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Abstract

In this article, a direct transcription approach to the minimization of
the volume of elastic straight beams undergoing plane deformation and
subject to buckling loads is presented. In particular, the so-called pseu-
dospectral method is employed, where state variables are approximated
by Lagrange interpolating polynomials and static equations are collo-
cated at Legendre-Gauss-Radau nonuniform mesh points. The resulting
shape optimization problems are thus transcribed into constrained nonlin-
ear programming problems, which in turn are solved by developed rou-
tines. Historical benchmark and academic problems such as simply sup-
ported beams subject to a concentrated compressing force, compressed
and rotating cantilever beams and simply supported beams under a non-
conservative follower distributed load are revisited and numerically solved
under the conditions of plane deformation theory. Numerical solutions
are discussed and compared to those obtained by the shooting method,
which is largely employed for these problems, emphasizing how the
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proposed method could forecast optimal cross sectional area distribu-
tions within a unified fashion and without resorting to accurate guesses
beforehand.

Keywords: Shape optimization, buckling, pseudospectral method, tran-
scription, orthogonal collocation method.

1 Introduction

Rods, beams, columns and, more generally, thin structures are conceptual
abstractions of physical bodies having one or two dimensions much smaller
than the third, whose theory is probably one of the most developed parts
in structural engineering. There is a large interest in understanding their
mechanical behavior as they can model many elements that would be hard
to analyze in the context of three-dimensional elasticity theory. In particular,
researchers still investigate their static and dynamic behaviors, to the point
that new problems can be formulated [1, 2, 3] and intriguing paradoxes are
encountered [4, 5, 6].

Historically, the first elaboration of a theory of beams dates back to
Euler, who mimicked the deformed configuration of the beam by a single
curve representing the beam axis, introduced certain parameters recording the
material orientation relative to that curve and identified vector fields defined
on it, called directors, intended to model the principal directions of the beam
cross section and to serve as a basis in expressing position vectors on the
cross section with respect to a point on the curve [7]. This approach takes
the name of the director theory of beams. Later on, several contributions and
refined director theories have been introduced by many others, e.g., Kirchhoff
and the Cosserat brothers [8].

Parallel to these advancements, an interest has been dedicated to the
shape optimization of straight and curved beams under various loads and
constraints. Among all, a considerable amount of work addressed the resis-
tance to structural instability, especially against buckling. For instance, the
problem of determining the shape of compressed cantilever beam which has
the largest Euler buckling load was formulated by Lagrange in 1773. Later
on, Clausen proposed a solution for a simply supported beam of circular
cross section, yet it did have points where the cross section vanishes, thus
inducing infinite stresses in these points; this problem has been overcome
by adding a constraint on the minimal value of the cross sectional area,
so that given limiting stresses are not exceeded [9]. Since then, many
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results of structural optimization in the realm of beam theory have been
addressed under different load and boundary conditions. Just to list a few, the
shape optimization of simply supported and multi-supported beams has been
numerically addressed in [10]. The shape optimization of a compressed and
twisted column against spatial buckling has been recently revisited in [11],
where closed-form expressions for the optimal cross sectional area distribu-
tions were derived. The topology optimization of continuum structures under
stability requirements has been addressed in [12, 13]. The shape optimization
problem of compressed rotating beams has been considered in [14], whereas
those concerning with beams on elastic foundations can be found in [15, 16].
Last but not least, other problems have been stated when applied loads are
nonconservative, e.g., [17], and when Eringen’s nonlocal elasticity hypothesis
is taken into account, e.g., [18, 19].

As far as necessary conditions for optimal solutions are concerned,
Pontryagin’s Principle and results from calculus of variations have been
considerably recalled. By defining the so-called states, adjoint variables and
the Hamiltonian function in a proper way, necessary conditions for extremal
solutions can be obtained. Because of their strong coupling, situations in
which optimal solutions are derived in closed-form are encountered rarely
and the use of numerical integration methods results mandatory.

The overwhelming majority of the aforementioned numerical studies use
the so-called indirect methods, where optimal solutions are found by solv-
ing the necessary conditions described by a system of nonlinear first-order
differential equations that satisfy endpoint conditions. The most well-known
strategy pertaining to this method is the so-called shooting method, in which
solutions are guessed at endpoints where boundary conditions are not given.
The boundary value problem then is forward (or backward) integrated as
an initial value problem, where a check is made whether the correspond-
ing boundary values are satisfied. If so, a solution is found, otherwise the
initial guesses are adjusted. Despite of its simplicity, errors associated with
unknown boundary conditions may considerably amplify as governing equa-
tions are integrated, thus requiring sufficiently good guesses of the unknown
optimal states and adjoint variables. Conversely, the so-called direct methods
have been gaining increasing interest and their theoretical development is
more and more refined. Among these methods, the so-called pseudospectral
method (or orthogonal collocation method) has been increasing in popularity.
This method permits the parameterization of the states and the objective func-
tion using specified functional forms. In particular, states are approximated
using global polynomials, while governing equations are collocated using
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nodes obtained from quadrature points. Infinite dimensional functional opti-
mization problems are thus equivalently transcribed into finite dimensional
nonlinear programming (NLP) problems.

