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A partial-mixed special finite element (FE) is proposed for the static analysis of multilayer
composite and functionally graded material plates. Using the Hamiltonian formalism, the
three-dimensional elasticity equations are first reformulated so that a partial-mixed varia-
tional formulation, retaining as primary variables the translational displacements augmented
with the transverse stresses only, is obtained; this allows, in particular, a straightforward
fulfilment of the multilayer interfaces continuity conditions. After an only in-plane FE dis-
cretisation, the static problem is then reduced, for a single layer, to a Hamiltonian eigen-
value problem that is solved analytically, through the layer thickness, using the symplectic
formalism; the multilayer solution is finally reached via the state-space method and the
propagator matrix concept. The performance, in convergence and accuracy, of the proposed
approach, applied to representative examples, is shown to be very satisfactory.

Un élément fini (EF) spécial partiellement mixte est proposé pour l’analyse des plaques en
composite multicouche et matériau fonctionnellement gradué. Usant du formalisme Hamil-
tonien, les équations de l’élasticité tridimensionnelle sont d’abord reformulées telle qu’une
formulation variationnelle, retenant comme variables indépendantes les déplacements de
translation augmentés des contraintes transverses seulement, est obtenue; cela permet, en
particulier, une satisfaction directe des conditions de continuité aux interfaces du multicou-
che. Après seulement une approximation plane par EF, le problème statique est ensuite
réduit, pour une seule couche, à un problème aux valeurs propres Hamiltonien qui est
résolu analytiquement, dans l’épaisseur de la couche, en utilisant le formalisme symplec-
tique; finalement, la solution multicouche est atteinte via la matrice de propagation de la
méthode d’espace d’état. La performance, en convergence et précision, de l’approche
proposée, appliquée à des exemples représentatifs, est montrée très satisfaisante.
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1. Introduction

Since the late 1970s, composite materials have grown rapidly in almost all industries, in par-
ticular for aeronautics, where they were early reserved to secondary structural components;
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but, their recent success for jumbo airliners construction helped them to be planned currently
for load-carrying main structural elements, like fuselage and wings. They are searched, in
particular, for their undeniable advantages, like lightweight, resistance, isolation. Nevertheless,
they are also known to have severe disadvantages like sensitivity to impact and vibration that
may lead to their fatigue, and damage, mainly in the form of delamination, wrinkling. Often,
the latter localised phenomena analysis requires three-dimensional (3D) modelling tools in
order to predict correctly their 3D stress state. Also, for aeronautic composites, which are
often made of stacked uni-directional laminae, the transverse stresses continuity at the inter-
faces should be fulfilled, and accurate stresses evaluation, for damage detection for example,
should be reached.

Functionally graded materials (FGM) form another class of nowadays advanced materials
that find wide research interest during the last decades (Birman & Byrd, 2007). They are
mainly searched for minimising the concentration of the interface stresses in multilayer com-
posites. Even for a single-layer FGM, the grading property, often considered along the struc-
tural component thickness, can be simply modelled using numerical (virtual) layers stacking
so that the FGM is seen as an equivalent laminate. Hence, its multilayer interfaces stresses
have to be continuous and accurately predicted in order to optimise its thickness grading for
example.

In summary, modelling and analyses of composites and FGM need to represent their lay-
erwise aspect, fulfil their transverse stresses interface continuities (IC) and predict accurately
their 3D stress state. Among the numerous available models (Kreja, 2011; Zhang & Yang,
2009), only a few can cope with these specific features. Numerically, hybrid and full mixed
finite elements (FE) (Brezzi & Fortin, 1991) can be used but remain expensive. Analytically,
the partial-mixed state-space method (SSM) (Bahar, 1977), that uses the displacements and
transverse stresses as independent variables, is an alternative but is limited by the a priori
fulfilment of the boundary conditions (BC). A third option is the so-called semi-analytical
approach that combines analytical SSM and in-plane or thickness numerical approximation.

Partial-mixed variational formulations (VF) are well suited for modelling multilayer
composites and FGM since they augment the translational displacements with the transverse
stresses only as independent variables (Benjeddou & Andrianarison, 2006; Robaldo, Benjed-
dou, & Carrera, 2005); these three-field partial-mixed VF can be proved using partial Legen-
dre transformation (Reissner, 1984) or Lagrange multipliers (Benjeddou & Andrianarison,
2006). The present work will show later that this can be also proved using the Hamiltonian
formalism which is well known in classical mechanics (Goldstein, Poole, & Safko, 2002).
Partial mixed VF has the feature to naturally fulfil the laminate transverse stresses IC without
cumbersome manipulations as for equivalent single-layer or layer-wise classical two-dimen-
sional (2D) theories (Kreja, 2011).

