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Hybrid finite element formulations in combination with Voronoi-cell-based discretisation
methods can efficiently be used to model the behaviour of polycrystalline materials. Ran-
domly generated three-dimensional Voronoi polygonal elements with varying numbers of
surfaces and corners in general better approximate the geometry of polycrystalline micro-
or rather grain-structures than the standard tetrahedral and hexahedral finite elements. In
this work, the application of a polygonal finite element formulation to three-dimensional
elastomechanical problems is elaborated with special emphasis on the numerical implemen-
tation of the method and the construction of the element stiffness matrix. A specific prop-
erty of Voronoi-based discretisations in combination with a hybrid finite element approach
is investigated. The applicability of the framework established is demonstrated by means of
representative numerical examples.

L’utilisation d’une formulation hybride en éléments finis combinée à une discrétisation bas-
ée sur la méthode de génération de cellules de Voronoi permet d’analyser de manière effic-
ace le comportement des matériaux polycristallins. La génération aléatoire, par la méthode
de Voronoi, d’éléments tridimensionnels polygonaux avec un nombre variable de surfaces
et de coins permet généralement de mieux approximer la forme des grains que par l’utilisa-
tion d’éléments finis standard tétraédriques ou hexaédriques. Dans cette étude, l’application
aux problèmes élastiques d’une formulation utilisant des éléments finis polygonaux est
développée. Une attention particulière est donnée à l’implémentation numérique et à la con-
struction de la matrice de rigidité d’un élément polygonal. En particulier, la propriété spé-
cifique d’une discrétisation basée sur la méthode de Voronoi combinée à une formulation
éléments finis hybrides est étudiée. L’applicabilité et la pertinence de l’approche proposée
sont démontrées sur des exemples numériques détaillés dans ce papier.
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1. Introduction

Finite element methods are nowadays well established to efficiently solve inhomogeneous
boundary value problems. In case specific geometries or micro-structures are discretised,
special finite elements may increase the numerical performance of the simulation. In view
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of the modelling and simulation of the micro-structure of polycrystalline materials, naturally
evolving Voronoi polygonal discretisations in general better or rather more efficiently repre-
sent the grain and subgrain structure than standard tetrahedrons and hexahedrons. Three-
dimensional Voronoi polygons may possess a randomly varying number of surfaces, say 4–
20, and corners, say 4–30. It is obvious that a discretisation by means of fine mesh with
standard finite elements significantly increase the computational costs. Hybrid finite ele-
ments, however, may show an improved performance as the approximation of the stresses
within the element is improved. In contrast, the displacements may be approximated only
along the element boundaries. Such an approach, first established by Pian (1964) was
exploited for two-dimensional Voronoi polygonal elements by Ghosh and Mallett (1994)
and Ghosh and Moorthy (1995) later on. A three-dimensional Voronoi-cell finite element
model was developed by Ghosh and Moorthy (2004), with application to heterogeneous
materials containing a dispersion of ellipsoidal inclusions or voids in the ambient matrix
material. The two-dimensional Voronoi-based discretisations combined with the hybrid finite
element method, which is also referred here to as the polygonal finite element method
(PolyFEM), were studied for the coupled electromechanical cases, in particular ferroelec-
trics, by Jayabal, Menzel, Arockiarajan, and Srinivasan (2011) and Sze and Sheng (2005).
Specific properties of such two-dimensional Voronoi discretisations for the PolyFEM are
also discussed by Jayabal and Menzel (2011). The choice of the stress approximation func-
tions within the polygonal finite elements can be based on the type of displacement approx-
imation functions along the element edges regardless of the number of nodes of the
respective polygonal finite element, (cf. Jayabal & Menzel, 2011) with application to two-
dimensional mechanical and electromechanical problems.