Pseudospectral methods have been employed by considering many
types of collocation point sets and polynomial approximation basis func-
tions. As far as collocation points are concerned, a considerable amount
of work has been developed by using Legendre-Gauss, Legendre-Gauss-
Lobatto, Legendre-Gauss-Radau and flipped Legendre-Gauss-Radau points
(see e.g., [20, 21, 22]). All the aforementioned sets of points are distributed
more densely towards the edges of the computation interval and therefore
preferably employed for their ability to progressively reduce Runge’s phe-
nomenon. On the other hand, as far as the approximation of the state and/or
the objective function is concerned, many attempts have been made available
employing Chebyshev polynomials [23], Bernstein polynomials [24], radial
basis functions [25] and, more frequently, Lagrange polynomials [26, 27], as
these latter satisfy the isolation property.

In this article, and motivated by the conclusions made in [28], a multistage
pseudospectral approach to the shape optimization of elastic straight beams
undergoing plane deformation is presented, where collocation points are
given by Legendre-Gauss-Radau (LGR) points and states are approximated
by Lagrange interpolating functions. More specifically, it is desired to show
that the resulting functional optimization problems can be addressed within
a single framework, thus hinting that numerical optimal solutions could be
forecast within a unified fashion and bypassing the numerical issues related
to the shooting method, commonly employed in the literature. The article
is organized as follows: Governing equations for plane deformation (Euler-
Bernoulli’s theory) and generalized plane deformation (including extensi-
bility and shear measures) referring to a linearly elastic and homogeneous
material are firstly presented and optimal necessary conditions are recalled
in Section 2. Section 3 illustrates the corresponding LGR transcription pro-
cedure in its multistage form. Eventually, three academic shape optimization
examples are numerically solved and discussed in Section 4 and conclusions
are drawn in Section 5.

2 Theoretical Framework

Consider a beam of a given length L and made of a material exhibiting a
linear stress–strain relation. The beam axis is represented by a plane curve
in a rectangular Cartesian coordinate system, whose horizontal and vertical
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(a) (b)
Figure 1 Coordinate system, load configuration and definition of the employed variables for
(a) plane deformation and (b) generalized plane deformation.

axes are denoted by z̄ and ȳ, respectively. Let i and j be the unit vectors
along z̄ and ȳ, respectively, and k = i× j. The beam axis coincides with the
centroidal line of the beam cross section. Suppose that the bending rigidity
of the beam and the angle between the tangent to the beam axis and the z̄
axis are denoted by EI and θ, respectively, both functions of the arc length
S ∈ [0, L] measured from one end point, namely EI(S) and θ(S). Denoting
by A(S) the area of the cross section at the generic curvilinear coordinate S,
the material volume of the beam is given by

W =

∫ L

0
A(S) dS. (1)

Let qz(S) and qy(S) denote the intensities of the distributed forces at S
along z̄ and ȳ, respectively, both per unit of the beam axis (see Figure 1a).
Moreover, let H(S) and V (S) denote the components of the internal force
R(S) and M(S) denote the internal couple at an arbitrary section of the beam
of coordinate S, which represent the influence of the cut-off part [0, S) of the
beam on the element of length dS. Hence, R(S) = H(S) i + V (S) j, and
M(S) = M(S)k.

2.1 Governing Equations for Plane Deformation

Based on the framework reported in [29], if Euler-Bernoulli assumptions
hold, namely plane sections in the natural state remain plane in the deformed
state and extensional and shear rigidity are infinite, the nonlinear governing
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equations for the static behavior of an elastic beam are1

dH

dS
= −qz,

dV

dS
= −qy,

dM

dS
= −V cos θ +H sin θ,

dz

dS
= cos θ,

dy

dS
= sin θ,

dθ

dS
= M/(EηAσ),

(2)

where E is Young’s modulus and η and σ are two constants depending on the
shape of the cross section (for a circular cross section, η = 1/4π and σ = 2).

2.2 Governing Equations for Generalized Plane Deformation

In case the extensibility of the beam axis ε and the rotation of the cross
section with shear angle γ are taken into account (Figure 1b), the variation of
coordinates along S take the form [29]

dz

dS
= (1 + ε) cos θ,

dy

dS
= (1 + ε) sin θ,

(3)

and the internal couple is given by

M = EI

(
dθ

dS
− dγ

dS

)
. (4)

Moreover, referring to the constitutive equations of the beam in the form
that follows from [30], the shear angle and the rod axis extensibility take the

1Hereinafter, the dependence on S is omitted for brevity.
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form (see Figure 1b) 
sin γ =

cQ

GA
,

ε =
N

EA
,

(5)

where c is the shear correction factor, EA and GA are the extensional and
shear rigidity, respectively, whileQ andN are the components of the internal
force in the direction of the sheared plane and tangent to the beam axis,
respectively, which according to Engesser’s model, are given by [30]

N = H
cos(θ − γ)

cos γ
+ V

sin(θ − γ)

cos γ
,

Q = V
cos θ

cos γ
−H sin θ

cos γ
.

