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Anisotropic mesh adaptation has made spectacular progress in the past few years. The
introduction of the notion of a metric, directly linked to the interpolation error, has allowed
to control the elongation of elements as well as the discretisation error. This approach is
however essentially restricted to linear (P(1)) finite element solutions, though there exists
some generalisations. A completely general approach leading to optimal meshes and this,
for finite element solution of any degree, is still missing. This is precisely the goal of this
work where we show how to estimate the error on a finite element solution of degree k
using hierarchical basis for Lagrange finite element polynomials. We then show how to use
this information to produce optimal anisotropic meshes in a sense that will be precised.

L’adaptation de maillages anisotropes a fait des progrès spectaculaires, notamment grâce à
l’introduction de la notion de métrique liée à l’erreur d’interpolation. Bien qu’il existe des
généralisations, cette approche est toutefois essentiellement réservée à des solutions de type
Lagrange linéaire (P(1)). Une approche générale menant à des maillages optimaux et ce,
quel que soit le degré d’interpolation utilisé, est toujours manquante. C’est précisément le
but de ce travail où nous montrons comment estimer l’erreur sur une solution numérique
de degré quelconque à l’aide de bases hiérarchiques d’éléments finis de type Lagrange.
Nous montrons ensuite comment utiliser cette information pour produire des maillages
anisotropes optimaux, dans un sens qui sera précisé.

Keywords: hierarchical elements; optimal mesh; high order solutions; anisotropy; hierarchi-
cal error estimator; gradient recovery
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1. Introduction

One of the most important decisions that needs to be made when using the finite element
method is the choice of a polynomial space for the discretisation of the different variables of
the problem. Lagrange polynomials of degree less than 3 or 4 are the most commonly used,
though Hermite polynomials are sometimes useful. Most of the time, these polynomials are
written using the usual Lagrange basis functions /iðxÞ satisfying /iðxjÞ ¼ dij where xj are the
element nodes and d is the Kronecker symbol. There exists, however, other possible basis for
Lagrange polynomials that do not satisfy this condition. Hierarchical basis functions, as
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described in Zaki (1993) and Ndikumagenge (2001), are one example. The idea is simple.
Starting from a finite element of degree k; the discretisation space is enriched by adding new
basis functions of degree k þ 1 while keeping basis functions of degree k at existing nodes.
This allows to write any polynomial of degree k þ 1 as a sum

uðkþ1Þh ¼ uðkÞh þ cðkþ1Þh ð1Þ

where uðkÞh is a polynomial of degree k and cðkþ1Þh is a correction of degree k þ 1: This corre-
sponds to a decomposition of the space of piecewise continuous polynomials of degree k þ 1

of the form Mkþ1
h ¼Mk

h � M̂kþ1
h : The hierarchical basis functions up to degree 3 in the

two-dimensional case are the following:

Degree 1 Degree 2 Degree 3

k1 k1k2 k1k2ðk1 � k2Þ
k2 k2k3 k2k3ðk2 � k3Þ
k3 k1k3 k1k3ðk1 � k3Þ

k1k2k3

where the ki’s are the barycentric coordinates. The first three basis functions are associated to
triangle vertices and the corresponding degrees of freedom are nodal values of the solution.
The three quadratic and the first three cubic basis functions are attached to mid-side nodes
but their degrees of freedom are now related to tangential derivatives of order 2 and 3 along
the edges. The last cubic basis function is associated to the barycentre of the element.

Using a hierarchical basis presents a number of numerical advantages. For instance, very
efficient iterative methods based on the decomposition (1) can be developed as described in
El maliki (2007). This is specially true in the quadratic case. Indeed, using a hierarchical
basis, any quadratic finite element field uð2Þh can be decomposed into a linear part uð1Þh and a

quadratic correction cð2Þh : Using this decomposition, any linear system Auð2Þh ¼ b can be writ-
ten in the form:

All Alq

Aql Aqq

� �
uð1Þh

cð2Þh

" #
¼ bl

bq

� �

The matrix All is exactly the same as one would obtain using a linear discretisation and its
size is much smaller than the global matrix (about four times smaller in 2D and seven times
in 3D). Moreover, it is shown in Verfürth (1996) that for elliptic problems, the condition
number of the matrix Aqq is Oð1Þ: This means that its condition number does not vary with
the size of the matrix.

This structure is exploited in El maliki, Guénette, and Fortin (2011) to define a precondi-
tioner for the Generalised Conjugate Residual (GCR) algorithm. It is shown that for large sys-
tems, the method is extremely time efficient for many different PDE’s. As we will see, a
second-order accurate solution can be obtained at a very small extra cost with respect to a
first-order linear approximation.

Hierarchical basis functions have other interesting properties. In this work, we show how
these can be exploited to build a general anisotropic mesh adaptation procedure that can be
used for Lagrange polynomials of any degree in two or three dimensions. It is not our
objective to make a complete review of the literature on anisotropic mesh adaptation and we
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simply refer the interested reader to Hecht and Mohammadi (1997), Alauzet (2008), Lagüe
(2006), Habashi et al. (2000) for metric-based methods and Babuska and Rheinboldt (1978),
Formaggia and Perotto (2003), Huang, Kamenski, and Lang (2010), Kunert (2000), Micheletti
and Perotto (2006), Picasso (2002), Verfürth (1996)) for residual-based or other methods.