In this work, the PolyFEM is applied to three-dimensional Voronoi-cell-based discretisa-
tions for elasto-mechanical problems. In particular, aspects of numerical implementation are
discussed and specific advantages of combining the PolyFEM with Voronoi-cell-based meshes
are studied. The paper is organised as follows: Section 2 deals with the formulation of the
PolyFEM and the underlying element stiffness matrix. Aspects of numerical implementation
of the PolyFEM in combination with the Voronoi-cell-based meshes are discussed in Sec-
tion 3. Some numerical examples for the mechanical problems are presented in Section 4 and
the paper concludes with a summary in Section 5.

2. Element formulation for the PolyFEM

The discrete Hellinger–Reissner functional � for standard continuum undergoing small strains
can – with application of the divergence theorem and making use of the quasi-static balance
of linear momentum form with volume forces being neglected – be expressed as

�e ¼
R
@Be

½n � r� � u da� R
Be

1
2 r : : r dv� R

@Bt
e
t � u da (1)

wherein Be represents a discrete Voronoi-cell-based polygonal finite element. Moreover, u are
the displacements, r represents the symmetric stresses, n denotes the outward unit normal
vector with respect to the element surfaces, is the compliance tensor and �t characterises the
prescribed surface traction on @Bt

e.
It becomes obvious from Equation (1) that r must be approximated within the volume of

the element (Be), while u is to be defined only along the element surfaces (@Be), (cf. Ghosh
& Mallett, 1994; Jayabal et al., 2011). A polygonal finite element can possess any number of
surfaces and the continuity conditions for u are to be satisfied across these surfaces between
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the adjacent elements. Hence, the stresses – here also expressed in Voigt notation,
rvoi ¼ ½rxx ryy rzz ryz rxz rxy�t – and the displacements can be defined, respectively, within the
element and on the element boundary by

rvoi ¼ M � be and u ¼ N � qe; ð2Þ

where M and N include the approximation functions for r and u, with be and qe being the
corresponding stress coefficients and the nodal displacement degrees of freedom respectively.
In other words, the polynomial functions in M , that are expressed in terms of the local coor-
dinates of the element, define the stress in the volume of the element, whereas the polynomial
functions in N interpolate the displacements only on the element surfaces. Combining Equa-
tions (1) and (2), the potential � can be expressed in a more compact form as

�e ¼ be � Ge � qe �
1

2
be � J e � be � qe � fe; ð3Þ

where

Ge ¼
R
@Be

M t � ½n � N � da; ð4aÞ

J e ¼
R
Be
M t · �M dv; (4b)

f e ¼
R
@Bt

e
N ��t da: ð4cÞ

The stationary of � in Equation (3) with respect to be ends – at the element level – up with

be ¼ J�1
e � Ge � qe ð5Þ

which, on substituting this result into the same equation, renders

�e ¼ 1

2
qe � Gt

e � J�1
e � Ge � qe � qe � f e: ð6Þ

The stationary of � in the form of Equation (6) with respect to qe provides the set of linear
equation common for standard finite elements formulation in linear elasticity, i.e.

Ke � qe = f e with Ke ¼ Gt
e � J�1

e � Ge; (7)

and the notation denotes the assembly operator. After the nodal degrees of freedom, in
other words the displacements at the element nodes qe, are evaluated from Equation (7), the
flux coefficients of the element be can be determined from Equation (5). With the element
stresses evaluated by Equation (2), the strains e can be calculated from the constitutive
relation, e = : r.
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3. Numerical Implementation

Preliminary to employing the PolyFEM, a discretisation of the configuration of the body of
interest is performed, whereby we make use of Voronoi polygons. Given a set of random
points, a three-dimensional Voronoi mesh can be generated as documented in, for instance,
Aurenhammer (1991) and references cited therein. An example of such a mesh generated by
means of 100 randomly initialised points is shown in Figure 1(a). The total number of ele-
ments corresponds to the number of randomly generated points whereas the total number of
element nodes varies depending on the position of the randomly generated points. A Voronoi
polygonal element within the mesh plotted in Figure 1(a), here possessing 17 surfaces and 29
nodes, is shown in Figure 1(b).