Semi-analytical approaches have been proposed for the analysis of composite structures
since the early 1990s (Steele & Kim, 1992). They differ by the numerical approximation used
through the laminate thickness or plane, and the evaluation method of the state matrix expo-
nential. Hence, Zou and Tang (1995) used in-plane partial-mixed FE approximation and a
power series expansion; Sheng and Ye (2002) retained full mixed FE and precise time (substi-
tuted by the thickness coordinate) step integration method, while they used later (Sheng &
Ye, 2005) discrete-layer FE and eigenvalue solution. Few contributions exist also on the use
of semi-analytical solutions for the analysis of 3D FGM (Wu & Li, 2010a) and 2D elastic
(Li, Zhong, & Tian, 2011) plates.

The reformulation of the equations of 3D (Steele & Kim, 1992; Zou & Tang, 1995) or
2D (Li, Zhong, & Tian, 2011) elasticity in the Hamiltonian framework allows introducing
naturally the transverse stresses as primary unknowns thanks to a Legendre transformation.
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This makes the final partial differential equations (PDE) lower in order compared to classical
displacement formulations. Namely, as it will be shown later, the Hamiltonian formalism
allows transforming in a systematic way the equations of elasticity (fourth-order PDE) into
first-order linear ordinary differential equations (ODE) where the coordinate in the thickness
direction is the only independent variable. This feature is quite interesting in the perspective
of developing numerical tools for multilayered plates since the propagator matrix concept,
used for analytical methods (Bahar, 1977), can then be used. However, the first-order state
space equation, resulting from the Hamiltonian system, leads automatically to a state matrix
exponential that is solved using either the power series expansion of the exponential, as in
Zou and Tang (1995) for 3D plates, or the symplectic approach, as in Li, Zhong, and Tian
(2011) for 2D ones.

From the above literature analysis, it appears that the investigation of the multilayer com-
posites and FGM response using a three-field partial-mixed VF resulting from the Hamilto-
nian formalism and the associated exponential system matrix resolution using the symplectic
approach is a suitable choice and remains an original semi-analytical methodology. This is
reached by combining an in-plane FE discretisation of the here retained plate structure and
the SSM-based analytical solution through the thickness; the size of the problem to be solved
is then independent of the number of layers of the composite, and no interpolation along the
thickness is needed thanks to the exact integration along this transverse direction. Also, the
here adopted approach makes interlaminar stresses continuities straightforward thanks to
the propagator matrix formalism which provides a simple and systematic way to transmit the
state variables from the bottom to the top of the laminate. Claimed originalities of the present
work include Hamiltonian-based derivation of the partial-mixed VF and the associated sym-
plectic solution for multilayer composites and FGM.

In the following, starting from a Lagrange VF, the Hamiltonian one will be first derived.
Then, the semi-analytical approach, that combines in-plane FE discretisation and thickness
symplectic – SSM solution, is given. Finally, for its performance assessment, the proposed
special FE is applied to selected benchmarks.

2. Hamiltonian variational formulation

The considered multilayer plate structure, of 3D body Ω to which a Cartesian global coordi-
nate system (O, x, y, z) is attached, is shown in Figure 1. It is considered body force – free
but subjected to a surface traction vector F on the part �F of its regular boundary d� ¼ �
and a displacement vector u (not shown) on its complementary part �u so that �u [ �F ¼ �
and �u \ �F ¼ £. Simple underlined quantities denote vectors and double underlined ones
denote matrices.

F

y, v

z , w

a 

h

b x , u

Figure 1. Multilayer plate geometry and notations.
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The following Lagrange functional defines the total potential energy associated to the
above described linear elastic body:

LðuÞ ¼ R
XEðuÞdX�

R
CF
uTFdC ð1Þ

With the internal elastic energy density having this form:

EðuÞ ¼ 1

2
eTC e ð2Þ

In which, e is the engineering linear strains vector and C is the elasticity matrix.
The static equilibrium of the elastic body is then obtained from the principle of minimum

total potential energy which leads to:

d
R
�
EðuÞd� � R

�F
duTFd� ¼ 0 ð3Þ

where, the displacement vector u is searched as kinematically admissible, and its variation du
is supposed to be regular and nil on �u.

In the case of a layered body, the adjoining laminae are presumed to be perfectly bonded
together so that the displacements and transverse stresses should be continuous through their
interfaces. As discussed in the introduction, the satisfaction of the IC is a crucial point in the
development of reliable multilayered structures models. This is tackled here via the
Hamiltonian formalism. For this purpose, the 3D strain–displacement relations are split into
transverse (t) and in-plane (p) contributions as follows:

et ¼ _uþ D
1
u; ep ¼ D

2
u ð4Þ

where,

_u ¼ @u

@z
;D

1
¼

0 0 @x
0 0 @y
0 0 0

2
4

3
5; D

2
¼

@x 0 0
0 @y 0
@y @x 0

2
4

3
5

@x (resp.@y) is a partial derivation with respect to x (resp. y) coordinate, and the upper dot ‘.’
denoting a partial derivation with respect to the thickness coordinate z is a classical
mechanics (Goldstein, Poole, & Safko, 2002) standard notation practise which makes use of
an analogy with time derivation in classical Hamiltonian formalism.