We propose in this work a completely general approach based on a hierarchical estimation
of the error. A similar idea was first introduced in Bank and Smith (1993) and more recently
in Huang et al. (2010). Let uðkÞh 2Mk

h be the solution of the following variational problem,

aðuðkÞh ; vhÞ ¼ f ðvhÞ; 8vh 2Mk
h; ð2Þ

where að�; �Þ is a bilinear form and f is a linear functional. To construct an error estimator to
this problem, one can consider the following auxiliary problem

aðcðkþ1Þh ; vhÞ ¼ f ðvhÞ � aðuðkÞh ; vhÞ; 8vh 2 M̂kþ1
h ; ð3Þ

This is a global problem on the space M̂kþ1
h involving matrix Aqq and is therefore well con-

ditioned. Its solution, cðkþ1Þh ; is simply an approximation to the residual of (2) and can be

used in a mesh adaptation routine. Note that uðkÞh þ cðkþ1Þh is an approximation of degree k þ 1

of the solution u: It is however different from uðkþ1Þh which would be obtained by solving the

complete variational problem in Mkþ1
h and we therefore write ûðkþ1Þh ¼ uðkÞh þ cðkþ1Þh : This of

course leads to the construction of error estimators for any order finite elements but, once
again, requires the knowledge of the problem at hand. Computations of the error by local
problems as in Verfürth (1994) can be seen as local variants of the idea.

We propose in this paper a different construction for cðkþ1Þh that will lead to a new approx-

imation of u (still denoted ûðkþ1Þh ) that does not require the solution of a global problem as in
(3). We do not even need to know the variational formulation. Starting from a finite element

solution uðkÞh ; the idea is to construct a more accurate solution of degree k þ 1 of the form

(1). If a hierarchical basis is used, only cðkþ1Þh needs to be computed. It will be shown that

cðkþ1Þh can be easily obtained if an appropriate approximation of degree k of the gradient of

uðkÞh is available. We then show that its norm kcðkþ1Þh k is an error estimator capable of driving
a very efficient anisotropic adaptive remeshing method. We also show that the resulting
meshes are optimal in the sense introduced in D’Azevedo and Simpson (1991). The case
k ¼ 1 was described in Bois, Fortin, and Fortin (2012) and we propose here a generalisation
of the approach.

The outline of the paper is as follows. In Section 2, we recall some general results on
optimal meshes. In Section 3, we outline the construction of a general error estimator using
hierarchical elements. Section 4 is devoted to the description of the local operations on the
mesh in order to obtain a prescribed level of error. Then, in Section 5, numerical results are
shown for 2D and 3D test cases. Finally, we conclude and give further comments in Section 6.

2. Optimal triangles

The shape of optimal triangles is now well known in the linear case (k ¼ 1) since the theoret-
ical work of D’Azevedo and Simpson (1991). To our knowledge, a similar analysis does not
exist for k[1 and we therefore adopt a numerical point of view. We thus consider a function
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u 2 Pðkþ1ÞðXÞ; the space of polynomials of degree k þ 1 on X: For a given triangle K with
fixed area AK ; we would like to find the positions of its three vertices minimising the energy
norm of the interpolation error jPkðuÞ � uj1;K : Here, PkðuÞ is the reinterpolation of u in the

space PðkÞðKÞ of polynomials of degree k over the triangle K: The resulting triangle will be
called as optimal. To state this problem more clearly, we can assume, without loss of general-
ity, that the barycentre of the triangle is at the origin. The problem is now written as

min
fx1;x2;x3g

Z
Kðx1;x2;x3Þ

jrðPkðuÞ � uÞj2dx ð4Þ

subject to : AreaðKðx1; x2; x3ÞÞ ¼ AK ð5Þ

and x1 þ x2 þ x3 ¼ 0 ð6Þ

where xi ¼ ðxi; yiÞ; i ¼ 1; 2; 3; are the three vertices of the triangle K and the second con-
straint fixes the barycentre of K at the origin. For higher order elements, it is plausible that
the optimal triangle has curved sides. It is clearly the case close to curved boundaries. We did
not explore this possibility in this work and curved elements are employed uniquely on the
boundary when necessary.

The constrained minimisation problem (4)–(6) can be solved using symbolic mathematical
sofware like Maple™ or Mathematica® by first writing the objective function in terms of
ðxi; yiÞ and then substituting the constraints in it. We end up with an unconstrained minimisa-
tion problem for a function of three variables instead of six. Suppose that v1 ¼ x1; v2 ¼ y1
and v3 ¼ y2 are the three remaining unknowns of this problem, then the solution satisfies the
following system of non-linear equations

@

@vi

Z
Kðx1;x2;x3Þ

jrðPkðuÞ � uÞj2dx
 !

