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The present work deals with the formulation and the evaluation of a discrete finite element
model for Reissner/Mindlin composite plates, including the introduction of zigzag form in
order to improve plane and shear stress accuracy. The model is characterised by a piece-
wise linear variation of displacement, which allows to fulfil the stress continuity require-
ments. For this purpose, a new four-node quadrilateral enhanced finite element based on a
quadratic displacement field is proposed. In the second version, it incorporates two addi-
tional zigzag terms and does not require shear correction. The element is validated across
some known problems in the literature, highlighting the improvement of thickness stress
distributions, by comparison with the initial model without zigzag function.

Le présent travail traite de la formulation et l’évaluation d’un model d’élément fini discret
de Reissner/Mindlin pour les plaques composites, incluant l’introduction de la forme en zig-
zag en vue d’améliorer la précision de contraintes planes et de cisaillement transversal (CT).
Le modèle est caractérisé par une variation linéaire par couche du déplacement, ce qui per-
met de satisfaire aux exigences de continuité des contraintes. En conséquence, un nouvel
élément fini à quatre nœuds amélioré, avec un champ de déplacements quadratique, est pro-
posé. Dans une seconde version, il comporte deux termes additionnels de zigzag et ne
nécessite pas une correction du CT. L’élément est validé à travers quelques problèmes tests
connus de la littérature, mettant en évidence notamment une amélioration des distributions
de contraintes à travers l’épaisseur, par rapport au modèle initial sans la fonction zig-zag.
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1. Introduction

In the last decades, important theories for modelling and analysing of composite and sand-
wich plates were developed. The aim is to reduce the 3D problems to 2D ones and to respect
the conditions derived from the continuum mechanics. Despite the fact that these require-
ments are never simultaneously realised, some theories for finite elements application appear
as an adequate model.
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Examining performances of some theories mentioned in specialised reviews and continuity
requirement in revolution composite structures, where the mechanical, piezoelectric and ther-
mal behaviours are coupled. Although it is well known that the first-order deformation theory
alone is unable to represent reliable local effects in composite structures, scientists have
always a tendency to preserve the global part of kinematics field in their improved formula-
tion. That is why elements based on first-order theory (Reissner/Mindlin or Kirchhoff theo-
ries) are still in development and remain inescapable, as for the isotropic or multilayer
structures. Good global responses are obtained by using Reissner–Mindlin or mixed Hellin-
ger–Reissner models and by introducing additional techniques to eliminate defects created by
several computational mechanisms. These techniques have greatest importance and are more
justified for large-scale non-linear analysis. For this context, exhaustive references are cited in
the literature and refer to the pioneers of works (Mindlin, 1951; Reissner, 1943).

In the early 1980s, much work has been devoted under the well-known discrete Kirchhoff
formulation (integral sense). Thereafter, several finite elements have been developed success-
fully based on this concept (Batoz & Tahar, 1982). Unfortunately, these elements were inca-
pable of presenting thick plate behaviour. For this purpose, the Mindlin hypotheses become a
necessity for the subsequent developments, citing elements formulated for isotropic plates,
well-known, simple and robust (Ayad, Dhatt, & Batoz, 1998; Katili, 1993; Lardeur, 1990).
Although this formulation leads often to a constant shear strain element and a shear parame-
ter, the technique remains convincing for use as support to any future improved formulation
for multilayer composites.

In recent years, a great part of research has been focused on finite element formulation of
models which provide accurate prediction of the transverse shear stresses. The adoption of
the last approach constitutes one among our current interest items, where a new displacement
variational model, called Displacement Discrete Mindlin (DDM), is developed (Ayad, 2002).
The effect of transverse shear is taken into account. The obtained elements pass the patch
tests. Also, they are immune to all numerical problems (locking, distortion, etc.) (Sakami,
2008). In order to apply this concept for composite structures, two local modified discrete
Mindlin hypotheses have been introduced to the isotropic model. The first assumption is kine-
matic; it consists of introducing, as a contour integral form, a kinematics equation of trans-
verse shear deformation. It allows the elimination of transverse shear locking without
introducing bubble functions as well as recourse to the reduced integration, which is com-
monly known as assumed natural strain. The second is mechanical hypothesis. While the mul-
tilayered plate aspect is respected, both bending and transverse shear behavioural laws and
two equilibrium equations are used. Its main advantage is the local elimination of mid-side
rotation degrees of freedom (DOF), initially assumed to have a quadratic approximation.

