is the subspace of continuous piecewise linear polynomials and Vq is the complementary
subspace of continuous piecewise quadratic midside shape functions.

Using this decomposition, any linear system Auh ¼ b can be written in the form:

All Alq

Aql Aqq

� �
ul
uq

� �
¼ bl

bq

� �

The matrix All is exactly the same as one would obtain using a linear discretisation and its
size is much smaller than the global matrix (about four times smaller in 2D and seven times
in 3D). Moreover, it is shown in Verfürth (1996) that for elliptic problems, the condition
number of the matrix Aqq is Oð1Þ. This means that its condition number does not vary with
the size of the matrix. As we will see, it also means that a second-order accurate solution can
be obtained at a very small extra cost with respect to a first-order approximation.

4.1. Solving scalar equations

The computation of the turbulent variables and � (or of K and E) can now be efficiently and
accurately (at second order) computed. A first algorithm has the form:

Algorithm 1.1: Hierarchical Iterative Method
0. Put r ¼ b� Au0.
(1) Perform a few iterations of the SOR method on the global system:

Ad ¼ All Alq

Aql Aqq

� �
dl
dq

� �
¼ rl

rq

� �
¼ r:
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(2) Compute the new residual r
 ¼ r
l
r
q

� �
¼ rl � Alldl � Alqdq

rq � Aqldl � Aqqdq

� �

(3) Solve Alld

 ¼ r
l (by a direct method or approximately by a Krylov method).

(4) Update the solution
ukþ1
l

ukþ1
q

� �
¼ ukl

ukq

� �
þ dl þ d


dq

� �

(5) Update the residual r ¼ f1 � Allu
kþ1
l � Alqukþ1

q

f2 � Aqlu
kþ1
l � Aqqukþ1

q

" #

(6) Repeat steps 1–5 until convergence.

Depending on the size of the mesh and on the available computer memory, a direct solver
can be used for the linear systems involving All. Otherwise, a Krylov space method is more
appropriate. Unfortunately, such a simple algorithm converges rather slowly. It is however an
excellent preconditioner for a Krylov method on the global matrix A. If the global system is
symmetric, a conjugate gradient method can be employed and otherwise, generalised minimal
residual method (GMRES) (Saad, 2003) is an excellent choice and was used in the computa-
tion of the turbulent variables. We refer to El maliki (2007) and El maliki et al. (2011) for
more details.

4.2. Solving the Reynolds averaged Navier–-Stokes equations

The Reynolds averaged Navier–Stokes equations in velocity–pressure formulation are discre-
tised by the second-order Taylor-Hood P2 � P1 element. Here again, the quadratic part (for the
velocity) is written in a hierarchical basis as in the previous section. Newton’s method is used to
linearise the convective term leading to non-symmetric linear systems of the form:

A Bt

B 0

� �
u
p

� �
¼ fu

fp

� �

Solving saddle-point systems by iterative methods is not a trivial task and we refer to Elman,
Sylvester, and Wathen (2005) for a more complete description. We now follow the approach
developed in El maliki and Guénette (2010) in the case of laminar flows with constant viscos-
ity. We want a true mixed iterative method in the sense that both the primal (for the velocity)
and the dual (for the pressure) problems are solved simultaneously. The key point is the use
of a block triangular right preconditioner of the form:

PR ¼ A BT

0 �S

� �
with P�1

R ¼
A�1 A�1BTS�1

0 �S�1

2
4

3
5

where S ¼ BA�1BT is the Schur complement. With this choice, we have:

A Bt

B 0

� �
P�1
R ¼

I 0
BA�1 I

2
4

3
5
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and clearly this new system is very well conditioned. The definition of P�1
R requires the con-

struction of S�1 (and A�1) which is not possible for large systems. The key point is that since
they appear in the preconditioner, we only need good working approximations of these

inverse matrices that will be denoted as ~A�1 and ~S�1.
Note that the generally non-symmetric matrix A has exactly the same form as in the previ-

ous section and therefore, can be decomposed in its linear and quadratic parts and solved in
the same way. We thus choose for ~A�1 to make a few iterations of GMRES preconditioned
by Algorithm 1.1 presented in Section 4.1. Only a few iterations are performed and thus, lin-

ear systems involving A�1 are not solved to full accuracy and thus ~A�1–A�1.
The construction of the inverse of the Schur complement is more delicate and the lack of

space prevents us from giving a complete description. Obviously, building ~S explicitly is not
feasible nor necessary. We only need an easily computable approximation of its inverse. Fol-
lowing El maliki and Guénette (2010) and the references therein, it can be shown that:

S�1 ’ M�1
p þ qM�1

p CpD
�1
p ¼ M�1

p ðDp þ qCpÞD�1
p ¼ ~S�1

where the above matrices are defined using the pressure basis function /i

M ij
p ¼

Z
�

ðr þ lT þ lÞ/j /i dx;D
ij
p ¼

Z
�

r/j � r/i dx; C
ij
p ¼

Z
�

ðw � r/jÞ/idx

and where w is the velocity field from the previous iteration in Newton’s scheme. Each itera-
tion of this preconditioner thus involves the solution of two linear systems, one for Mp and
the other for Dp. Note that boundary conditions must be provided when using Dp.

Now that we have defined the preconditioner, a (preconditioned) generalised conjugate
residual method (Eisenstat, Elman, & Schultz, 1983) is used for the overall system. This
choice is natural since the matrix is generally non-symmetric, but other choices are possible
such as flexible GMRES (Saad, 2003). The numerical performances of this algorithm are dis-
cussed in El maliki and Guénette (2010) in rather simple situations. Our experience is that
the method performs very well in more complex situations as will be seen in the section on
numerical results.

5. Anisotropic mesh adaptation

Adaptive remeshing strategies are now commonly used in CFD codes since they allow to
control the error level on a given numerical solution thus providing very accurate solutions.
The idea is simple: starting with a first (coarse) mesh, the corresponding solution is computed
and the error is then estimated using some a posteriori error estimator. The mesh is then
modified in order to better fit the dependent solution variables and a new solution is com-
puted. This process is repeated many times until the numerical solution and the mesh no
longer change and/or some error level has been reached.

Adaptive remeshing strategies allow the concentration of small elements only where
needed, that is where the error is estimated large. Moreover, our adaptive method allows for
anisotropic meshes where some element can be stretched along preferential directions. Some
elements can thus present a large aspect ratio. An important consequence is the reduction of
the number of elements needed to obtain a prescribed accuracy.

The anisotropic adaptive strategy used in this work is described in more detail in Belham-
adia, Fortin, and Chamberland (2004). The reader is also referred to Habashi et al. (2000),
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Ait Ali Yahia et al. (2002), Dompierre, Vallet, Bourgault, Fortin, and Habashi (2002) and
Hecht and Mohammadi (1997) for a complete presentation. For a linear (P1) finite element
solution, it is well known that the error E has the form E ’ C etHðxÞe, where C is a
constant, e ¼ P2 � P1 is an element edge with vertices P2 and P1 and HðxÞ is the Hessian
matrix of the solution. If the Hessian is positive definite, the term etHðxÞe can be used to
define a new metric (the Euclidian norm corresponding to H ¼ I) thus linking the error to
this new edge length. The adaptive method therefore tries to obtain a new mesh where all
edges are of the same length in the new metric (which varies throughout the domain). As a
consequence, the error will essentially be the same on all edges and therefore, the adapted
mesh presents some form of equirepartition of the error. For systems of equations, it may be
necessary (and in many instances it is essential) to adapt the mesh on the different variables
of the problem. These variables (velocity, pressure, temperature, etc.) may be of different nat-
ure and units. They are first non-dimensionalised and a new metric is computed for each of
them. All these metrics (or more precisely the ellipses associated to the Hessian matrices) are
then intersected as proposed in Alauzet and Frey (2003) in order to provide a common metric
on which the mesh is adapted taking into account the errors on all variables.

This strategy has to be modified if quadratic (P2) solutions are used. As proposed in Ala-
uzet and Frey (2003), metrics can be obtained by considering the Hessian matrix of the differ-
ent components of the gradient of each variable. This requires to recover third-order
derivatives which is done by solving least square problems on patches of elements around each
node as described in Zhang and Naga (2005). Here again, these metrics have to be intersected.

The main steps of the adaptive procedure are the following:

(1) An initial mesh is provided and the problem is solved providing a numerical solution
for u, p, K and E.

(2) Approximations of the matrix of third-order derivatives of the different variables are
computed at each node.

(3) The resulting metrics are intersected in order to provide a unique metric.
(4) The mesh is then modified using local operations. Nodes and edges are swept a few

times in order to perform:

• Edge refinement and node suppression to control the edge length and thus, the error
level.

• Edge swapping and node displacement to control the quality of the elements.

(5) A new mesh is produced and the process is repeated until the desired error level is
reached.