(6)

2.3 Problem Formulation and Necessary Conditions

With prescribed loads qz and qy, cross sectional distribution A and boundary
conditions at endpoints, the static equations aims at assessing the static
behavior of the beam by determining the horizontalH and vertical V internal
forces, the internal couple M , coordinates z and y and the angle θ along the
beam axis. As a consequence, these latter variables may be referred to as the
state variables of the problem. Here, we are interested in finding out the cross
sectional area distribution so that the beam is as light as possible, while static
equations are satisfied. In other words, we define the lightest beam under a
given load as the beam having the shape that any other beam of the same
length and smaller volume buckles. More precisely, denoting by x ∈ X the
state variables and recasting static equations into the form

dx

dS
= f(S,x, A), (7)

where f : [0, L] × X × A → X , the shape optimization problem associated
with a goal functional J(x, A) and characterized by states at endpoints x0 and
xL, an admissible state space X and an admissible shape space A consists in
finding the cross sectional area distribution A : [0, L]→ A which minimizes
J and such that, if x(0) = x0, then x(S) ∈ X for all S ∈ [0, L] and
x(L) = xL.

Denoting by n, b and q the number of elastic states, boundary conditions
and path constraints, respectively, and lettingX be Rn,A be R+ and referring
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to the set of boundary conditions and inequality constraints byφ : Rn×Rn →
Rb and c : [0, L] × Rn × R → Rq, respectively, the aforementioned shape
optimization problem may be generally recast as follows:

Problem 1

min
A(S)

J =M(x(0),x(L)) +

∫ L

0
L(S,x, A) dS,

s.t.
dx

dS
= f(S,x, A),

φ(x(0),x(L)) = 0,

c(S,x, A) ≤ 0.

(8)

Here,M : Rn × Rn → R takes the name of Mayer term and represents
a punctual term at either S = 0 or S = L, or both. The integral term whose
integrand is L : [0, L]× Rn × R→ R is called the Lagrange term and it is a
distributed cost associated with the whole domain S ∈ [0, L].

First-order necessary conditions for extremal solutions of Problem 1 can
be determined from the application of variational principles in calculus of
variations. These conditions are typically derived by defining the following
augmented Hamiltonian function

H(S,x,p,µ, A) = L+ p>f − µ>c, (9)

where p : [0, L] → Rn is the vector containing the costate or adjoint
variables and µ : [0, L] → Rq is the vector of Lagrange multipliers asso-
ciated with the inequality constraints c. In particular, first-order optimality
conditions are given by [31]

dx

dS
=

[
∂H
∂p

]>
, (10)

dp

dS
= −

[
∂H
∂x

]T
, (11)

A∗ = arg min
A∈A
H, (12)
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φ (x(0),x(L)) = 0, (13)

p(0) = − ∂M
∂x(0)

+ νT
∂φ

∂x(0)
, (14)

p(L) =
∂M
∂x(L)

− νT ∂φ

∂x(L)
, (15)

H(0) = H(L) = 0, (16)

µj = 0, when cj(S,x, A) < 0, j = 1, . . . , q (17)

µj ≤ 0, when cj(S,x, A) = 0, j = 1, . . . , q (18)

where ν ∈ Rb is the Lagrange multiplier vector associated with boundary
conditions φ. Because Equations (10) and (11) arise from differentiation of
a Hamiltoninan function, they form a Hamiltonian system. Equation (12) is
known as Pontryagin’s Principle which, in case A∗ lies on the interior of A,
may be expressed as

∂H
∂A

= 0. (19)

Finally, boundary conditions on the costate variables (14) and (15) are
called transversality conditions, while the conditions on the Lagrange mul-
tipliers of the inequality constraints c are referred to as complementary
slackness conditions. Equations (10)–(18) form a Hamiltonian boundary-
value problem, whose solution is called an extremal and consists of the state,
costate and any Lagrange multipliers that satisfy boundary conditions and any
interior point constraints on the state and costate. Due to the strong coupling
between states, costates and the objective function, closed form solutions are
rarely encountered, thus hindering one to resort to numerical methods.

3 LGR Transcription Procedure

In this section, the transcription procedure of Problem 1 into a constrained
NLP is described. The fundamental steps of such transcription consist of
the domain discretization into multiple mesh intervals and the continuous-
to-discrete conversion of states and controls.

As a preliminary remark, and without loss of generality, the numerical
framework is developed with respect to a pseudo domain ξ ∈ [−1, 1] to which
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the finite interval S ∈ [0, L] can be mapped by the linear transformation
S =

L

2
ξ +

L

2
,

ξ =
2

L
S − 1.

(20)

Problem 1 is then formulated in terms of the variable ξ as follows.

Problem 2

min
A(ξ)

J =M(x(−1),x(1)) +
L

2

∫ 1

−1
L(ξ,x(ξ), A(ξ)) dξ,

s.t.
dx(ξ)

dξ
=
L

2
f(ξ,x(ξ), A(ξ)),

φ (x(−1),x(1)) = 0,

c(ξ,x(ξ), A(ξ)) ≤ 0.