Apart from the discretisation itself, one has to introduce approximation functions M for
stresses that enable to fulfil the equilibrium conditions. To ensure invariance, M can be cho-
sen such that it consists of complete polynomial terms. In addition, the choice of M should
guarantee the stiffness matrix turns out to be rank sufficient. The following equation provides
the related necessary but not sufficient condition for Ke, i.e.

m P i � d � r ; ð8Þ

where m, i, d and r refer to, respectively, the rank of the element stiffness matrix, the number
of nodes in the polygonal finite element, the degree of freedom per node and the number of
rigid body modes of the element. For three-dimensional problems, d becomes three denoting
the displacements along the x-, y- and z-axes and r takes the value of six, namely three trans-
lations and three rotations. The following stress approximation function

where I6�6 denotes the identity matrix, may render Ke to be rank sufficient for a hexahedral
element together with a proper integration scheme. If a discretisation consists exclusively of

(a) (b)

Figure 1. (a) Voronoi-based discretisation of a volume domain by 100 polygonal elements and (b) a
polygonal finite element within the mesh consisting 17 faces and 29 nodes.

European Journal of Computational Mechanics 95



hexahedral or tetrahedral polygons, M in the form given in Equation (9) can be used for all
elements. This renders the individual stiffness matrices as well as the global stiffness matrix
to be rank sufficient. As seen in Figure 1, however, the polygonal finite elements in a general
Voronoi-cell-based discretisation possess varying numbers of surfaces and nodes. It turns out
that making use of M in the form of Equation (9) results in rank deficient Ke for polygonal
elements with more than eight nodes. In this context, specific characteristics of Voronoi dis-
cretisations in combination with PolyFEM can be exploited. In a recent work, (Jayabal &
Menzel, 2011), two-dimensional Voronoi discretisations are discussed. In that study, it turned
out that the polynomial function for the approximation of stresses that render Ke to be rank
sufficient for a quadrilateral element – together with a linear interpolation of the displace-
ments along the element edges – can be used for all polygonal finite elements of the two-
dimensional Voronoi-cell-based discretisations. Even though these approximation functions
provide rank deficient Ke for elements with more than four, the combination of Voronoi-based
meshes and the PolyFEM rendered in the global stiffness matrix to be rank sufficient after
incorporation of the boundary conditions. This property has been demonstrated by means of
several two-dimensional numerical examples based on Voronoi-generated meshes and differ-
ent approximation functions for the stresses and displacements (see Jayabal & Menzel, 2011).
Such properties, as studied as this work proceeds, may also be expected for the three-dimen-
sional case of Voronoi-cell-based discretisations in combination with the PolyFEM.

3.1. Determination of Je and Ge

After discretisation of the domain of interest and selection of the stress approximating func-
tion, J e and Ge are to be determined for each polygonal element to compute Ke. As seen in
Equations (4b) and (4a), J e is to be evaluated with respect to the volume of the polygonal
element whereas Ge is computed over the boundary of the element.

Each polygonal element in a three-dimensional Voronoi discretisation differs in general
in type, shape and size as compared with the rest of the elements of the entire mesh. To
give an example, in case one polygonal element consists of only four surfaces, another
element may possess more than 20 surfaces. Hence, it is a non-trivial task to determine
J e directly for each element without dividing it into sub-volumes easier to handle. Practi-
cally speaking, the total volume of the polygonal finite element can be divided into sev-
eral standard volumes so that the integration scheme can be set up straightforwardly. In
order to establish one and the same algorithm to evaluate J e for different types of polyg-
onal elements, the following procedure is proposed in this work: the centroid of the vol-
ume of a polygonal element, O, and the centroid of one of its surfaces, say P, are
calculated. These two points together with any two consecutive corners of the considered
surface can be used to construct a tetrahedron. In view of the illustration in Figure 2(a),
consider the corners c and d of the element surface abcdefg, which form the first tetrahe-
dron cdPO. The next two corners d and e form the second tetrahedron dePO and so
forth. Hence, the number of tetrahedrons obtained for a given element surface equals the
number of edges of that surface. If the element surface is already a triangle, only one tet-
rahedron needs to be constructed for that surface. This procedure is repeated for all sur-
faces of the polygonal finite element to obtain the total number of tetrahedrons associated
with that element. Finally, J e is determined for a polygonal element with i tetrahedrons,
by