¼ 0; i ¼ 1; 2; 3

The solution of this system is in general not unique and the functional has saddle points
which were obtained using Maple™. A similar analysis can be done in the three-dimensional
case where we end up with a minimisation problem with eight unknowns.

The case k ¼ 1 was already discussed in Bois et al. (2012) where, starting from an analyt-
ical solution u 2 Pð2ÞðXÞ and a piecewise linear reinterpolation, we found the optimal trian-
gles corresponding to the different quadratic forms (positive definite, semidefinite and
indefinite) in accordance with the theoretical conclusions of D’Azevedo and Simpson (1991).

We now take a look at the case k ¼ 2 where there is no theoretical results to our knowl-
edge. Starting from an analytical solution u 2 Pð3ÞðXÞ and its quadratic reinterpolation, we
search for the optimal form of the triangles. The complete classification of all cubic polyno-
mials was undertaken by Newton and it is now known that there are 78 different cases com-
pared to three in the quadratic case (see Weisstein (2010) for instance). It is therefore not
possible to present all cases and we restrict ourselves to the functions z ¼ ðx� yÞxy and
z ¼ ð10x� yÞð10x2 þ y2Þ; the other cases following the same lines.

Depending on the choice of the cubic function, the optimal triangles take different orienta-
tions and shapes, going from equilateral, isosceles to rectangle and some with large aspect
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ratios. Two examples are presented in Figure 1. Most importantly, minimising the H1-semi-
norm of the error is clearly enough to produce anisotropic triangles as can be seen in the case
z ¼ ð10x� yÞð10x2 þ y2Þ:

In practise, the interpolation error is not known and cannot be minimised. It is however
possible to build an error estimator as will be described in the next section. This error estima-
tor is then used to get optimal triangles and to reach a prescribed level of error or a given
number of triangles.

3. Error estimator

Let u be an analytical solution, usually unknown, of a given partial differential equation.
While the following procedure does not particularly depend on the PDE, it will, however,
depend on the quality of the reconstructed gradients. Even though superconvergence of this
reconstruction has been proven only for elliptic problems and special meshes, our experience
shows that it works quite well in practice for a large variety of PDE’s.

We denote T h a triangulation of the domain X and K its elements and let Vh the space of
continuous functions whose restriction to any element K of T h belongs to the space PðkÞðKÞ
of polynomials of degree k over the triangle K: We therefore suppose that uðkÞh 2 Vh is a finite
element approximation of degree k to the true solution u: Our objective now is to approxi-

mate the error ku� uðkÞh k where k � k is an appropriate norm.
Hierarchical error estimators are based on the hypothesis that a more accurate approxima-

tion ûðkþ1Þh of degree k þ 1 of the solution can be built from uðkÞh : The precise construction of

ûðkþ1Þh will be soon described but we now suppose its existence. If ûðkþ1Þh can be constructed
such that it is an approximation of order OðhkþrÞ with r � 2; then the error can simply be
approximated by the relation:

ku� uðkÞh k � ku� ûðkþ1Þh k þ kûðkþ1Þh � uðkÞh k ’ kûðkþ1Þh � uðkÞh k ð7Þ

Figure 1. Optimal triangles for different cubic functions.
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As we shall see in the next section, the construction of ûðkþ1Þh requires not only a finite ele-

ment solution uðkÞh but it also necessitates a continuous approximation of degree k of its gradi-

ent that will be denoted gðkÞh 2 ðVhÞd (d is the space dimension). This is not at all an obvious

task. Since uðkÞh is of Lagrange type, its derivatives are discontinuous at element interfaces
and some form of projection is needed. The procedure is described in detail in Appendix A.

In the following, we therefore suppose that we have uðkÞh and gðkÞh :

3.1. Construction of ûðkþ1Þh

Our main focus will be on the linear and quadratic cases since these are of utmost importance
in practice. We will also restrict the presentation to two dimensions, but the generalisations to
higher order approximations and to higher dimensions are immediate.

Let us first introduce some notation. The vertices of the triangle K are denoted, xi and ki
are the associated barycentric coordinates. The edge vector between xi and xj has length hij
while eij is a unit vector in the same direction (the vector between xi and xj is thus hijeij). Its
mid-side node is denoted xij The median between xi and its opposite mid-side node has
length li and mi is a unit vector in the same direction. The three medians meet at the barycen-

tre xB of the triangle. Similarly, gðkÞi and gðkÞij denotes, respectively, the recovered gradients at

vertices and mid-side nodes obtained by the method described in Appendix A.
The idea for the construction of ûðkþ1Þh is then very simple. Since ûðkþ1Þh is an approxima-

tion of u and gðkÞh ¼ ðgðkÞhx ; g
ðkÞ
hy Þ is an approximation of its gradient, then the different partial

derivatives of order k þ 1 of ûðkþ1Þh should coincide with the appropriate partial derivative of

order k of one of the components of gðkÞh : Moreover, note that from (1):