(21)

Suppose now that the interval ξ ∈ [−1, 1] is divided into a mesh consist-
ing of K mesh intervals [ξk−1, ξk], k = 1, 2, . . . ,K, where (ξ0, ξ1, . . . , ξK)
are the mesh points, which have the property−1 = ξ0 < ξ1 < · · · < ξK = 1.
Next, let x(k)(ξ) andA(k)(ξ) be the vector containing states and the objective
function in the mesh interval k. Thus, the objective functional can be recast as

J =M
(
x(1)(−1),x(K)(1)

)
+
L

2

K∑
k=1

∫ ξk

ξk−1

L
(
ξ,x(k)(ξ), A(k)(ξ)

)
dξ. (22)

Moreover, the differential constraint and the path constraints in mesh
interval k can be written as

dx(k)(ξ)

dξ
=
L

2
f
(
ξ,x(k)(ξ), A(k)(ξ)

)
(23)

and
c
(
ξ,x(k)(ξ), A(k)(ξ)

)
≤ 0, (24)
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respectively, whereas the boundary conditions may be recast as

φ
(
x(1)(−1),x(K)(1)

)
= 0. (25)

Because the state must be continuous at each interior mesh point, it is
required that the condition x(ξ−k ) = x(ξ+

k ) be satisfied at (ξ1, ξ2, . . . , ξK−1).
Using the LGR pseudospectral scheme, this continuity condition across mesh
points is easy to implement. In particular, the state in each mesh interval
k = 1, 2, . . . ,K is approximated as

x(k)(ξ) ≈ X(k)(ξ) =

Nk+1∑
j=1

X
(k)
j `

(k)
j (ξ), (26)

where X
(k)
j (j = 1, 2, . . . , Nk) are the approximations of the state functions

at the Nk LGR points in mesh interval k and

`
(k)
j (ξ) =

Nk+1∏
l=1,l 6=j

ξ − ξ(k)
l

ξ
(k)
j − ξ

(k)
l

,

where (ξ
(k)
1 , ξ

(k)
2 , . . . , ξ

(k)
Nk

) are the LGR collocation points in mesh interval
k defined on the sub-interval ξ ∈ [ξk−1, ξk]. The LGR collocation points in
mesh interval k are given by the roots of the polynomial PNk−1(ξ)+PNk

(ξ),
where PNk−1 and PNk

are the Legendre polynomials of degree Nk − 1 and

Nk, respectively. It is worth noting that the point ξ(k)
Nk+1 is a noncollocated

point. Differentiating (26) with respect to ξ, one obtains

dX(k)(ξ)

dξ
=

Nk+1∑
j=1

X
(k)
j

d`
(k)
j (ξ)

dξ
. (27)

Besides, the cost functional of Equation (22) is approximated using a
multiple interval LGR quadrature as

J =M
(
X

(1)
1 ,X

(K)
NK+1

)
+
L

2

K∑
k=1

Nk∑
j=1

ω
(k)
j L

(
ξ

(k)
j ,X

(k)
j , A

(k)
j

)
, (28)

where X
(1)
1 and X

(K)
NK+1 are the approximations of x(ξ0 = −1) and x(ξK =

1), respectively, ω(k)
j (j = 1, 2, . . . , Nk) are the LGR quadrature weights in
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mesh interval k, given by
ω

(k)
1 =

2

N2
k

,

ω
(k)
i =

1

(1− ξ(k)
i )

[
dPNk−1(ξ)

dξ

]2

ξ
(k)
i

, (i = 2, 3, . . . , Nk)
(29)

and A(k)
j (j = 1, 2, . . . , Nk) are the approximations of the objective func-

tion at the Nk LGR points in mesh interval k. Collocating the differential
constraints of Equation (23) at the Nk LGR points by means of (27), one
obtains

Nk+1∑
j=1

D
(k)
ij X

(k)
j −

L

2
f
(
ξ

(k)
i ,X

(k)
i , A

(k)
i

)
= 0, i = 1, 2, . . . , Nk, (30)

where

D
(k)
ij =

[
d`

(k)
j (ξ)

dξ

]
ξ
(k)
i

, i = 1, . . . , Nk, j = 1, . . . , Nk+1, k = 1, . . . ,K,

(31)
is the Nk × (Nk + 1) differentiation matrix in mesh interval k.

Next, the path constraint of Equation (24) in the mesh interval k are
enforced at the Nk LGR points as

c
(
ξ

(k)
i ,X

(k)
i , A

(k)
i

)
≤ 0, i = 1, 2, . . . , Nk. (32)

Furthermore, the boundary conditions of Equation (25) are approxi-
mated as

φ
(
X

(1)
1 ,X

(K)
NK+1

)
= 0. (33)

It is noted that the continuity in the state at the interior mesh points is
enforced via the condition

X
(k)
Nk+1 = X

(k+1)
1 , k = 1, 2, . . . ,K − 1. (34)

However, it is worth noting that this constraint is taken into account
explicitly and therefore the NLP that arises from the LGR pseudospectral
approximation is then to minimize the cost function of Equation (28) subject
to the algebraic constraints (30)–(33).
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Introducing the notation

ξ(k) =


ξ

(k)
1

ξ
(k)
2
...

ξ
(k)
Nk

 , X(k) =


X

(k)
1

X
(k)
2
...