Above splitting of the strain vector into in-plane and normal contributions leads to the fol-
lowing similar decomposition of the linear elastic constitutive equations:

))

where, rp ¼ frxx; ryy; rxygT and rt ¼ frxz; ryz; rzzgT refer to in-plane and transverse stress
vector contributions. The strain vector ones are similarly defined, and the elastic bloc matrices
are in Benjeddou and Andrianarison (2006), Robaldo, Benjeddou, and Carrera (2005).

Substituting Equations (4) and (5) in (2), transforms Equation (3) into:
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d
R
XEðu; _uÞdX� R

CF
duTFdC ¼ 0 ð6Þ

where,

Eðu; _uÞ ¼ 1

2
eTpCpp

ep þ eTt C
T
pt
ep þ

1

2
eTt Ctt

et ð7Þ

The construction of the Hamiltonian variational equation, corresponding to Equation (3),
requires the determination of the dual, or conjugate, variable to _u (i.e. the generalised
momentum p); this is achieved from Equations (4), (7) as follows:

p ¼ @E

@ _u
¼ @E

@et

@et
@ _u

¼ C
tt
et þ CT

pt
ep ¼ rt ð8Þ

It can then be seen that the conjugate variable p; relative to the displacement thickness–gradi-
ent vector _u; coincides with the normal stress one rt: Substitution of Equation (4) in Equation
(8) thus leads to the following relation:

rt ¼ C
tt
_uþ C

tt
D

1
uþ CT

pt
D

2
u ð9Þ

From which this thickness–gradient displacement expression can be deduced:

_u ¼ C�1
tt
rt � D

1
u� C�1

tt
CT

pt
D

2
u ð10Þ

Elimination of _u from Equations (6) and (7), with the help of Equation (10), then transforms
Equation (1) into:

Lðu; rtÞ ¼
R
�
Eðu; rtÞd� � R

�F
uTFd� ð11Þ

where,

Eðu; rtÞ ¼
1

2
uTDT

2
ðC

pp
� C

pt
C�1

tt
CT

pt
ÞD

2
uþ 1

2
rT
t C

�1
tt
rt ð12Þ

The Hamiltonian energy density is now introduced via this Legendre transform (Goldstein,
Poole, & Safko, 2002) of Equation (11):

hðu; rtÞ ¼ rT
t _u� Eðu; rtÞ ð13Þ

where _u is here also expressed in terms of ðu;rtÞ with the help of Equation (10).
Equation (13) leads then to this Hamiltonian functional:

Hðu; rtÞ ¼
R
�
½rT

t _u� hðu; rtÞ�d� � R
�F
uTFd� ð14Þ

Taking the variation of Equation (14) and applying Green’s formula provides:

R
�
½drT

t _u� duT _rt � ð@h
@u

ÞTdu� ð@h
@rt

ÞTdrt�d� þ R
@�
duTrtd� � R

�F
duTFd� ¼ 0 ð15Þ
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Then, grouping together the terms relative to the same virtual variable, the previous equation
turns into:

R
�
duT ð� _rt �

@h

@u
Þd� þ R

�
drT

t ð _u� @h

@rt

Þd� þ R
�F
duT ðrt � FÞd� ¼ 0; 8du=du ¼ 0ð�uÞ ð16Þ

Using Equation (13) in Equation (16), the Hamiltonian variational formulation finally writes
in the following form:

R
�
duT ð� _rt þ DT

2
C�

pp
D

2
uþ DT

1
rt þ DT

2
C�

pt
rtÞd�

þ R
�
drT

t ð _u� C�
tt
rt þ D

1
uþ C�T

pt
D

2
uÞd� ¼ 0

8u=u ¼ uð�uÞ; 8rt=rt ¼ Fð�FÞ
8u=du ¼ 0ð�uÞ; 8drt=drt ¼ 0ð�FÞ ð17Þ

In which the starred matrices are elastic ones, modifying those in (5), defined as:

C�
tt
¼ C�1

tt
;C�

pp
¼ C

pp
� C

pt
C�1

tt
CT

pt
;C�

pt
¼ C

pt
C�1

tt
ð18Þ

3. Partial-mixed special finite element – symplectic state-space solution

In order to derive the general solution of the problem, let us consider, in a first subsection,
the case of a single-layer plate, for which the FE in-plane discretisation of the Hamiltonian
VF is introduced and the symplectic solution of the resulting state space first-order equation
is presented. Then, in a second subsection, the previous single-layer solution is extended to
the multilayer case via the SSM – propagator matrix recursively by exploiting the laminate
IC and bottom and top stress BC.