@kþ1ûðkþ1Þh

@xm@yn
¼ @kþ1cðkþ1Þh

@xm@yn
with mþ n ¼ k þ 1

since uðkÞh is a polynomial of order k and it completely disappears from the system.
We will illustrate the construction in the linear and quadratic cases. For example, starting

from a linear finite element solution, mid-side nodes can be added and the corresponding qua-
dratic basis functions are of the form kikj: On each element K; we are searching for an

approximation ûð2Þh of the form:

uð1Þh þ cð2Þh ¼ uð1Þh þ cð2Þ12; Kk1k2 þ cð2Þ23;Kk2k3 þ cð2Þ31;Kk3k1

The unknown coefficients cð2Þij;K are obtained by comparing the second-order derivatives of cð2Þh

(or ûð2Þh ) with the first-order derivatives of gð1Þh : We end up with a system of three equations
for three unknowns of the form:

@2cð2Þ
h

@x2 ¼
@gð1Þ

hx
@x ;

@2cð2Þ
h

@y2 ¼
@gð1Þ

hy

@y ;

@2c
ð2Þ
h

@x@y ¼ 1
2

@g
ð1Þ
hx
@y þ

@gð1Þ
hy

@x

� �
;

8><
>: ð8Þ
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which can be easily solved for the cð2Þij;K’s:

cð2Þ12;K ¼ 1
8 ðx1 � x2Þ � ðgð1Þ2 � gð1Þ1 Þ ¼ h12

8 e12 � ðgð1Þ2 � gð1Þ1 Þ
cð2Þ23;K ¼ 1

8 ðx2 � x3Þ � ðgð1Þ3 � gð1Þ2 Þ ¼ h23
8 e23 � ðgð1Þ3 � gð1Þ2 Þ

cð2Þ31;K ¼ 1
8 ðx3 � x1Þ � ðgð1Þ1 � gð1Þ3 Þ ¼ h31

8 e31 � ðgð1Þ1 � gð1Þ3 Þ
ð9Þ

Note that cð2Þij;K depends solely on the coordinates xi and xj and the recovered gradients gð1Þi

and gð1Þj at adjacent nodes. This guarantees the continuity of ûð2Þh at the boundary between
two elements.
Remark: The coefficients cð2Þij;K have a nice interpretation that makes a link with metric-based
adaptation. For example, we have:

cð2Þ12;K ¼
h12
8

e12 � ðgð1Þ2 � gð1Þ1 Þ ¼
ðh12Þ2
8

e12 � ðg
ð1Þ
2 � gð1Þ1 Þ
h12

’ ðh12Þ
2

8
e12 � HðxM Þ � e12

where HðxM Þ is the Hessian matrix of u evaluated at mid-side xM : If the Hessian is positive
definite, the coefficients can be interpreted as edge lengths using the metric induced by H :
Note, however, that we do not need the positive definiteness of the Hessian matrix in our
method.

Generalising the notion of a metric to higher order elements is not a trivial task (see Pag-
nutti and Ollivier-Gooch (2009) for instance). Another possible avenue consists of recovering
third-order derivatives and to extract three different metrics corresponding to each component
of the gradient of the FEM solution. These metrics can then be intersected into one usable
metric to drive anisotropic mesh adaptation as proposed in Alauzet and Frey (2003).

We will show that, using our approach, the generalisation to higher order elements is
almost trivial. In the quadratic case, we start with a quadratic FEM solution and one needs
four supplementary degrees of freedom to build a cubic approximation. To achieve this, a sec-
ond degree of freedom is attached to mid-side nodes with a corresponding cubic “wave” basis
function. A fourth degree of freedom is added to the barycentre of the element with the basis
function k1k2k3 ending up with

ûð3Þh ¼ uð2Þh þ cð3Þh ¼ uð2Þh þ cð3Þ12;Kk1k2ðk1 � k2Þ þ cð3Þ23;Kk2k3ðk2 � k3Þ þ cð3Þ31;Kk3k1ðk3 � k1Þ
þ cð3Þ4;Kk1k2k3

Now comparing the third-order derivatives of cð3Þh (or ûð3Þh ) with the second-order derivatives

of gð2Þh ; we obtain a new system of four equations:

@3cð3Þ
h

@x3 ¼
@2gð2Þ

hx
@x2 ;

@3cð3Þ
h

@y3 ¼
@2g

ð2Þ
hy

@y2 ;

@3cð3Þ
h

@x2@y ¼ 1
3

@2gð2Þ
hx

@x@y þ
@2gð2Þ

hx
@y@x þ

@2g
ð2Þ
hy

@x2

� �
;

@3c
ð3Þ
h

@x@y2 ¼ 1
3

@2gð2Þ
hy

@x@y þ
@2gð2Þ

hy

@y@x þ
@2g

ð2Þ
hx

@y2

� �
:

8>>>>><
>>>>>:

ð10Þ

Solving this system yields:
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cð3Þ12;K ¼ h12
3 e12 � ðgð2Þ1 � 2gð2Þ12 þ gð2Þ2 Þ

cð3Þ23;K ¼ h23
3 e23 � ðgð2Þ2 � 2gð2Þ23 þ gð2Þ3 Þ

cð3Þ31;K ¼ h31
3 e31 � ðgð2Þ3 � 2gð2Þ31 þ gð2Þ1 Þ

ð11Þ

and

cð3Þ4;K ¼
2

3
l1m1 � ðgð2Þ1 � 3gð2ÞB þ 2gð2Þ23 Þ þ l2m2 � ðgð2Þ2 � 3gð2ÞB þ 2gð2Þ31 Þ þ l3m3 � ðgð2Þ3 � 3gð2ÞB þ 2gð2Þ12 Þ
� �

ð12Þ

where gð2ÞB is the value of gð2Þh at the barycentre of the element.
Remark: Clearly, these coefficients are related to second-order directional derivatives of gð2Þh

along the edges for the first three coefficients and along the vectors mi for c
ð3Þ
4;K : They are thus

linked to third-order derivatives of uð2Þh as expected. Note that gð2ÞB does not need to be com-

puted since it vanishes in the expression for cð3Þ4;K : It was left there only to emphasise that cð3Þ4;K

is a weighted average of second-order derivatives of gð2Þh :

In the general case, it is a linear system of dimension dimðPðkþ1ÞÞ � dimðPðkÞÞ which is
k þ 2 equations in two dimensions and ðk þ 3Þðk þ 2Þ=2 in three dimensions that is needed

to determine cðkþ1Þh on each element.
The main steps of our adaptive strategy are the following:

• Starting from a finite element solution uðkÞh of a given PDE.
• The gradient gðkÞh is recovered at the same nodes as uðkÞh (see Appendix A).
• Coefficients are given by (9) (or (11)) to obtain cðkþ1Þh .

Once the reconstruction of ûðkþ1Þh is complete, then relation (7) simply becomes

ku� uðkÞh k ’ kcðkþ1Þh k:

3.2. The one-dimensional case

The one-dimensional case is worth a few comments. The above development is much easier
since the system reduces to one equation in all cases. Let

/ð2ÞðnÞ ¼ 1� n2 and /ð3ÞðnÞ ¼ nð1� n2Þ

the quadratic and cubic hierarchical basis functions defined on the reference element. Trans-
formed on an element K ¼ ½xi; xiþ1� of length hK ; we get

/ð2ÞK ðxÞ ¼
4

h2K
ðx� xiÞðxiþ1 � xÞ and /ð3ÞK ðxÞ ¼

8

h3K
ðx� xiÞðx� xBÞðxiþ1 � xÞ
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where xB ¼ ðxi þ xiþ1Þ=2: We thus want to construct:

ûð2Þh ðxÞ ¼ uð1Þh ðxÞ þ cð2Þ1;K/
ð2Þ
K ðxÞ and ûð3Þh ðxÞ ¼ uð2Þh ðxÞ þ cð3Þ1;K/

ð3Þ
K ðxÞ

The coefficients cð2Þ1;K and cð3Þ1;K are then easily computed. The second (third) derivative of

ûð2Þh ðxÞ (ûð3Þh ðxÞ) is compared to the first (second) derivative of gð1Þh ðxÞ (gð2Þh ðxÞ). Simple com-
putations give:

cð2Þ1;K ¼ �
hK
8
ðgð1Þiþ1 � gð1Þi Þ and cð3Þ1;K ¼ �

hK
12
ðgð2Þiþ1 � 2gð2ÞB þ gð2Þi Þ

The error is thus:

uðxÞ � uð1Þh ðxÞ ’ ûð2Þh ðxÞ � uð1Þh ðxÞ ¼ cð2Þ1;K/
ð2Þ
K ðxÞ ¼ �

1

2hK
ðgð1Þiþ1 � gð1Þi Þðx� xiÞðxiþ1 � xÞ

¼ 1

2

ðgð1Þiþ1 � gð1Þi Þ
hK

ðx� xiÞðx� xiþ1Þ � 1

2
u00ðxBÞðx� xiÞðx� xiþ1Þ

in the linear case and:

uðxÞ � uð2Þh ðxÞ ’ ûð3Þh ðxÞ � uð2Þh ðxÞ ’
1

3!
u000ðxBÞðx� xiÞðx� xBÞðx� xiþ1Þ

in the quadratic case. The error estimator on the element is nothing but an approximation of
the classical Lagrange interpolation error.

4. Adaptive remeshing

In Bois et al. (2012), the mesh adaptation strategy consisted of modifying the mesh locally in
order to attain a prescribed level of error. The same idea will be presented here but as we will
see, it is often more convenient to specify a number of triangles or a number of vertices. This
will be described later on. For the moment, we start with u an analytical solution and uðkÞh a
finite element approximation of degree k of u: The global strategy driving our mesh adapta-
tion is to try to reach a target level eX of error in L2-norm. More specifically, we would like
to have:

ku� uðkÞh k20;X ¼ e2X

We would also like to obtain some form of equirepartition of this error in the sense that the
error should be constant ju� uðkÞh j ¼ c everywhere in the domain. Using the L2-norm, this
means that:
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e2X ¼
Z
X
ju� uðkÞh j2dx ¼ c2 meas ðXÞ and thus c2 ¼ e2X