In the second part of the present work, with the aim to overcome constant shear strain
along the element, an improved technique is required. According to many reviews on materials
approaches and formulation of multilayered plates, several scientists have concluded that the
verification of the inter-laminar stress continuity necessarily requires a transverse strain discon-
tinuity. This condition can be concretised by the piecewise linear or non-linear displacement,
i.e. zigzag form. In fact, among the proposed models, three fundamental approaches can be
found. They are derived from Lekhnitskii, Ambartsumian and Reissner works. More detailed
classification is given in Carrera (2002). The first zigzag theory has been given by Lekhnitskii
(1935) for beam frameworks. Ambartsumian (1969) added thereafter noteworthy contributions
to the plate and shell theories. The Lekhnitskii method was rarely considered in the literature.
The approach of Amartsumian–Whitny–Rath–Das (Ambartsumian, 1969; Rath & Das, 1973;
Whitney, 1969) is also a technique that takes into account zigzag form in distribution of dis-
placements, it has the particularity to preserve the same number of unknown variables as that
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of First-order Shear Deformation Theory (FSDT), i.e. three displacements and two rotations (or
shear strain). The last approach has been recently developed by Murakami (1986), it is based
on the addition of a zigzag function. A brief description is given in a subsequent section.

Briefly, based on modified discrete Mindlin hypotheses, a four-node, bending/shear multi-
layer anisotropic plate element of quadrilateral shape is proposed. The element incorporates
only three nodal DOF, namely transverse displacement and two quadratic rotations. In order
to involve a piecewise linear displacement to present model, a second form based on Muraka-
mi zigzag approach, requires two additional displacement terms, is evaluated.

2. Theoretical formulation of the DMQP plate model

The new plate element, called Discrete Mindlin quadrilateral element for multilayer plate
(DMQP), is an extension to the multilayer case of the discrete Kirchhoff–Mindlin quadrilat-
eral isotropic model proposed by Katili (1993) that could be obtained by equivalent model of
MiSP4 + (four-node quadrilateral element based on mixed shear projection model) (Ayad,
2002; Ayad & Rigolot, 2002).

Initially, DMQP/ml element is based on eight-node quadrilateral element, baptised DMQPβ,
then again reduced to four nodes only. It preserves the quadratic kinematics fields in the final
form, with three DOF per node (w, βx, and βy): the transverse displacement along the z-axis and
two rotations of the normal to the mid-surface in two planes x-z and y-z, respectively.

2.1. Displacement field

Description of displacement fields of the present model for shear-bending problem is devoted
to its simplified version; Equation (1) which is based on first-order theory, the effect of the
additional zigzag terms can be introduced into the DDM model with only in-plane displace-
ment variables. However, their expressions will not be explicitly mentioned in this context,
for more details on the theoretical zigzag model (Section 4) the author can refer to (Carrera,
1996, 2002; Murakami, 1986).

~uqðx; y; zÞ ¼
~uðx; y; zÞ
~vðx; y; zÞ
~wðx; y; zÞ

8<
:

9=
; ¼

0
0

~wðx; yÞ

8<
:

9=
;þ z

~bxðx; yÞ
~byðx; yÞ

0

8<
:

9=
; ð1Þ

As the transverse displacement w is assumed linear, we propose to approach the rotations βx
and βy with an incomplete quadratic interpolation that will reveal increases of rotations Δβsk
on all four elementary sides. Δβsk are the variables associated with the quadratic representation
of βx and βy.

They are given by the expression below:

w ¼ P4
i¼1

Niwi

bx

by

� �
¼ P4

i¼1
Ni

bxi

byi

� �
þ P8

k¼5
Pk

Ck

Sk

� �
Dbsk

ð2Þ

βxi and βyi are the nodal rotations at the quadrilateral corners 1–4. Δβxk is the nodal increment
of the tangential rotation at the mid-nodes 5–8. Ni and Pk are the interpolating shape
functions prescribed, respectively, in terms of linear and quadratic independent functions
(Table 1).
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The coefficients Ck and Sk are the direction cosines of vector associating node i–j of side
k (Figure 2).