3.1. Finite element discretisation and symplectic single-layer solution

The single-layer domain is decomposed into its in-plane area A, of range [0, a]� [0, b] and
its thickness, of range [0, h]. Let’s then suppose that the primary variables ðu; rtÞ at any point
of the domain have the following separable discretisations:

uðx; y; fÞ ¼ Nðx; yÞUðfÞ; rtðx; y; fÞ ¼ Nðx; yÞRðfÞ ð19Þ
where, Nðx; yÞ is the interpolation matrix containing the FE shape functions, and as shown in
Figure 2, f refers to the local coordinate relative to a given layer and z denotes the plate
global coordinate.

Substituting Equation (19) into the variational equation (17) leads to its following
discretised version:

R h

0dU
T ð�~N _Rþ ~BUþ ~A

T
RÞdfþ R h

0dR
T ð~N _Uþ ~AU � ~DRÞdf ¼ 0 ð20Þ

where,
~N ¼ R

AN
TNdA; ~B ¼ R

AN
TDT

2
C�

pp
D

2
NdA

~A ¼ R
AN

T ðD
1
þ C�T

pt
D

2
ÞNdA; D ¼ R

AN
TC�

tt
NdA

ð21Þ
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From Equation (20), usual procedures of variational calculus (Courant & Hilbert, 1989;
Washizu, 1968) allow reaching this first-order state-space matrix equation:

))

In which the bloc matrices are defined from those defined in Equation (21) by:

A ¼ ~N
�1 ~A; D ¼ ~N

�1 ~D; B ¼ ~N
�1~B ð23Þ

Introducing this extended vector, ~W
T ¼ fU;RgT , Equation (22) can be rewritten in the

following concise form:

_~Wðx; y; fÞ ¼ Hðx; yÞ ~WðfÞ ð24Þ

with,

Hðx; yÞ ¼ �A D
B AT

� �

Being the Hamiltonian matrix H that contains all plane variables dependence; it has these
symmetry properties:

D ¼ DT; B ¼ BT ð25Þ

The solution of the first-order differential Equation (24) can be searched in this exponential
form:

~W ¼ Welf ð26Þ

Substituting then this last expression of ~W back into Equation (24) leads to the following
eigenvalue problem:

H W ¼ lW ð27Þ

It is worth noting that Equation (27) is a Hamiltonian eigenvalue problem due to the Hamil-
tonian topology of the matrix H (Benner, Mehrmann & Xu, 1998; Van Loan, 1984). One
additional symmetry property specific to the Hamiltonian matrix is:

ðH JÞT ¼ H J ð28Þ

ζ1h1

h2

h3
ζ3

ζ2

z 

H3

H2

H1

Figure 2. Illustration of global (z) and local (ζ) coordinates.
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with,

J ¼ 0 Iðn; nÞ
�Iðn; nÞ 0

� �

Being the so-called unit symplectic matrix of size 2n, and I is the identity matrix of order n
corresponding to the number of degrees of freedom resulting from the FE discretisation; J
obeys the following algebraic properties:

J2 ¼ �Ið2n; 2nÞ; J�1 ¼ JT ð29Þ

Due to the Hamiltonian topology of H, its algebraic properties exhibit special features as it is
shown in Benner, Mehrmann, and Xu (1998); Souriau (1997). Namely, it is known that if μ
is an eigenvalue of H, then (�μ) also belongs to its spectrum. Thus, the eigen-solutions of
Equation (27) can be classified into these two categories:

lþ
i ¼ li; ReðliÞ[0; l�

i ¼ �li ð30Þ

The eigenvectors, classified according to Equation (30) and denoted as W
2n

¼ ½wþ;w��, sat-
isfy the following symplectic-orthogonality relation:

WT
2n
J W

2n
¼ J ð31Þ

Due to the fact that the eigenvectors ½wþ;w��, solutions of Equation (27), form an orthonor-
mal basis, thanks to Equation (31), the solution in Equation (26) can be written as a linear
combination of these eigenvectors as follows:

~WðfÞ ¼ UðfÞ
RðfÞ

� �
¼ ½wþ;w��blkdiagðelþf; el�fÞ Cþ

C�

� �
ð32Þ

with blkdiag denoting a block diagonal matrix; later, diag is used for a diagonal one.
Hence, the integration of the original ODE (24) leads to the general solution for a single-

layer after substituting the previous (Equation (32)) result in Equation (19):

))

where, C ¼ Cþ C�� �T
is a constant vector to be determined, in the next sub-section, by

the transverse stress BC on the plate bottom and top surfaces.