measðXÞ

This also implies that on each element K (or on a patch of elements), the local error eK
should satisfy:

e2K ¼
e2X measðKÞ
measðXÞ

If this target value can be reached on each element, then the global error eX will be attained
on the domain X: The mesh will therefore be modified in order to achieve this goal. To
obtain a new mesh, only local operations on the mesh (node displacement, edge swapping,
node elimination and edge refinement) are used. Edge refinement and node elimination are
used to reach the target level of error eX: From Section 2, we know that optimal anisotropic

meshes can be obtained by minimising the energy norm of the error ju� uðkÞh j1;X: This is

done using edge swapping and node displacement. These two local operations on the mesh
are performed only if they decrease the energy norm of the error. In practice, the true error is
obviously replaced by the estimated error described in Section 3.1. Note that for time-depen-
dent problems, this is repeated over each time step.

Algorithm 4.1. GLOBAL MESH ADAPTATION

INPUT: Initial mesh M0; maximum number of iterations max it; eX:
OUTPUT: Final mesh and computed solution.

i ¼ 0
while Adaptation process modified the mesh and i–max it do

STEP 1: Solve PDE to obtain a solution uðkÞh on mesh Mi;

STEP 2: Use the gradient recovery method to compute gðkÞh on mesh Mi;
STEP 3: Adapt mesh Mi using local operations to obtain Miþ1:

→ Minimise the H1 -seminorm of the error using edge swapping and node displacement
(error equidistribution and element optimality)

→ Control the L2-norm of the error (or the number of elements) using edge refinement and
node elimination

STEP 4: i iþ 1:
end while

As already mentioned, prescribing a level of error is not that easy since the appropriate level
may vary from one problem to the other. From a practical point of view, it is easier to pre-
scribe a target number NT of elements. We must therefore translate a number of elements into
a target level of error. As we now describe, this is done iteratively.

Let us suppose that we have a finite element solution uðkÞh of degree k: Provided the ana-
lytical solution is smooth enough (say u 2 H2ðXÞ), we have:

ku� uðkÞh k0;X ’ Chkþ1
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On a regular mesh, the number of elements N behaves as N 	 h�d or h 	 N�1=d and conse-
quently:

ku� uðkÞh k0;X ’ CN�ðkþ1Þ=d

The target level of error eX is therefore linked to the target number of elements NT by the

relation eX ’ CN�ðkþ1Þ=dT : At some time in the adaptation process, the current number of ele-
ments NC is known and our error estimator will provide an approximation of the current error

eC: These two quantities also verify eC ’ CN�ðkþ1Þ=dC and consequently, to obtain a target
number of elements NT ; the target error should be:

eX ¼ eC
NC

NT

� �kþ1
d

and this is the value that is provided as a target. Note that this value is updated at each step
of the adaptation process as new values of eC and NC appear.

It is also important to note that the general algorithm does not change when passing to
higher order mesh adaptation. The same topological operators are used to modify the mesh
but since the error estimator varies with k; the local decisions whether to modify the mesh or
not may be different. Hence, an optimal mesh for a linear solution is generally not optimal
for a quadratic one. This will be illustrated in the next section.

Finally, it is often necessary to adapt the mesh on more than one solution. For multi-vari-
able problems, the following strategy was adopted. First, all variables are normalised to 1.
Then the error on all these variables is estimated and simply summed.

5. Numerical results

5.1. Reinterpolation problems

5.1.1. Cubic functions

We first illustrate that our adaptive strategy produces optimal triangles in the sense described
in Section 2. Starting from a uniform mesh of the square ½0; 1�2; the mesh is adapted using
the exact interpolation error, that is no finite element problem is solved. Note that since the
functions are cubic, the estimated error and the interpolation error are exactly the same. This
is thus a pure optimal reinterpolation problem using a quadratic finite element (k ¼ 2). For
the two functions of Figure 1, we have obtained the meshes illustrated in Figure 2. In both
cases, we observe the presence of many triangles with optimal shapes. Of course, it is not

always possible to mesh the square ½0; 1�2 with these optimal triangles but the adaptation tries
to place as many optimal triangles as possible.

5.1.2. A three-dimensional example

This example is chosen to show that 3D anisotropic meshes can be obtained using our mesh
adaptation algorithm. Here again, no finite element problem is solved but the interpolation
error is estimated as described in Section 3.1, as opposed to the previous section where we
had an exact representation of the error. The same remeshing strategy is used as in the two-
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dimensional case by using edge refinement, node coarsening, edge flipping and node displace-
ment for tetrahedral elements.

The function considered is a 3D version of the function proposed in George (2001)1 and
is defined as

uðx; y; zÞ ¼ e�3 ð3xþ0:3Þ
2Þþð3yþ0:2Þ2þð3zþ0:1Þ2ð Þ � e�3 ð3x�0:3Þ

2Þþð3y�0:4Þ2þð3z�0:1Þ2ð Þ þ 1

2

 tanh sinð9ðx2 � y2ÞÞ cosð90ðx2 þ y2ÞÞ� 	

This function, in particular, has many steep variations and plateaus. It is very difficult to
obtain a good representation of this function using a regular mesh (especially in 3D) as it
needs a huge number of elements and mesh adaptation becomes essential.