As will be seen in the numerical results, the resulting meshes may present elements with
large aspect ratio in regions where the different variables allows it. The meshes may therefore
be anisotropic. It must be noted however that the different variables may have conflicting
behaviours and that anisotropy is possible only when all variables agree in some direction.

6. Numerical results

We now present numerical results on three different benchmark problems. We first compare
our numerical solution with an analytical closed form solution (manufactured solution) of a
shear layer. The second test case is the flow over a thin flat plate with finite thickness and the
last one is the flow over a backward facing step (BFS) in three dimensions.
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6.1. A shear layer with a closed form solution

This problem served as a validation case in Pelletier, Turgeon, and Borggaard (2004) to test
the accuracy of their error estimation technique and the efficiency of their isotropic mesh
adaptation strategy. This is an example of a so-called manufactured solution. The computa-
tional domain is the rectangle ½100; 300� � �75; 75. The velocity and the turbulence fields
depend on x and y:

uxðx; yÞ ¼ U1
1þr
2

� �þ 1�r
2

� �
erf ðryx Þ

	 

uyðx; yÞ ¼ U1

1�r
2

� �
1

r
ffiffi
p

p exp � ry
x

� �2� � ð14Þ

kðx; yÞ ¼ k0 ck þ exp � ry
x

� �2� �h i
�ðx; yÞ ¼ �0

x ½ck þ expð�ðr y
x Þ2Þ�

ð15Þ

and the pressure vanishes (p(x,y) = 0). The constant values are:

U1 ¼ 1:0; r ¼ 0:3; r ¼ 13:5; ck ¼ 10�4

k0
; q ¼ 1;

l ¼ 1

Re
¼ 10�4; k0 ¼ 343

75; 000
U 2

1 ð1� rÞ rffiffiffi
p

p ; �0 ¼ 343

22; 500
ClU

3
1 ð1� rÞ2r

2

p
:

The different components of this manufactured solution are illustrated in Figure 1. Dirichlet
boundary conditions are applied for all variables on the whole boundary. The above exact solu-
tions are substituted into the Navier–Stokes and turbulence transport equations, and appropriate
source terms are determined using Maple and added to the corresponding equations.

Computations were first performed on a series of uniform structured meshes (not illus-
trated) having, respectively, 3626, 14,504 and 58,016 elements (7425, 29,353 and 116,721
nodes). A series of adapted meshes (Figure 2) was also produced following the procedure
explained in the previous section. In the lower and upper parts of the computational domain,
the different variables vary very little and the elements are large and isotropic. In the transi-
tion region, the elements are strongly stretched as all variables vary in the same direction. In
the central region, however, elements are more isotropic in nature. This is due to the fact that
strongest variations for each variable take place along different directions, as shown in the
isolines of ux (the x component of u), uy, K and E depicted in Figure 1. This is a nice

Figure 1. Shear layer test case: manufactured solutions.
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example of conflicting interests between the different variables. Anisotropic elements would
not be appropriate in the central region.

The errors, as a function of the number of nodes, are presented in Figure 3 for each series
of uniform and adapted meshes and compared with those obtained on isotropic meshes from
Pelletier et al. (2004). The number of nodes includes each element vertex and the node asso-
ciated to each element edge, since quadratic finite elements are used. Quadratic convergence
was observed for all variables, including the pressure which is not shown. The errors on the
anisotropic meshes is lower for all variables, but the gain in accuracy is more pronounced for
the velocity where the error is one order of magnitude smaller with respect to isotropic
meshes.

Figure 2. Shear layer test case: example of adapted mesh.

Figure 3. Shear layer test case: comparison of errors (using the usual H1ð�Þ -seminorm) between
anisotropic (this work), isotropic (from Pelletier et al., 2004) and uniform meshes.
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6.2. Skin friction on a thin flat plate

For this example, we consider a turbulent flow around a thin flat plate. The computational
domain and the boundary conditions are presented in Figure 4. The Reynolds number is set
to 200,000.

This test case was studied in Lacasse, Turgeon, and Pelletier (2004) to first observe the
effect of the inflow turbulence Reynolds number ReT ¼ �0

qClk20
, where k0 and �0 are the inlet

values for k and �, respectively. ReT is set to 20,000 (10% of Re) with k0 ¼ 10�6 and
�0 ¼ 1:8� 10�9.