3.2. State space propagator matrix - based laminate solution

Following the discussion led in the preceding subsection, the 2n� 2n eigenvector matrix

Wk
2n

¼ ½w�
k

wþ
k
� for a given layer k, with the help of the symplectic-orthogonality relation

stated in Equation (31), leads to this inversion formula:
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ðWk

2n
Þ�1 ¼ �J WkT

2n
J ð34Þ

Now, letting f ¼ 0 in the thickness solution (Equation (32)) of a single-layer gives this relation:

f ~Wkgf¼0 ¼ Wk

2n
Ck ð35Þ

Then, solving for the unknown constant vector Ck ¼ fCþ
k ;C

�
k gT , by considering (34), gives:

Ck ¼ ðWk

2n
Þ�1f ~Wkgf¼0 ¼ �JðWk

2n
ÞTJf ~Wkgf¼0 ð36Þ

Therefore, the thickness solution at a height ζ for a layer k (Equation (32)) writes:

f ~Wkgf ¼ p
k
ðfÞf ~Wkgf¼0 ð37Þ

where, the propagator matrix p
k
; known also as the transfer matrix, is defined by:

p
k
ðfÞ ¼ �Wk

2n
diagðelk2nfÞJðWk

2n
ÞTJ ð38Þ

with lk
2n

referring to eigenvalues of the Hamiltonian matrix relative to the layer k.

This transfer matrix can then be used recursively to compute the state vector f ~Wkgf at
any height ζ by satisfying the laminate IC. Namely, for an N-layered structure this relation
holds:

f ~WNgf¼hN
¼ Pf ~W1gf¼0 ð39Þ

where, f ~Wjgf¼hj refers to the state vector of the jth layer evaluated at f ¼ hj and

P ¼ P
k¼1

k¼N
p
k
ðhkÞ ð40Þ

The transverse stress BC on the top and bottom surfaces of the laminate can be inserted in

Equation (39) in order to determine the unknown components of f ~W1gf¼0 and f ~Wkgf which
are computed with the help of (35) and (37), respectively. Finally, the integration of the ODE
(26) leads, with the help of Equations (19) and (37–38), to this general solution:

ukðxj; yj; fÞ
rk
t ðxj; yj; fÞ

� �
¼ blkdiag½Nðxj; yjÞ;Nðxj; yjÞ� UkðfÞ

Rk
t ðfÞ

� �

¼ blkiag½Nðxj; yjÞ;Nðxj; yjÞ�PkðfÞf ~W1gf¼0

ð41Þ

where,

PkðfÞ ¼ p
k
ðfÞ

Yl¼1

l¼ðk�1Þ
p
l
ðhlÞ

And (xj, yj) are the locations of nodal points on the reference plane (here at z= 0).
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3.3. Implementation

The present semi-analytical partial mixed FE-SSM Hamiltonian approach has been imple-
mented within MATLAB® as detailed in the flowchart of Figure 3 which explains how the
code is organised and its computations sequences order.

It is worth noting that the procedure outlined here allows solving a system in which size
is independent of the laminate number of layers; hence, this partial-mixed special FE compu-
tational cost can be reduced to a reasonable level. Actually, the cost of the computations
mainly relates to that of the in-plane FE procedure.

4. Analysis of multilayer composites and FGM

In order to demonstrate the performance and accuracy of the present semi-analytical FE-SSM
Hamiltonian approach, a standard linear four nodes quadrangular (Q4) plate FE, having the 3
translations and 3 transverse stresses as degrees of freedom (DOF), has been implemented in
MATLAB® and used for the static analysis of selected multilayer composite and FGM SS
plate benchmarks available from the open literature. Throughout all the analysed examples,
these dimensionless notations are used for the primary and secondary output variables, respec-
tively:

�u ¼ 100ET

FohS3
u; �w ¼ 100ET

FohS4
w; r�

xz ¼
1

F�rxz; r
�
zz ¼

1

F�rzz

r�
xx ¼

1

F�S2
rxx; r

�
xy ¼

1

F�S2
rxy; S ¼ a

h

ð42Þ

Figure 3. FE-SSM semi-analytical approach computations sequences order.
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where, F� is the load amplitude, a (resp. h) is the plate length (resp. thickness) and ET refers
to the Young modulus relative to the direction transverse to the fibres.

4.1. Cross-ply bi-layer square plate

This first example deals with the analysis of a SS bi-layer composite square (a= b= 1 m) and
moderately thick (S= 10) plate (Auricchio & Sacco, 1999). It is subjected to a uniformly dis-
tributed load F = 1 N/m2 on the top surface and has a [0°/90°] layup. The total thickness of
the plate is h and both layers of the laminate are taken to be of the same thickness and ortho-
tropic fibre-reinforced composite (FRC) material which properties in the material coordinates
system are: C11 = 173.527 GPa, C12 =C13 = 2.314 GPa, C22 =C33 = 7.385 GPa, C23 = 1.869
GPa, C44 = 1.379 GPa and C55 =C66 = 3.447 GPa.

Table 1 presents the convergence analysis of the present semi-analytical solution with
regard to the reference analytical solution from Auricchio and Sacco (1999); results by a full
mixed state-space FE (Sheng & Ye, 2002) are also given for comparison purpose. It can be
seen from Table 1 that the results obtained using the present Q4 partial-mixed special FE are
in good accordance with the exact solutions for a mesh size of 8� 8 elements. However, the
convergence is much lower than Sheng and Ye (2002) probably due to used higher FE approx-
imations; this information was absent in the latter reference. In view of this convergence analy-
sis, an 8� 8 FE mesh will be then used for the subsequent benchmarking examples.