As can be seen in Figure 3, the mesh is highly anisotropic where the solution allows it.
In regions with plateaus, the mesh is very coarse as expected. The isovalues of the solution
in the plane z ¼ 0:5 are also illustrated to show that the solution is well represented in the
whole domain.

5.2. Two-dimensional unsteady non-linear diffusion equation

5.2.1. Position of the problem

Though our adaptive method can be applied to any partial differential equation or system of
equations, we now consider an unsteady non-linear diffusion equation:

@u
@t �r � ðDðuÞ � ruÞ ¼ f in X
 ½0; T �

u ¼ �u on � 
 ½0; T �
uð�; 0Þ ¼ u0 in X

8<
: ð13Þ

where X is a bounded domain of Rd (d ¼ 2; 3), DðuÞ ¼ ðDijÞ; 1 � i; j � d, is the diffusion
tensor, �u and u0 are the boundary and initial conditions, respectively.

This problem will be solved by discretising in time using a fully implicit backward finite
difference of order 2 (BFD2)

Figure 2. Optimal meshes for the functions of Figure 1.
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@u

@t
ðtnÞ ¼ 3un � 4un�1 þ un�2

2Dt
þ OðDtÞ2

Note that this time discretisation involves the solutions at times tn; tn�1 and tn�2: In an adap-
tive scheme, this means that solutions from previous time steps must be reinterpolated on the
current mesh. The strategy is thus the following. In every time step n; we suppose that the
mesh is adapted for the solutions un�1 and un�2: A resolution of the problem is then per-
formed to get a first approximation of the solution at time tn denoted ~un: The mesh is then
adapted for ~un; un�1 and un�2 and all these variables are reinterpolated on the new mesh.
Finally, a second resolution is done to get the final un at time tn before moving on to the next
time step. Of course, this could be repeated many times but the computational time would
evidently increase.

Newton’s method is used to solve the non-linear system at each time step. The resulting
linear systems is solved using a direct solver (MUMPS) described in Amestoy, Duff, and
L’Excellent (2000) and is applied when using both linear and quadratic elements.

5.2.2. Test using manufactured solutions

For this test, we use the method of manufactured solutions (Roache, 2002). For this, let the
circle of radius 3

8 centred at ð12 ; 12Þ parametrised by ðx0ðtÞ; y0ðtÞÞ ¼ ð38 cosðtÞ þ 1
2 ;

3
8 sinðtÞ þ 1

2Þ;
t 2 ½0; 2p�; inside X¼ ½0; 1�2 (the unit square).

Now, let u be the Gaussian function defined as

uðx; y; tÞ ¼ e�1000ððx�x0ðtÞÞ
2þðy�y0ðtÞÞ2Þ

Figure 3. (Top left) adapted mesh; (top right) mesh in the plane z ¼ 0:5; (bottom) isovalues in the
plane z ¼ 0:5.
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and the diffusion tensor as

DðuÞ ¼ uþ 1 0
0 uþ 1

� �

Note that for each t 2 ½0; 2p�; u is maximal at ðx0; y0Þ and is very sharp around this point. If
we substitute this function in the left-hand side of [13], we can generate the functions f ; �u
and u0 such that a finite element code can be used to compute the approximation uh: We will
now use uh to adapt the mesh using Algorithm 4 and evaluate the true error u� uh at each
time step and compare against regularly refined meshes. For the adapted meshes, the target
number of elements was set to approximately 9500. Of course, this actual number of elements
slightly varies with time around that number.

Figure 4 shows meshes and corresponding solutions at time steps t ¼ p
2 and t ¼ 3p

2 : Again,
since the mesh is adapted to the solutions at time steps tn; tn�1 and tn�2 as mentioned before,
the concentrated elements near the current solution forms more or less an ellipse instead of a
disc. The actual form of the ellipse depends on the time step size.

The complete results for both linear and quadratic elements are summarised in Figure 5.
From these results, we can see that mesh adaptation is very beneficial in terms of precision of
the solution. When the mesh is suitably adapted (with around 9500 elements), we obtain
essentially the same (and sometimes even better) level of precision using approximately 14
times less elements compared to the most refined regular mesh (131,072 elements). This is
true for both linear and quadratic discretisations. Note that this factor could be even greater if
we had used a sharper function u since more elements would be needed to have a good

Figure 4. Meshes and solutions at two different time steps.
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Figure 5. Log-Log plot of the error over time using Pð1Þ elements (top) and Pð2Þ elements (bottom).
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approximation using a regular mesh (and the benefits of mesh adaptation would therefore be
greater in this case).

Another important aspect is the computational cost. In order for mesh adaptation to be
truly beneficial, it must also be more cost efficient compared with regularly refined meshes.
Table 1 summarises CPU times for the different simulations. For the adapted cases, the simu-
lation times include two resolutions of the non-linear system and one adaptation step in
between, performed at each time step. The last column gives the CPU time using the precon-
ditioned GCR method (El maliki et al., 2011) discussed in Section 1.