J e ¼
R
Be
M t · �Mdv ¼ P

i

R
Bi
e
M t� �Mdv; (10)
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where Be denotes the entire element volume and Bi
e refers to the volume of ith tetrahedron in

that element. Apparently, the tetrahedrons obtained by this subdivision to not take the inter-
pretation as finite elements themselves.

A polygonal finite element consists of polygonal surfaces with a varying number of
edges, for instance, from three to 10. Since the matrix Ge is to be determined on the ele-
ment boundary, it has to be evaluated on each surface of the element and, thereafter, is
assembled consistent with the nodal degrees of freedom. One can make use of rather
complex integration schemes to evaluate Ge directly on the entire polygonal surface (see
Mousavi & Sukumar, 2011). Alternatively, well-established interpolation functions can be
applied to simplify the formulation (see Hughes, 1987) among others. This, however, is
rather cumbersome for surfaces with more than four edges so that we divide such sur-
faces into several quadrilaterals and triangles. To give an example, a polygonal surface
with seven edges, abcdef as shown in Figure 1(b), is divided into three sub-surfaces –
two quadrilaterals and one triangular. The matrices G j

e are evaluated independently on
these three sub-surfaces and thereafter added to obtain the contribution of the entire ele-
ment surface abcdef to Ge. Conceptually speaking, one polygonal surface face is replaced
by several quadrilateral and triangular sub-surfaces, all of them possessing one and the
same outward normal unit vector n. This procedure is repeated on all polygonal surfaces
of the element. Finally, Ge of the entire polygonal element is calculated by summation of
all contributions of all surfaces of the element, i.e.

Ge ¼
Z
@Be

M t � ½n � N �da ¼
X
j

Z
@B

j
e

M t � ½n � N �da; ð11Þ

where @Be refers to the entire element boundary and @B j
e represents the surface of the j-th

polygonal sub-surface.

4. Numerical examples

The three-dimensional Voronoi-based polygonal discretisations used in the following numeri-
cal examples are generated by using the Multi-Parametric Toolbox (MPT) in MATLAB. The
number of seed points coincides with the number of elements in the Voronoi-cell-based mesh.
A random generation of these points is used. In consequence, the Voronoi discretisations dis-
cussed in the following are not controlled ones but naturally evolved.

(a) (b)

Figure 2. (a) Division of a polygonal finite element into tetrahedrons as Je is to be evaluated with
respect to the volume of the element and (b) division of an element surface into quadrilaterals and
triangles as Ge is computed over the boundary of the element.
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4.1. Tension test

A volume of 1�1�1mm3 is discretised by Voronoi-based polygons with the total number
of elements chosen as 5, 10, 50, 100 and 200. Homogeneous and isotropic material properties
are assigned to all the elements with a Young’s modulus E of 30GPa and a Poisson’s ratio m
of 0.3.