X
(k)
Nk

 , k = 1, 2, . . . ,K − 1,

ξ(K) =


ξ

(K)
1

ξ
(K)
2
...

ξ
(K)
NK+1

 , X(K) =


X

(K)
1

X
(K)
2
...

X
(K)
NK+1

 ,

A(k) =


A

(k)
1

A
(k)
2
...

A
(k)
Nk

 , ω(k) =


ω

(k)
1

ω
(k)
2
...

ω
(k)
Nk

 , L(k) =


L
(
ξ

(k)
1 ,X

(k)
1 , A

(k)
1

)
L
(
ξ

(k)
2 ,X

(k)
2 , A

(k)
2

)
...

L
(
ξ

(k)
Nk
,X

(k)
Nk
, A

(k)
Nk

)

 ,

f (k) =


f
(
ξ

(k)
1 ,X

(k)
1 , A

(k)
1

)
f
(
ξ

(k)
2 ,X

(k)
2 , A

(k)
2

)
...

f
(
ξ

(k)
Nk
,X

(k)
Nk
, A

(k)
Nk

)

 , C(k) =


c
(
ξ

(k)
1 ,X

(k)
1 , A

(k)
1

)
c
(
ξ

(k)
2 ,X

(k)
2 , A

(k)
2

)
...

c
(
ξ

(k)
Nk
,X

(k)
Nk
, A

(k)
Nk

)

 ,

k = 1, 2, . . . ,K

and letting

ξ =


ξ(1)

ξ(2)

...
ξ(K)

 ∈ RN+1, ω =


ω(1)

ω(2)

...
ω(K)

 ∈ RN ,

X =


X(1)

X(2)

...
X(K)

 ∈ R(N+1)×n, A =


A(1)

A(2)

...
A(K)

 ∈ RN ,
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L =


L(1)

L(2)

...
L(K)

 ∈ RN , F =


f (1)

f (2)

...
f (K)

 ∈ RN×n,

C =


C(1)

C(2)

...
C(K)

 ∈ RN×q,

where N =
∑K

k=1Nk, the cost functional and discretized differential
constraints given in Equations (28) and (30) can be written compactly as

J =M(X1,XN+1) +
L

2
ω>L (35)

and

DX− L

2
F = 0, (36)

where D ∈ RN×(N+1) is the LGR differentiation matrix, which has a block
structure with nonzero elements defined by the matrix given in Equation
(31). The extra column of D is due to the Lagrange polynomial at the
noncollocated point ξN+1 = 1. Finally, the discretized path constraints of
Equation (32) and boundary conditions of Equation (33) are expressed as

C ≤ 0 (37)

and
φ(X1,XN+1) = 0, (38)

respectively. Hence, Problem 2 may be transcribed into the following discrete
NLP problem.

Problem 3

min
X,A

J =M (X1,XN+1) +
L

2
ω>L

s.t. DX− L

2
F = 0,

φ (X1,XN+1) = 0,

C ≤ 0.

(39)
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Problem 3 is a finite-dimensional NLP constrained problem, whose deci-
sion variables are the approximation of the states and the objective function
at the LGR points. The resulting NLP is suitably reshaped and solved by
using dedicated solvers. In this article, Matlab optimization toolbox fmincon
has been chosen as the NLP solver. Initial guesses have been set to be linear
or constants in the domain for both states and objective function. Numerical
solutions have been forecast j times, each one with N<j> mesh points that
progressively increases. Denoting the optimal goal functional associated with
N<j> by J∗(N<j>), it was found that J∗(N<j+1>) − J∗(N<j>) ≤ 10−6

for N<j> ≥ 50.

4 Benchmark Problems

4.1 Lagrange’s Beam

In order to motivate the present approach, Pearson’s formulation of the
Lagrange’s beam problem is recalled [32], namely the simply supported beam
of circular cross section (η = 1

4π and σ = 2) and maximum resistance to
buckling under axial compression (see Figure 2).

4.1.1 The plane deformation case
Here, it is implicitly assumed that extensional and shear rigidity are infinite.
The nonlinear static equation for this case is [29]

d

dS

(
A2 dθ

dS

)
+

4π

E
F sin θ = 0. (40)

Introducing the dimensionless quantities s = S
L , a = A

L2 , w = W
L3 , λ =

4πF
EL2 , Equation (40) reads

(a2θ′)′ + λ sin θ = 0, (41)

Figure 2 Simply supported beam under buckling load.
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where a prime denotes the first derivative with respect to s, subject to the
boundary conditions

θ(1/2) = 0, θ′(0) = 0. (42)

Due to symmetry considerations, the problem can be considered only for
S ∈ [0, L/2]; the normalized half volume of the beam is therefore

w =

∫ 1/2

0
a(s) ds. (43)

Introducing x1 = θ, x2 = a2θ′, x3 = w and x4 = λ as state variables, the
beam resistance to buckling under axial compression as a shape optimization
problem can be expressed in the following two different ways:

1. To find the distribution of material along the length of the beam so that
the beam is of minimum volume and supports a given load λ̃ without
buckling, i.e.,

min
a(s)

∫ 1/2

0
a(s) ds

s.t. x′1 = x2/a
2,

x′2 = −λ̃x1,

x1(1/2) = 0,

x2(0) = 0.