2.2. Strain field

The strain field is obtained by substituting Equation (1) into the linear strain–displacement
relation, which allows us, first, to write:

eth i ¼ esh i csh ih i; ezz ¼ 0 ð3Þ

eSh i and csh i are, respectively, the bending and transverse shear strains, with:

esh i ¼ ex ey cxy
� � ¼ z vh i ð4Þ

where, the bending curvature, is defined as:

vh i ¼ bx;x by;y bx;y þ by;x

� � ð5Þ

Substitution of the nodal interpolation of rotations, Equation (2) into Equation (5), yields:

vh i ¼ �
Bf

� un
Dbn

� �
¼ �

Bbb

�
unf g þ BbDb

� �
Dbnf g ð6Þ

where

Bbb

� � ¼
0 ai 0 � � �
0 0 bi � � � i ¼ 1; 2; 3; 4
0 bi ai � � �

2
4

3
5; ai ¼ j11Ni;n þ j12Ni;g

bi ¼ j21Ni;n þ j22Ni;g
ð7Þ

j½ � is the inverse Jacobian matrix, defined as:

j½ � ¼ 1

det½J �
y;g y;n
x;g x;n

� 	
; J½ � ¼ x;n y;n

x;g y;g

� 	
ð8Þ

and

BbDb

� � ¼
Ck j11Pk;n þ j12Pk;g


 � � � �
Sk j21Pk;n þ j22Pk;g


 � � � � k ¼ 5; 6; 7; 8
Ck j21Pk;n þ j22Pk;g


 �þ Sk j11Pk;n þ j12Pk;g


 � � � �

2
4

3
5 ð9Þ

Table 1. Shape functions used in DMQP.

Nif g Pkf g
4N1 ¼ 1� nð Þ 1� gð Þ 2P5 ¼ 1� n2


 �
1� gð Þ

4N2 ¼ 1þ nð Þ 1� gð Þ 2P6 ¼ 1þ nð Þ 1� g2ð Þ
4N3 ¼ 1þ nð Þ 1þ gð Þ 2P7 ¼ 1� n2


 �
1þ gð Þ

4N1 ¼ 1� nð Þ 1þ gð Þ 2P8 ¼ 1� nð Þ 1� g2ð Þ
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Unh i ¼ w1 bx1 by1 w2 bx2 by2 w3 bx3 by3 w4 bx4 by4

� � ð10Þ

Dbnh i ¼ Dbs5 Dbs6 Dbs7 Dbs8h i ð11Þ

The transverse shear strains can be written in the following form:

csf g ¼ cxz
cyz

� �
¼ c0f g ð12Þ

where

c0h i ¼ w0;x þ bx w0;y þ by

� � ð13Þ

We define the Cartesian strain of transverse shear in function of isoparametric strain {γζ}.
They are linearly interpolated, two by two, on each elementary side (Figure 1).

c0f g ¼ j½ � cnz
cgz

� �
ð14Þ

cnz
cgz

� �
¼

1
2ð1� gÞcn15 þ 1

2ð1þ gÞcn17
1
2ð1� nÞcg18 þ 1

2ð1þ nÞcg16

� �
ð15Þ

γξζ5, γηζ6, γξζ7 and γηζ8 are the isoparametric shear strains, at sides 5, 6, 7 and 8, respectively.
They are related to edge tangential shear strains γs5, γs6, γs7 and γs8 as follows:

cn1k ¼ detðJskÞ csk ð16Þ

The following expressions can be obtained by substituting the coordinates of each kth mid-
side in Equation (16);

cn15 ¼
L5

2
cs5; cn17 ¼ � L7

2
cs7; cg16 ¼

L6

2
cs6; cg18 ¼ � L8

2
cs8 ð17Þ

where Lk is the length of side k.
Therefore, {γ0} will then be written in terms of {γsk} as:

c0f g ¼ Nc½ � cskf g ð18Þ

where

Nc

� 
 ¼ 1
4

L5J11ð1� gÞ L6J12ð1þ nÞ �L7J11ð1þ gÞ �L8J12ð1� nÞ
L5J21ð1� gÞ L6J22ð1þ nÞ �L7J21ð1þ gÞ �L8J22ð1� nÞ

� 	
ð19Þ

and
cskf gT ¼ cs5 cs6 cs7 cs8h i ð20Þ

These terms, will be projected on the elementary DOF {Un} and {Δβsk}, are defined by a
contour integral along either side k.
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Z Lk

0

csk � ~cskf g ds ¼ 0 ðKinematic HypothesisÞ ð21Þ

where
~csk ¼ ðw;s þ bsÞk ð22Þ

and

bs ¼ 1� s
Lk

� �
bsi þ s

Lk
bsj þ 4 s

Lk
1� s

Lk

� �
Dbsk

bn ¼ 1� s
Lk

� �
bni þ s

Lk
bnj

ð23Þ

Figure 1. DMQP plate element.