As homogeneous material properties are assigned to all the elements in the mesh, the dis-
placements are to vary linearly and the strains remain constant in the domain for the case of
simple tension considered. Displacement and traction boundary conditions are applied to the
discretisation, see also Figure 3(a), namely

ux ¼ 0 at z ¼ 0 and x ¼ 0;
uy ¼ 0 at z ¼ 0 and y ¼ 0;
uz ¼ 0 at z ¼ 0;
�tz ¼ T at z ¼ zmax;

ð12Þ

where ux, uy and uz refer to the displacements along the x-, y- and z-axes and T denotes
a constant in MPa. The displacements are interpolated along the element boundary after
dividing these surfaces into quadrilaterals and triangles as discussed in the previous sec-
tion. The approximation function for the stresses M, which in the form provided in Equa-
tion (9) makes Ke rank sufficient only for hexahedral elements, is used for all polygonal
elements in the Voronoi mesh. This includes, for instance, a polygonal element with 21
surfaces and 38 nodes. As seen in Equation (8), this form of M used here makes Ke rank
insufficient for elements with more than eight nodes. However, the global stiffness matrix
turns out to possess full rank for all Voronoi-based meshes studied after the boundary
conditions are incorporated. Moreover, all individual Ke showed rank-insufficiency for two
of the discretisations studied since all elements in these meshes consist of elements with

(a) (b)

Figure 3. (a) Deformed configuration of a Voronoi-based discretisation with 50 polygonal elements for
a tensile loading case. The undeformed boundary of the domain is shown in dashed lines whereas the
displacements to display the deformation are magnified by a factor of 500 and (b) deformed
configuration of a Voronoi-based discretisation with 100 polygonal elements for a pure bending case.
The magnification factor for the displacements to visualise the deformation is 100.
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more than eight nodes. The global stiffness matrices, however, possess full rank and exact
solutions are produced by all Voronoi meshes. To illustrate these results, four points of
the discretisations are indicated in Figure 3(a) – to be specific, A � ½0; 0; 1�, B � ½0; 1; 1�,
C � ½1; 1; 1� and D � ½1; 0; 1� – to compare their displacements obtained with the Poly-
FEM with the analytical solutions. Table 1 highlights these patch test type results for a
traction of T= 20MPa.

4.2. Bending test

A three-dimensional specimen of 1�1� 5mm3 – loaded under pure bending – is discretised
by Voronoi-cell-based polygons with the total number of elements chosen as 50, 100 and
300. The discretisation with 100 polygonal finite elements is shown in Figure 3(b). When
solving such a three-dimensional pure bending linear elastic beam problem, symmetry condi-
tions can be exploited. The analytical solution for the problem at hand can be derived from
the elaborations in Timoshenko and Goodier (1970) and for the specified coordinate system
one obtains

ux ¼ T

E xmax
z2 þ m

4
½½xmax � 2x�2 � 4y2�

h i
ð13aÞ

uy ¼ � T

E xmax
m ½xmax � 2x�y ð13bÞ

uz ¼ T

E xmax
½xmax � 2x�z ð13cÞ

where T, in MPa, denotes a constant. The analytical solution above is based on fixing the
point lying exactly at the middle of the bottom edge along the x-axis, i.e. the point
½12xmax; 0; 0�, in combination with further necessary boundary conditions. In general, such a
mid point does not coincide with the position of an element node – in particular for randomly
generated Voronoi-cell-based meshes. Hence, the point [0,0,0], denoted by O in Figure 3(b),
is fixed for all discretisations used. The boundary conditions applied to solve the bending
problem are

uy ¼ 0 at y ¼ 0
uz ¼ 0 at z ¼ 0
ux ¼ 0 at ½x; y; z� ¼ ½0; 0; 0�

Table 1 Comparison of the displacements (in μm) between the analytical and the PolyFEM solution
for tension loading.

disp Solution Point A Point B Point C Point D

ux Analytical 0.0 0.0 �0.2 �0.2
PolyFEM 0.0000 0.0000 �0.2000 �0.2000

uy Analytical 0.0 �0.2 �0.2 0.0
PolyFEM 0.0000 �0.2000 �0.2000 0.0000

uz Analytical 0.6667 0.6667 0.6667 0.6667
PolyFEM 0.6667 0.6667 0.6667 0.6667
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�tzðxÞ ¼ T 1� 2x

xmax

� �
at z ¼ zmax ð14Þ

By analogy with the simulation of the tension problem, the matrix M defined in Equation
(9) is used to approximate the stresses in all the polygonal elements. The displacements are
defined on the element boundaries using interpolations pertained to triangle and quadrilateral
sub-planes. Since the displacements vary quadratically and bi-linearly in x, y and z – as seen
in Equation (13) – refining the mesh should render the numerical results to converge to the
analytical solution. Note that the points to generate the Voronoi-based discretisations are ran-
domly chosen. Hence, even a Voronoi mesh generated with a higher number of random