The table shows that obviously, quadratic solutions are more expensive. But when using
the GCR iterative solver and the hierarchical basis, the extra cost with respect to a linear
solution decreases significantly. This means that a much more accurate quadratic solution can
be obtained at very little extra cost with respect to a linear solution. For the adapted meshes,
no gain was observed between the direct and the iterative solver in the quadratic case. The
iterative method is more sensible to anisotropic meshes and therefore convergence is slightly
slower but its performance is still comparable to a direct solver. Direct solvers are no longer
usable in the three-dimensional case while the iterative solver will still be very efficient and
we expect that combined with mesh adaptation, the results would be highly satisfactory.

5.3. The flow around a circular cylinder

We now consider the flow of a Newtonian fluid around a circular cylinder at Reynolds’ num-
ber 30. The flow is stationary as it becomes time dependent at a critical Reynolds’ number
around 45 as shown in Engelman and Jamnia (1990). A uniform velocity profile u ¼ ð1; 0Þ is
imposed at the entrance and on the top and bottom boundaries. The velocity vanishes on the
cylinder and a free flow (r � n ¼ 0) is imposed at the exit section (r is the Cauchy stress ten-
sor). The cylinder has diameter 1 centred at ð0; 0Þ and is placed in the rectangular box with
corners ð�20;�20Þ and ð45; 20Þ:

The incompressible Navier–Stokes equations are then solved in a velocity–pressure
ðu� pÞ formulation using Newton’s method for the linearisation. Two different discretisations
were tested: the first-order mini element (P1 � P1) (stabilised with a bubble function at the
barycentre of the element for the velocity) and the second-order Taylor–Hood (P2 � P1) ele-
ment (see Brezzi & Fortin, 1991). This will allow a comparison of the resulting meshes when
using linear and quadratic solutions.

The adaptation strategy is then used with the same target error for both discretisations.
Figure 6 presents the resulting meshes and clearly, the number of elements for a quadratic
discretisation is much lower than for the linear one for similar accuracy. The flow presents a
recirculation zone behind the cylinder which is clearly captured by both meshes. The

Table 1. CPU times (in s) using 1 core of Intel(R) Core(TM)2 Quad 2.83GHz processor.

Type # Elements Time P1 Time P2 Time P2

(MUMPS) (MUMPS) (Iterative solver)

Regular 2048 119 131 137
8192 445 533 512
32,768 1872 2325 2049
131,072 7470 11,811 9739

Adapted 9500 6480 6763 6763
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elements are anisotropic in the wake in both cases. The mesh is also slightly adapted on the
top and bottom boundaries, showing that the boundary conditions (uniform flow) are not per-
fectly appropriate. These two boundaries should be placed still further from the cylinder.

Figure 6. Meshes and velocity field: mini and Taylor–Hood elements.

Figure 7. Neighbouring nodes to vertex N .
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6. Conclusions

A completely general error estimator valid for Lagrange polynomials of any order was pre-
sented. A very accurate error estimator was built using hierarchical basis of Lagrange finite
element discretisations. It can be applied to a large variety of two- and three-dimensional, sta-
tionary and time-dependent problems. The estimator is rich enough to drive optimal aniso-
tropic mesh adaptation.
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Note
1. There is an error in the definition of this function in George (2001) here corrected.
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Appendix A. Reconstruction of derivatives at nodes

There exists many gradient recovery techniques and it is not our purpose to make a review of existing
methods but simply refer readers to Zienkiewicz and Zhu (1992a, 1992b), Zhang and Naga (2005) and
for a benchmarking study, see some methods (see Manole, Vallet, Dompierre, & Guibault, 2005). Our
experience shows that the method proposed by Zhang and Naga (2005) is one of the most effective
methods, and we now recall their method.

Starting from a finite element solution uðkÞh of degree k; they build, at each vertex N of the mesh, a
polynomial pðkþ1Þ of degree k þ 1 by solving a least squares problem of the form

inf
p2Pðkþ1Þ

X
i

jpðxiÞ � uðkÞh ðxiÞj2

where xi are the coordinates of all the nodes adjacent to N : These neighbouring nodes include verti-
ces identified by large red dots in Figure 7, nodes located on edges identified by red circles and eventu-
ally nodes inside the triangles. Figure 7 illustrates the quadratic case k ¼ 2:

For high values of k; the patch may have to be extended to another layer of elements in order to
get a well-posed problem. The gradient is then recovered by evaluating the derivatives of this polyno-
mial at N : This procedure is performed at triangle vertices only. At mid-side nodes, the computed poly-
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nomials corresponding to the adjacent vertices are differentiated, evaluated at mid-side and averaged.
Note that this is different from averaging the computed gradients at adjacent vertices. A similar proce-
dure is done at the barycentre when necessary. Using their methodology, the gradient can be recon-

structed at the same nodes as uðkÞh and will be denoted as gðkÞh : It is also shown that this gradient

recovery enjoys the polynomial preserving property (if u 2 Pðkþ1Þ; gðkÞh ¼ ru).
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