(44)

2. To find the distribution of material along the length of the beam of a
given half volume w̃ which gives the largest possible buckling load, i.e.,

min
a(s)

− x4(1/2)

s.t. x′1 = x2/a
2,

x′2 = −x1x4,

x′3 = a,

x′4 = 0,

x1(1/2) = 0,

x2(0) = 0,

x3(0) = 0,

x3(1/2) = w̃.

(45)
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Note that static equations have been linearized in the two versions, since
the optimal beam is supposed to still remain straight, i.e., no post-buckling
analysis is considered. Moreover, goal functionals are of Lagrange and Mayer
types in the first and second problem, respectively. A different form of the two
problems above has been considered in [33], where the optimal beam having
the same volume of a uniform one has been numerically obtained by means
of the shooting method. In [33], Hamiltoninans and necessary conditions
for optimal solutions have been firstly derived. By employing the notation
described in the present article, they are given by

H = a+
p1x2

a2
− λ̃p2x1,

a = 3
√

2p1x2,

p′1 = λ̃p2, p′2 = −p1/a
2,

p1(0) = p2(1/2) = 0,

for the first version and

H =
p1x2

a2
− p2x1x4 + p3a,

a = 3

√
2p1x2

p3
,

p′1 = p2x4, p′2 = −p1

a2
, p′3 = 0, p′4 = p2x1

p1(0) = p2(1/2) = p4(0) = 0, p4(1/2) = −1,

for the second version, where pk are the costates associated with states xk,
with k = 1, 2, 3, 4. It is obvious that the condition p1(0) = 0 always
implies that the cross section vanishes at the end of the beam, i.e., a(0) = 0,
conveying to Clausen’s solution.

In [33], it has been found that the goal functional associated with the
optimal cross sectional area distribution in the first version associated with
λ̃ = π2 is w∗ = 0.433. Once this latter result is introduced into the second
version as w̃, one obtains x∗4(1/2) = 9.869 ≈ π2, underlying the equivalence
of the two versions. Nonetheless, this preliminary numerical consideration
takes place only if accurate guesses of pk are provided. For many problems,
this condition is not simply guaranteed, as costate variables are not physically
interpretable in most of the cases. Conversely, by employing the approach
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presented in the present article, there is no need to obtain necessary conditions
for optimality and therefore, unlike the shooting method, the burden of
accurately guessing optimal states and costates is bypassed. In particular, by
simply taking

f = [x2/a
2 − λ̃x1]

and
f = [x2/a

2 − x1x4 a 0]

for the first and second formulation, respectively, optimal states and optimal
objective functions can be directly obtained by solving the corresponding
NLP problems.

As far as the first formulation is concerned, Figures 3a and 3b show the
optimal states and optimal cross sectional area distributions obtained by the
method of the present article with λ̃ = π2, 1.2π2 and 1.5π2. As expected, the
high λ̃, the high the volume required to withstand the load without buckling.
Optimal values of the goal functional associated with the first problem are
w∗ = 0.4330, 0.4743 and 0.5303, respectively. Numerical solution associated
with λ̃ = π2 has been compared to that obtained in [33]. It is easy to notice
that both solutions are in good agreement and the cross section vanishes at
the end (Clausen’s solution). In parallel, one may be interested in imposing
a minimal value of the cross sectional area distribution amin. Unlike the
shooting method, the present approach allows to consider this requirement
as an inequality constraint. For instance, besides the Clausen’s solution,
optimal states as well as optimal area distributions have been numerically
forecast so that a ≥ 0.3 and a ≥ 0.5 (Figures 4a and 4b). Optimal
values for the goal functional associated with the second formulation read
x∗4(1/2) = 9.7578, 7.4376 for the Clausen’s solution, with a ≥ 0.3 and with
a ≥ 0.5, respectively, namely the maximum buckling resistance diminishes
as the amin increases for a given half volume w̃ = 0.4330. Finally, Figures 3c
and 4c display the evolution of the goal functional in function of the iteration
number.

4.1.2 The generalized plane deformation case
Here, the same load configuration as well as the symmetric buckling mode are
considered, but now with finite values for the extensional and shear rigidity.
To this purpose, Equations (3)–(6) are employed. When the beam is subject
to a compressive force F , then H = −F and V = 0 and therefore the axis
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Figure 3 Optimal (a) states and (b) cross sectional area distributions for the first version of
Lagrange’s beam problem. (c) The objective functional versus the iterations number.
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Figure 4 Optimal (a) states and (b) cross sectional area distributions for the second version
of Lagrange’s beam problem. (c) The objective functional versus the iterations number.
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extensibility and the shear angle are given by [30]

ε = − F

EA

cos(θ − γ)

cos γ
(46)

and

γ =
1

2
arcsin

(
2cF

GA
sin θ

)
, (47)

respectively. Now, defining the angle α = θ−γ and taking into consideration
the linearized version of the static equations, one obtains

M ′ = F
1− F

EA

1− cF
GA

α,

α′ =
M

EI

(48)

and subject to the boundary conditions

M(0) = 0, α(1/2) = 0. (49)