Figure 2. Modified Mindlin hypotheses on the side k of a multilayer element.
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Introducing kinematic hypothesis (21) on the side k, which are projected on the element using
above interpolations of βs and βn (23), lets us rewrite the edge tangential shear strains as fol-
lows:

csk ¼
wj � wi

Lk
þ 1

2
ðbsi þ bsjÞ þ

2

3
Dbsk ð24Þ

In order to eliminate the nodal variables of the mid-sides Δβsk, we have opted for a heuristic
method that equalises the shear force calculated by Hooke’s law and their values obtained
from equilibrium equations of moments, respecting the multilayered composite plate character.
This technique is considered as a modified Mindlin hypotheses (Ayad, 2002; Ayad, Talbi, &
Ghomari, 2009; Sakami, 2008).

Considering tangential strain as function of shear force, we can write the following local
modified expression.

Z Lk

0

csk � H inv
ck11 H inv

ck12

� � Ts

Tn

� �� �
ds ¼ 0 ðMechanical hypothesisÞ ð25Þ

H inv
ck11 and H inv

ck12 are two shear behaviour terms of the inverse matrix Hck½ ��1 for the kth side:
where

Hck½ � ¼ Pk½ � Hc½ � Pk½ ��1 ð26Þ

Pk½ � ¼ Pk½ ��1 ¼ Ck Sk
Sk �Ck

� 	
;

Ck ¼ cos hk
Sk ¼ sin hk

�
ð27Þ

[Hc] is the constitutive transverse shear of the entire multilayer and hk is the angle between i~j
vector, defined by i and j nodes of the k side, and the x-axis.

Ts and Tn are the transverse shear forces, we use the equilibrium relations on middle sur-
face of the side k to calculate their values in terms of bending moments. They are written as
follows:

Ts ¼ Ms;s þMsn;n

Tn ¼ Msn;s þMn;n
ð28Þ

where

Mf g ¼
Ms

Mn

Msn

8<
:

9=
; ¼ Hf½ � vf g ð29Þ

The homogenised stiffness matrix is given as:

Hf½ � ¼
Z þh=2

�h=2

z2 HðzÞ½ �dz ð30Þ

vf g is the bending curvatures defined as:
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vf g ¼
vs
vn
vsn

8<
:

9=
; ¼

bs;s

bn;n

bs;n þ bn;s

8<
:

9=
; ð31Þ

We define the strains cskf g as function of second derivatives of bs and bn through Equation
(28) and two constitutive laws in bending and shear. We obtained:

csk ¼ �uml
k Dbsk ð32Þ

uml
k is the influence factors of transverse shear, defined at either side as:

uml
k ¼ 8 Hf 11

H inv
ck11

L2
k

þ Hf 13
Hinv

ck12

L2
k

� �
ð33Þ

The combination of the two Equations (24) and (32) gives us:

Dbsk ¼
3

2þ 3uml
k

wi � wj

Lk
� 1

2
ðb1si þ b1sjÞ

� 	
ð34Þ

The substitution of the last equation on either elementary k side permits to write the nodal
displacements of the mid-sides as a function of those of corners.

Dbnf g ¼ An½ � AG0½ � unf g ð35Þ

Finally, the Cartesian transverse shear is obtained by replacing both Equations (32) and (35)
in (18)

c0f g ¼ Nc

� �
Au

� �
An½ � AG0½ � unf g ð36Þ

In terms of influence factors of transverse shear, the diagonal square matrices Au
� �

and An½ �
are read as follows:

Au

� � ¼
�uml

5 0 0 0
0 �uml

6 0 0
0 0 �uml

7 0
0 0 0 �uml

8

2
664

3
775 ð37Þ

An½ � ¼

3
2þ3uml

5
0 0 0

0 3
2þ3uml

6
0 0

0 0 3
2þ3uml

7
0

0 0 0 3
2þ3uml

8

2
66664

3
77775 ð38Þ

where AG0½ � is the matrix of dimension 4� 12, defined by length and direction cosines of
vector element sides.
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AG0½ � ¼ 1
2