A few adaptation cycles led to the mesh illustrated in Figure 5 which presents a clustering
of elements along the plate. Elements are isotropic in the leading edge region, but are clearly
anisotropic downstream along the plate. This is in accordance with, for instance, the
production of k, which depends on the velocity gradient and which is triggered in the leading
edge region (Figure 6). The physically observed stagnation point at the leading edge of the
plate is reproduced in the simulation, leading to a large production of turbulent kinetic energy.
Finally, as in Lacasse et al. (2004), we observe that the skin friction coefficient
Cf ðxÞ ¼ sw

1
2qU

2, where U is the velocity norm, compares well with White’s correlation White

(1974) (Figure 7).

6.3. 3D flow over a BFS

In this section, we show that our numerical strategy can be applied in a 3D case. We consider
the BFS problem which was studied experimentally in (19). The geometry and the boundary
conditions are shown in Figure 8. The Reynolds number based on the inlet mean velocity U

Figure 4. Thin plate problem: geometry and boundary conditions.

Figure 5. Thin plate problem: adapted mesh (1405 elements).
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Figure 7. Thin plate problem: profile of the skin friction coefficient.

Figure 6. Thin plate problem: isolines of the solution on the adapted mesh.

Figure 8. BFS problem: geometry and boundary conditions.
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and the step height L is Re ¼ UL=l ¼ 47; 625. Uniform profiles are specified for all variables
at the inlet section. The turbulence intensity at the inlet (ratio between k and U2) was set to
2%. At the inlet, the following values were thus prescribed: ux ¼ 1:0, uy ¼ 0:0, k ¼ 0:02,
� ¼ 0:01; 524. At the outlet, free boundary conditions for all the variables are prescribed. At
every solid wall, wall boundary conditions are applied with y ¼ 0:01 except at the vertical
step wall where y ¼ 0:02.

The adapted mesh of Figure 9 presents anisotropic features in relevant parts of the
domain. The flow field (Figure 10) shows a recirculation whose length is approximately
6:233� L, in good agreement with numerical and experimental results found in the literature
(see for instance Kim, 1978; Kuzmin & Mierka, 2006; Le, Moin, & Kim, 1997). Finally, in
order to appreciate the advantage of the anisotropic remeshing strategy, we compare in Fig-
ure 11 the velocity profile computed with a coarse uniform mesh (72,225 elements), a refined
uniform mesh (697,443 elements) and an adapted mesh (60,226 elements). The adapted mesh
shows essentially the same profile as the fine structured mesh, with a number of elements
almost 10 times smaller. The figure also includes the experimental results from (19) and, as
easily seen, the agreement is very satisfactory.

6.4. Performance of the solvers

The numerical performance of the different solvers described in Section 4 was abundantly
described in El maliki (2007), El maliki et al. (2011), El maliki and Guénette (2010) but only
for isotropic structured meshes. The scalar solver (see Section 4.1) was tested for elliptic and

Figure 9. BFS problem: computational meshes.

Figure 10. BFS problem: recirculation region on the adapted mesh (median plane).
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mildly convective convection–diffusion problems while the Navier–Stokes solver (see Sec-
tion 4.2) was tested for laminar (constant viscosity) flows.

It was not our purpose to redo all the comparisons with other iterative methods. This was
done in the above references. We have however shown that they are extremely efficient in
much more complex flow problems. In the presented computations, no important difference
was observed in the behaviour of the solvers between structured and anisotropic meshes. The
number of Krylov iterations is slightly higher for anisotropic meshes but not significantly.
This is true for both the scalar and saddle-point solvers. The solution strategy presented in
this paper is thus extremely efficient and accurate since it provides second-order accurate con-
vergence of all variables at a very reasonable cost.

It is worth adding a first concluding remark. When starting a new problem, we always
use a coarse, regular and more or less uniform mesh since otherwise we may have conver-
gence problems with the different iterative methods. Using a mesh containing elements elon-
gated in inappropriate directions will most probably make our iterative methods break down.
This is the case with most iterative methods. Fortunately, mesh adaptation elongates the ele-
ments in directions compatible with the solution of the problem and, as our numerical results
show, the iterative methods continue to behave very well. This is precisely what we wanted
to verify in this work.

7. Conclusions

In this work, we have presented different iterative methods that can be applied to the solution
of turbulent flows with a k � � model. The presented algorithms require a specific hierarchical
basis for classical Lagrange finite element discretisations. The resulting iterative solvers perform
very well on unstructured grids and can therefore be used in conjunction with an anisotropic
mesh adaptation procedure. The resulting scheme is robust and accurate at the same time.

Figure 11. BFS problem: velocity profile at a distance x = 4L/3 at the middle plane after the step.
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