Introducing the additional dimensionless quantities m = 4πM
EL3 , µ̃ = F

EL2

and β̃ = cF
GL2 , the minimum mass shape optimization problem reads

min
a(s)

∫ 1/2

0
a(s) ds

s.t. x′1 =
x2

a2
,

x′2 = −λ̃
(
a− µ̃
a− β̃

)
x1,

x1(1/2) = 0,

x2(0) = 0,

(50)

where the states x1 and x2 refer to α and m, respectively, and λ̃, µ̃ and β̃ are
linked through the relation

λ̃ = π2 1− β̃
1− µ̃

. (51)
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In the present notation, necessary conditions for optimal solutions are
given by

H = a+
p1x2

a2
− λ̃

(
a− µ̃
a− β̃

)
p2x1,

∂H
∂a

= 0 = 1− 2p1x2

a3
− p2x1

λ̃(µ̃− β̃)

(a− β̃)2
,

p′1 = λ̃

(
a− µ̃
a− β̃

)
p2, p′2 = −p1/a

2,

p1(0) = p2(1/2) = 0.

It is worth noting that shear and compressibility have opposite influence
on Euler buckling load and for β̃ = µ̃ = 0, one obtains the classical
dimensionless critical load. Besides, according to [34], it is assumed that
µ̃ < 1 and β̃ > µ̃. Besides, and unlike the plane deformation case, here
the cross section does not vanish at the beam end, i.e.,

a(0) = β̃ +

√
λ̃(µ̃− β̃)x1(0)p2(0),

confirming that the shape of the optimal beam and its end depends on the load
and material.

Table 1 lists optimal values of the goal functional and minimal and
maximal values of the optimal normalized cross sectional area distribution
for different values of β̃ and µ̃. Moreover, optimal cross area distributions for
two instances of β̃ and µ̃ are shown in Figure 5 and compared to Clausen’s
solution.

Table 1 Optimal values of the goal functional, the minimal and maximal values of the
normalized cross sectional area distributions for different instances of β̃ and µ̃

β̃ µ̃ λ̃
∫ 1/2

0
a∗(s) ds a∗(0) a∗(1/2)

0 0 9.868 0.4330 0 1.1545

1.5× 10−2 1× 10−3 9.731 0.4376 0.1573 1.1580

1× 10−2 9.820 0.4350 0.1035 1.1565

1.5× 10−1 1× 10−3 8.398 0.4637 0.5104 1.1601

1× 10−2 8.474 0.4628 0.5026 1.1603

1× 10−1 9.321 0.4504 0.3868 1.1608
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Figure 5 Optimal cross sectional area distribution for two instances of β̃ and µ̃ (solid lines)
compared to Clausen’s solution (dashed line).

Figure 6 A compressed rotating cantilever beam.

4.2 Compressed and Rotating Cantilever

Consider an elastic cantilevered beam of length L fixed at an end and com-
pressed by a concentrated force having constant intensity F at the other end.
Suppose that the beam has a circular cross section (I = 1

4πA
2), that its axis is

initially straight and always lies on a plane defined by the system z̄−O−ȳ and
that it rotates with a constant angular velocity Ω about its axis (see Figure 6).
The volume of the rod is still given by relation (1). It is known that at a certain
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angular velocity, even when the force F is not acting, the beam loses stability
so that it can be bent under the action of centrifugal forces. The problem
of determining the critical rotation speed and the post-critical behavior of
the beam described has been subject of many investigations, e.g., [35, 36].
The variation of the coordinates as well as the components of the internal
force and internal couple along S read

dz

dS
= cos θ,

dy

dS
= sin θ,

dH

dS
= 0,

dV

dS
= −ρΩy,

dM

dS
= −V cos θ +H sin θ,

dθ

dS
=

4πM

EA2
,

(52)

where ρ denotes the line density of the beam. To the system (52), the
following boundary conditions are adjoined:

z(0) = y(0) = V (L) = M(L) = 0, H(L) = −F. (53)

Introducing the dimensionless quantities s = S
L , a = A

L2 , ξ = y
L , w̃ = W

L3 ,

m = 4πM
EL3 , v = 4πV

EL2 , λ2
1 = 4πρΩL2

E , λ2
2 = 4πF

EL2 and the new dependent
variable u = −v/λ1, the right-hand side of the linearized static equations
may be written as

f = [ax2 λ1x3 x4/a
2 λ1x1-λ2x3]

and subject to
x1(1) = x2(0) = x3(0) = x4(1) = 0, (54)

where the states x1, x2, x3 and x4 refer to u, u′/a, θ and a2θ′, respectively,
and the prime refers to the first derivative with respect to s. Therefore, the
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minimum mass compressed rotating beam problem reads

min
a(s)

w̃ =

∫ 1

0
a(s) ds

s.t. x′1 = ax2,

x′2 = λ1x3,

x′3 =
x4

a2
,

x′4 = λ1x1 − λ2x3,

x1(1) = 0,

x2(0) = 0,

x3(0) = 0,

x4(1) = 0.