2=L5 �C5 �S5 �2=L5 �C5 �S5
0 0 0 2=L6 �C6 �S6
0 0 0 0 0 0

�2=L8 �C8 �S8 0 0 0

2
664

0 0 0 0 0 0
�2=L6 �C6 S6 0 0 0
2=L7 �C7 �S7 �2=L7 �C7 �S7
0 0 0 2=L8 �C8 �S8

3
775

ð39Þ

3. Variational displacement formulation

The expression of the principle of virtual work is defined by its generalised form as follows:

W ¼
X
elts

ðW e
int �W e

extÞ ¼ 0; 8w�; b�
x ; b

�
y ð40Þ

with w� ¼ b�x ¼ b�y ¼ 0; w ¼ �w; bx ¼ �bx; by ¼ �by on Su:
Where Wext is the virtual work done by external forces and Wint is the elementary internal

work, which can be written as

W e
int ¼ W e

f þW e
c ¼ R

V e ð\e�s[ rsf g þ\c�s[ ssf gÞ dV ð41Þ

Using the constitutive laws of stress–strain, taking into account the multilayered aspect and
the stratification technique, the explicit integration of the first term of the integral [39] is
given as:

W e
f ¼

Z
Ae

v�h i Hf½ � vf gð Þ dA ð42Þ

where Ae is the elementary surface.
Under nodal form

W e
f ¼ u�n

� �
kef
� �

unf g ð43Þ

The element stiffness matrix regarding the bending part is written as:

kef
� � ¼

Z
Ae

Bf½ �T Hf½ � Bf½ �
 �
dA ð44Þ

where
Bf½ � ¼ B1bb

� �þ B1bDb

� �
An½ � AG0½ � ð45Þ

Following the same procedure, the work done by internal shear force can be written as fol-
lows:

W e
c ¼

Z
Ae

c�0
� �

Hc½ � c0f g
 �
dA ð46Þ
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The shear stiffness matrix can be obtained from the following form:

W e
c ¼ u�n

� �
kec
� �

unf g ð47Þ

where

kec
� � ¼

Z
Ae

Bc0½ �T Hc½ � Bc0½ � dA ð48Þ

and

Bc0½ � ¼ Nc

� �
Au

� �
An½ � AG0½ � ð49Þ

The constitutive matrix is given as:

Hc½ � ¼
Z þh=2

�h=2

HsðzÞ½ � dz ð50Þ

Finally, both elementary stiffness matrices kef
� �

and kec
� �

are obtained by an exact numerical
integration scheme, i.e. 2� 2 Gauss points. The homogeneous constitutive matrices are com-
puted analytically through the direction z.

4. General aspects of the zigzag function

In the context of Reissner multilayer theory applications, Murakami has introduced for the
first time, a function through the coordinate thickness, which is able to imitate the zigzag
form (Carrera, 1996, 2002; Murakami, 1986). Such function, called “Murakami zigzag func-
tion,” is defined as follows:

MðzÞ ¼ ð�1Þlfl ð51Þ

As z is the coordinate thickness of the whole multilayered plate, fk ¼ 2zl=hl is an adimen-
sional coordinate of the layer l, of thickness hl. The shape function is illustrated in Fig-
ure 3. It has local properties of zero at the middle plane of each layer, (1) and (�1) at
the top and bottom interfaces, respectively. The theoretical strength lies in systematic fulfil-
ment of inter-laminar continuity condition. Their terms can be easily inserted as much that
in in-plane displacement field that in out-of-plane. This constitutes a further advantage
compared to other zigzag theories: of Liknitskii as well as Ambartsumian (Carrera, 2002).
We should note its wide applicability to all classical theories of multilayered plates (equiv-
alent single layer) (Classical Laminate Theory, FSDT and High Shear Deformation Theory
[HSDT]).

The application of the Murakami’s zigzag formulation on DDM model can be summarised
in the following form:

~uðx; y; zÞ
~vðx; y; zÞ
~wðx; y; zÞ

8<
:

9=
; ¼

0
0

~wðx; yÞ

8<
:

9=
;þ z

~bxðx; yÞ
~byðx; yÞ

0

8<
:

9=
;þMðzÞ

uM1 ðx; yÞ
uM2 ðx; yÞ

0

8<
:

9=
; ð52Þ
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where the subscripts (1) and (2) indicate the vector displacement components in two
directions of the plate coordinate system.

uM1 and uM2 are the effective amplitudes of the zigzag effect, having the sense of displace-
ments. In fact, these terms have an intrinsic description of Equivalent single-layer model. This
reality does not constitute a limitation of Murakami Zig-Zag Function, since it has the same
description as in other multilayered theories of Ambartsumian and Liknitskii.