(a) (b)

Figure 4. Visualisation of the distribution of (a) the longitudinal stresses rzz and (b) the longitudinal
strains ezz for a Voronoi-based discretisation with 100 polygonal finite elements under pure bending con-
ditions. The magnification factor for the displacements to visualise the deformed configuration is 100.

Table 2 Comparison of the displacements (in μm) between the analytical and the PolyFEM solution
for bending loading.

Disp. Solution No. of elem. Point A Point B Point C Point D

ux PolyFEM 50 16.3100 16.0818 16.1515 16.1806
100 16.4516 16.2731 16.2802 16.4769
300 16.6332 16.4410 16.4349 16.6330

Analytical 16.7167 16.5167 16.5167 16.7167

uy PolyFEM 50 0 �.2213 .2512 0
100 0 �.1954 .2125 0
300 0 �.2023 .2025 0

Analytical 0 �.2000 .2000 0

uz PolyFEM 50 3.3475 3.2482 �3.3852 �3.2583
100 3.3192 3.3441 �3.3350 �3.2819
300 3.3249 3.3278 �3.3269 �3.3374

Analytical 3.3333 3.3333 �3.3333 �3.3333
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points cannot always be expected to possess a finer discretisation in all parts of the body con-
sidered. Nevertheless, by further refining the mesh the solution convergences as demonstrated
in Table 2 by mean of Voronoi meshes with 50, 100 and 300 elements and for T= 20MPa.
Four points of the beam are considered – i.e. A � ½0; 0; 5�, B � ½0; 1; 5�, C � ½1; 1; 5� and
D � ½1; 0; 5� – to compare the solution based on the PolyFEM with the analytical solutions.
The distribution of the stress and strain components along the z-axis is visualised in Figure 4
which is consistent with the analytical results.

5. Summary

In this work, application of a hybrid finite element approach on three-dimensional Voronoi-
cell-based discretisations is studied for linear elastic mechanical problems. Several details of
the algorithmic implementations of the method are discussed in detail. Specific advantages of
employing Voronoi-based meshes in the context of a polygonal finite element approach is
highlighted. In this regard, ensuring rank-sufficiency conditions for every individual element
stiffness matrix in the Voronoi meshes appears not necessary. The stress approximation func-
tion adequate to make a hexahedral element rank sufficient may be used for all types of
polygonal finite elements, independent of the number of element nodes. The global stiffness
matrix would turn out rank-sufficient, after incorporation of the boundary conditions, even
though individual element stiffness matrices might be rank-insufficient. Such an implementa-
tion considerably reduces the computational cost when applying the PolyFEM in combination
with Voronoi-cell-based meshes. These relations appear to hold for naturally evolving Voronoi
meshes, i.e. the meshes generated using random seed points. For specific types of Voronoi-
based polygonal meshes, for example with regular polyhedrons, further investigation should
be carried out as the result mentioned above may in general not apply. The PolyFEM can be
extended to coupled problems, such as the simulation of piezoceramic materials wherein the
grains present in the polycrystalline micro-structure are modelled by individual polygonal
finite elements with anisotropic material properties (Jayabal & Menzel, 2012). A further
extension of the formulation can include so-called domain switching process in ferroelectrics
at the micro-structural level of grains, respectively, domains. With regard to such material
modelling, the main advantage of the PolyFEM is its ability to represent the geometry of an
individual grain by one polygonal finite element, which could make this method computation-
ally efficient.
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