(55)

The Hamiltonian function and necessary conditions for optimality are
given by

H = a+ p1ax2 + p2λ1x3 + p3
x4

a2
+ p4(λ1x1 − λ2x3),

a =

{
2p3x4

1 + p1x2

}1/3

,

p′1 = −λ1p4, p′2 = −p1a, p′3 = −λ1p2 + λ2p4, p′4 = −p3

a2
,

p1(0) = p2(1) = p3(1) = p4(0) = 0.

Observations made in [37] by reformulating the optimality system in
the canonical formalism can significantly simplify the analysis, leading to
a boundary value problem suitably handled by Runge-Kutta methods, yet
initial values need to be determined through variational principles. Here,
instead, numerical solutions for the optimal states (Figure 7) and optimal
cross sectional area distributions (Figure 8a) for different instances of λ1 and
λ2 have been determined bypassing this step. In agreement with [37], it can
be easily seen that the optimal rod is cigar shaped at the top. Optimal values
for w̃, a(0) and a(1) are reported in Table 2. Eventually, optimal solutions
after imposing a constraint on the minimal value of the cross sectional area
distribution (amin = 0.5 and 0.8) are shown in Figure 8b.
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Figure 7 Optimal states for the compressed rotating beam problem with four instances of
λ1 and λ2.

4.3 Pflüger’s Beam

In this section, the optimal cross sectional area distribution for a simply sup-
ported beam loaded by a uniformly distributed follower-type nonconservative
load of constant intensity q0 is considered, commonly referred to as Pflüger
beam in literature (see Figure 9). Here, since the distributed force is tangent
to the beam axis, it follows

qz = −q0 cos θ, qy = −q0 sin θ (56)

and therefore the variation of the components of the contact force is given by

dH

dS
= q0 cos θ,

dV

dS
= q0 sin θ. (57)

After simple algebraic manipulations, the linearized static equations
along the normalized coordinate s = S

L reduces to

m′′ +
λ̂

a2
(1− s)m = 0, (58)
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Figure 8 Optimal cross sectional area distributions for the compressed rotating beam prob-
lem with (a) four instances of λ1 and λ2 and with (b) different values of amin.
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Table 2 Optimal values of the goal functional and the minimal and maximal values of the
normalized cross sectional area distributions for different instances of λ1 and λ2

λ1 λ2 w̃∗ a∗(0) a∗(1)
√
10

√
10 1.0848 1.640 0.0393

√
10/2

√
10 1.0082 1.398 0.0439

0
√
10 0.9804 1.307 0.0465

√
10

√
10/2 0.7948 1.245 0.0267

Figure 9 Pflüger’s simply supported beam under distributed nonconservative follower load.

where a prime still denotes the derivative with respect to s, m = 4πM
EL3 , a =

A
L2 , ŵ = W

L3 and λ̂ = 4πq0
EL and subject to

m(0) = m(1) = 0. (59)

Introducing the states x1 = m and x2 = m′, the right-hand side of static
equations may be written as

f = [x2 λ̂(s− 1)x1/a
2 1]

and subject to
x1(0) = x1(1) = 0. (60)

Therefore, the minimum mass Pflüger’s beam problem reads

min
a(s)

ŵ =

∫ 1

0
a(s) ds

s.t. x′1 = x2,

x′2 =
λ̂(s− 1)x1

a2
,

x1(0) = 0,

x1(1) = 0.

(61)
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Figure 10 Optimal cross sectional area distributions for the Pflüger’s beam problem with (a)
three instances of λ̂ and (b) two instances of amin.
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The Hamiltonian function and necessary conditions for optimality are
given by

H = a+ p1x2 + λ̂
x1p2

a2
(s− 1),

a =
{

2λ̂x1p2(s− 1)
}1/3

,

p′1 = −λ̂ p2

a2
(s− 1), p′2 = −p1,

p2(0) = p2(1) = 0.

The problem has been solved by using Pontryagin’s Principle in [17]. It is
shown that the boundary value problem relevant for determining the optimal
distribution of area along the beam axis has simple eigenvalues. The lowest
eigenvalue of the beam with constant cross-section having unit volume is
18.956266.

Figures 10a shows optimal cross sectional area distribution for λ̂ = 18.96
by the method of the present article and the comparison with that obtained
by the shooting method, showing good agreement. Furthermore, solutions
associated with the normalized loads 0.25λ̂ and 0.5λ̂ have been also forecast.
The corresponding optimal weights are 0.8105, 0.5731 and 0.4052. It is worth
noting that the cross area vanishes at both ends and does not achieve its
maximum value at s = 0.5. Eventually, Figure Figure 10b shows the effect
of the minimal area constraint amin on the optimal solution.

5 Conclusions

A direct transcription approach to the shape optimization of beams under
plane deformation is proposed, where states are approximated by Lagrange
interpolating polynomials and static equations are collocated at Legendre-
Gauss-Radau mesh points. The shape optimization problem is firstly pro-
jected into a pseudospectral domain and then transcribed into a constrained
nonlinear programming problem. The shape optimization of three academic
problems is then addressed, where numerical solutions are obtained by means
of developed Matlab routines and compared to the literature. It is shown that
the proposed approach treats these kind of problems within a unified fash-
ion by bypassing guess-related issues associated with numerical techniques
commonly employed in literature.
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