Figures 4–6, showing the through-thickness distributions of some variables through the
plate thickness, indicate that the primary variables (displacement and transverse stresses) IC
and top and bottom surfaces transverse stresses BC are satisfied; while, as expected, the sec-
ondary variables (in-plane stresses) may be discontinuous at the plate interface and the in-
plane and transverse displacements can be seen (cf. horizontal scale values) thickness linear
and constant, respectively.

4.2. Cross-ply three-layered rectangular plate

A SS rectangular [0°/90°/0°] laminate of length a in the x direction and b= 3a in the y direc-
tion is now subjected to a bi-sinusoidal pressure of amplitude 1Nm�2 on its top surface. The
obtained dimensionless deflection and transverse stresses are presented in Table 2. Exact 3D
(Pagano, 1970) solutions are also reported for comparison and Figures 7–9 show the through-
thickness distribution of these variables. Results show that the present solutions are in good

Table 1. Convergence analysis of a moderately thick (S = 10) SS square (a= b= 1m) [0°/90°] plate
under a uniform load (F= 1N/m2).

Auricchio and Sacco (1999) In-plane Mesh Present Error⁄ (%) Sheng and Ye (2002) Error⁄ (%)

�u (0, a/2, h/2) (�0.1294) 2� 2 �0.0786 �39.26 �0.1298 0.31
4� 4 �0.1073 �17.08 �0.1301 0.54
6� 6 �0.1215 �6.11 �0.1301 0.54
8� 8 �0.1281 �1.00 NA NA

�w (a/2, a/2, h/2) (1.9469) 2� 2 1.3501 �30.65 1.9379 �0.46
4� 4 1.6723 �14.10 1.9380 �0.46
6� 6 1.8610 �4.41 1.9381 �0.45
8� 8 1.9320 �0.77 NA NA

Note: Error⁄ (%) measures relative deviation between numerical and analytical solution (in boldface) as in Auricchio
and Sacco (1999); NA abbreviates not available.
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accordance with 3D solutions for thick (S= 4), moderately thick (S= 10) and thin (S= 50)
plates.

4.3. Angle-ply bi-layer square plate

Analysis of laminated composite plates where the principal material directions do not coincide
with the axes of geometry constitutes a challenging test case. Namely, it is well known that

Figure 4. Dimensionless displacements thickness profiles for a moderately thick (S= 10) SS square
(a= b= 1m) [0°/90°] plate under a uniform load (F= 1N/m2).

Figure 5. Dimensionless transverse stresses thickness profiles for moderately thick (S = 10) SS square
(a= b= 1m) [0°/90°] plate under uniform load (F= 1N/m2).

Figure 6. Dimensionless in-plane stresses thickness profiles for a moderately thick (S= 10) SS square
(a= b= 1m) [0°/90°] plate under a uniform load (F= 1N/m2).
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such angle-ply composite plates are characterised by specific response coupling effects due to
nonvanishing bending-twisting coupling stiffness terms Ci6ði ¼ 1; 2; 3Þ or shear-extensional
coupling constant C45; their consideration substantially increases the complexity of the analy-
sis and makes it more complex than that of cross-ply plates as in the first benchmark.

The test case considered here consists of a SS square (a = b= 1 m) plate with two layers
of equal thickness and ply orientations [h°/�h°]. It is subjected to transverse uniform F = 1N/
m2 or bi-sinusoidal load with amplitude F° = 1N/m2. The layers elastic properties are (Desai,
Ramtekkar, & Shah, 2003): E1 = 276GPa, E2 =E3 = 6.89GPa, G12 =G13 = 3.45GPa,
G23 = 4.2GPa, ν12 = ν13 = ν23 = 0.25. Obtained results, reported in Table 3 for the plate inter-
face and centre normalised transverse displacement, show reasonable correlation with the 3D
mixed FE results presented in Desai, Ramtekkar, and Shah (2003).

Figures 10–12 illustrate the results presented in Table 3 for h = 15° and the transverse
and in-plane stresses thickness profiles for S= 4, 10, 100 under bi-sinusoidal pressure. Beside
the primary variables IC and stress load BC satisfaction, it can be observed that the stresses
increase with increasing the span ratio; besides, the in-plane displacements and stresses
become nonlinear for the thick case (S = 4).

4.4. FGM bi-layer square plate

This last example deals with the static bending analysis of a SS bi-layer square (a= b= 1m)
plate composed of FGM and orthotropic layers stacked as [0°/FGM] (Figure 13) and under
this bi-sinusoidal distributed load of amplitude F° = 1N/m2:

F ¼ F� sin
px
a

� 	
sin

py
b

� 	
ð43Þ

The two layers are of equal thickness and the material properties are graduated as in Wu and
Li (2010b) such that (denotes the property grading index):

Table 2. Dimensionless transverse displacement and stresses for a 3-layered SS rectangular plate under
bi-sinusoidal load of amplitude F= 1Nm�2.

Variable S (Pagano, 1970) Present Error⁄ (%)

�w (a/2, b/2, h/2) 4 2.82 2.831 0.39
10 0.919 0.9169 �0.23
50 0.520 0.5157 �0.82

r�xz (0, b/2, h/2) 4 0.351 0.352 0.28
10 0.420 0.4218 0.43
50 0.439 0.4409 0.43

r�yz (a/2, 0, h/2) 4 0.0334 0.03,371 0.92
10 0.0152 0.01,507 �0.85
50 0.011 0.0108 �1.82

r�zz (a/2, b/2, h/2) 4 NA 0.5 NA
40 NA 0.5 NA
50 NA 0.5 NA

Note: Error⁄ (%) measures relative deviation between numerical and analytical solution (Pagano, 1970); NA abbrevi-
ates not available.
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Cij ¼ Co
ij; 0 � z � H1; Cij ¼ Co

ije
gzh;H1 � z � H2 ð44Þ

For a general thickness distribution pattern of the material properties, characterised by a con-
tinuous function F(z), the problem can be solved by dividing the laminate into thin sublayers,
each one having piezoelectric constants defined as:

Ck ¼ Ck
b
ð1� fÞ þ fCk

t
;Ck

b
¼ CoFðzbÞ;Ck

t
¼ CoFðztÞ ð45Þ

Figure 7. Dimensionless displacement thickness profiles for varying ratio S. SS rectangular (b= 3a)
[0°/90°/0°] plate under a bi-sinusoidal load (F° = 1N/m2).

Figure 8. Dimensionless transverse stresses thickness profiles for varying ratio S. SS rectangular
(b= 3a) [0°/90°/0°] plate under a bi-sinusoidal load (F° = 1N/m2).

Figure 9. Dimensionless in-plane stresses thickness profiles for varying ratio S. SS rectangular (b= 3a)
[0°/90°/0°] plate under a bi-sinusoidal load (F° = 1N/m2).
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where, zb; zt are the global coordinates of the bottom and top of the kth sub-layer with local
coordinate ζ. Equation (45) is obviously true only if the sub-layers are sufficiently thin so that
the properties can be assumed to be linearly distributed through these thin plies. C0

ij are those

given in Example 1 (cross-ply bi-layer plate).

Table 3. Dimensionless transverse displacement at the centre and interface for varying span-to-
thickness ratio of SS square (a= b= 1m) [h/�h] plate under a bi-sinusoidal pressure or uniform load.

S
Load

Bi-sinusoïdal Uniform

h 15° 30° 45° 15° 30° 45°

4 Present 1.467 1.455 1.418 2.409 2.391 2.330
(Desai, Ramtekkar, & Shah, 2003) 1.548 1.519 1.515 2.276 2.361 2.356
Error⁄ (%) �5.23 �4.21 �6.40 5.84 1.27 �1.10

10 Present 0.644 0.669 0.638 1.056 1.096 1.046
(Desai, Ramtekkar, & Shah, 2003) 0.663 0.731 0.723 1.021 1.141 1.131
Error⁄ (%) �2.87 �8.48 �11.76 �3.43 �3.94 �7.52

100 Present 0.468 0.497 0.468 0.764 0.809 0.762
(Desai, Ramtekkar, & Shah, 2003) 0.459 0.488 0.463 0.708 0.773 0.735
Error⁄ (%) 1.96 1.84 1.08 7.91 4.66 3.67

Note: Error⁄ (%) measures relative deviation between numerical and 3D mixed FE solution as in Desai, Ramtekkar,
and Shah (2003).

Figure 10. Dimensionless displacements thickness profiles for varying span-to-thickness ratio of a SS
square (a= b= 1m) [15°/�15°] plate under bi-sinusoidal transverse distributed load with amplitude F°
= 1 N/m2.

Figure 11. Dimensionless transverse stresses thickness profiles for varying span-to-thickness ratio of a
SS square (a= b = 1m) [15°/�15°] plate under bi-sinusoidal transverse distributed load with amplitude F
° = 1N/m2.
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Tables 4 and 5 present in-plane and transverse shear stresses results at some selected
points for aspect ratio S= 5, 10, 50 and grading index η= 3, 5, respectively; obviously, it was
first checked that the homogeneous (η = 0) plate solution is recovered. Numerical layers (8–
10) are used to model the FGM layer. Comparison with the exact solution, given in Wu and
Li (2010b), shows for both grading index values better correlation than the latter reference
results, obtained using a third-order shear deformation theory (TSDT)-based plate partial-
mixed FE, for the thick (S= 5) and moderately thick (S= 10) cases and their transverse shear
stress values. These benefits to the present partial-mixed special FE, may come from the
thickness analytical integration and the transverse normal stress effect that was dropped by
Wu and Li (2010b). The results of both solutions are similar for the thin (S= 100) case indi-
cating that the present low-order (Q4) partial-mixed special FE recovers this degenerating
case.

Figure 14–16 show thickness profiles of dimensionless primary and secondary output vari-
ables for varying gradient index η and span ratio S= 10. It is observed that out-of-plane dis-
placement values decrease when the values of η increase. It is also seen that the maximum
value of the transverse shear stress, rxz (evaluated at z = h/2), is an increasing function of η.
Moreover the z-location of the point where rxz is maximum tends to move into the FGM part
of the plate. This means that the latter tends to withstand an increasing part of the load with
augmenting the gradient index.

5. Conclusions and perspectives

A partial-mixed special FE for the semi-analytical analysis of multilayer composite and FGM
plates was presented within the framework of the Hamiltonian formalism that led to a varia-
tional formulation in terms of displacements and transverse stresses only as independent vari-
ables. After an in-plane FE discretisation only, a Hamiltonian eigenvalue problem was

Figure 12. Dimensionless in-plane stresses thickness profiles for varying span-to-thickness ratio of a
SS square (a= b = 1m) [15°/�15°] plate under bi-sinusoidal transverse distributed load with amplitude F
° = 1N/m2.

Figure 13. FGM bi-layer configuration.

118 O. Andrianarison and A. Benjeddou



obtained and the form of the analytical general solution was derived for a single layer with
the help of the symplectic nature of the Hamiltonian matrix eigenvectors. Extension to the
multilayer was then achieved using the analytical state space-method (SSM) combined with
the related propagator matrix concept.

Table 5. Dimensionless stresses for varying span-to-thickness ratio of a SS square (a= b = 1m) [0°/
FGM] (η= 5) plate under bi-sinusoidal pressure of F° = 1N/m2.

Variable S Exact Present Error⁄ (%) Wu and Li (2010b) Error⁄ (%)

r�xx (a/2, a/2, h) 5 7.9053 8.0686 2.07 7.3856 �6.57
10 5.7358 5.8666 2.28 5.3838 �6.14
100 4.5429 4.6530 2.42 4.6459 2.27

r�xz (0, a/2, h/2) 5 0.1516 0.1504 �0.79 0.1986 31.0
10 0.2260 0.2244 �0.71 0.2519 11.46
100 0.2742 0.2726 �0.58 0.2730 �0.44

r�xy (0, 0, h) 5 �0.3394 �0.3461 1.97 �0.3416 0.65
10 �0.2361 �0.2412 2.16 �0.2291 �2.96
100 �0.1797 �0.1839 2.34 �0.1838 2.28

Note: Error⁄ (%) measures relative deviation between numerical and exact solution as in Wu and Li (2010b).

Table 4. Dimensionless stresses for varying span-to-thickness ratio of a SS square (a= b= 1 m) [0°/
FGM] (η= 3) plate under bi-sinusoidal pressure of F° = 1N/m2.

Variable S Exact Present Error⁄ (%) Wu and Li (2010b) Error⁄ (%)

r�xx (a/2, a/2, h) 5 3.1521 3.1947 1.35 2.8587 �9.31
10 2.2490 2.280 1.38 2.1268 � 5.43
100 1.8478 1.8732 1.37 1.8713 1.27

r�xz (0, a/2, h/2) 5 0.2570 0.2563 �0.27 0.2867 11.56
10 0.3237 0.3230 �0.22 0.3375 4.26
100 0.3586 0.3580 �0.17 0.3582 �0.11

r�xy (0, 0, h) 5 �0.1480 �0.1497 1.15 �0.1459 �1.42
10 �0.0970 �0.0983 1.34 �0.0951 �1.96
100 �0.0731 �0.0741 1.37 �0.0741 1.37

Note: Error⁄ (%) measures relative deviation between numerical and exact solution as in Wu and Li (2010b).

Figure 14. Dimensionless displacements for varying η of moderately thick (S= 10) SS square
(a= b= 1m) [0°/FGM] plate under bi-sinusoidal pressure (F° = 1N/m2).
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The computational performance of the proposed low-order four nodes quadrangular par-
tial-mixed special FE was assessed through the convergence and accuracy analysis of its pri-
mary and secondary output variables resulting from the static bending analysis of
representative multilayer composite and FGM plates from the open literature. Satisfactory
behaviour was observed for all run benchmarks.

This work has been already extended to piezoelectric multilayer composite and FGM
plates; corresponding electromechanically coupled semi-analytical partial-mixed special FE-
SSM Hamiltonian approach and results have been presented elsewhere (Andrianarison and
Benjeddou, 2012). The next step will be to extend the present elastic and companion works
to these advanced structures modal analysis.
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