It should be also noted that the improved model of first-order shear deformation theory
(with the Murakami zigzag function) has two or three additional DOF more than the classical
model (FSDT).

5. Numerical results and discussion

Four numerical examples of multilayer composites and sandwich plates are solved. We pro-
ceed to compare obtained results with the first and higher order results. Moreover, hybrid-
mixed variational approach is mentioned to carry out a correlation with our previous works
regarding a Mindlin multilayered hybrid-mixed quadrilateral element (Tafla, Ayad, & Sedira,
2010).

The boundary conditions are the same in all cases, the restrained DOF appropriate to sim-
ply supported conditions are given as follows:

w ¼ bx ¼ uM1 ¼ 0; boundary line parallel to x-axis
w ¼ by ¼ uM2 ¼ 0; boundary line parallel to y-axis

5.1. Example 1

A cross-ply (0/90/0) rectangular laminate is considered, simply supported at the four edges
using 6� 6 mesh size of the quarter plate only (Figure 4). The plate is subjected to doubly
sinusoidal load with intensity q= q0 sin(πx/a) sin(πy/b). The three layers have equal thickness
hl=h/3 and identical mechanical properties (Ex/Ey = 25, Gxy =Gxz = 0.5 Ey, Gyz = .2 Ey and
ν= 0.25). The analysis is carried out by taking two geometric aspects b/a = 1 and 3 and dif-
ferent thickness ratio a/h = 4, 10, 50 and 100, where h is the thickness of the plate.

Figure 3. Geometrical representation of Murakami zigzag function (four-layer structure).

132 L. Sedira et al.



The results are compared with those of Di-Sciuva (1992) labelled RFSDT (Refined
First-order Shear Deformation Theory) and HSDT. Few results for specific thickness ratio
are furnished by Carrera and Demasi (2002) for the nine-node quadrilateral element with
zigzag function, used by the author to evaluate the use of zigzag function in first-order
shear deformation theory. Other elements and theoretical results are also used and listed as
follows:

• DSQ: Discrete Shear Quadrilateral element (Lardeur, 1990).
• E.O.: Engblom & Ochoa element, based on higher-order displacement theory. It is an

eight nodes quadrilateral element with 10 DOFs (Engblom & Ochoa, 1985).
• ED1, EDZ1: nine-node quadrilateral elements belong to equivalent single-layer model,

based on first-order shear deformation theory and displacement formulation, the second
one is formulated with zigzag function (Carrera & Demasi, 2002).

• FSDTZZ: First Shear Deformation Theory with Zig-Zag, based on nonlinear fileds
using a modified mixed variational formulation (Fares & Elmarghany, 2008).

• PRHSDT: a four-node rectangular element based on Present Refined Higher-order Shear
Deformation Theory (Topdar, Sheikh, & Dhang, 2003).

• HSDT: higher order shear deformation theory (Reddy, 1984).

Deflection at the laminate centre and stresses are evaluated and written in terms of the fol-
lowing normalised quantities and locations:

wC ¼ wð100EYwh3=q0a4Þ; rxyA ¼ rxyð0; 0; h=2Þh2q0a2;
rxC ¼ rxða=2; b=2; h=2Þh2=q0a2; sxzD ¼ sxzð0; b=2; 0Þh=q0a;
ryC ¼ ryða=2; b=2; h=6Þh2q0=a2; syzB ¼ syzða=2; 0; 0Þh=q0a

The values of the transverse displacement, in-plane and transverse stresses for both shapes of
the plate are shown in Tables 2 and 3. The accuracy of normal in-plane stress σxC obtained
by different first-order elements (DMQP/ml, DSQ) appears affected for the thick plate (a/
h = 4). Whereas this is not the case for those obtained by DMQPz, where they appear more
accurate. Both DDM models show a good performance regarding the in-plane stresses results
(σyC and τxyA) and central deflection, especially for thickness ratio a/h = 50 and 100 (Table 3).

Figure 4. Geometrical properties of sandwich and multilayered plates.
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For a thick plate (a/h= 4), the DMQPz element shows a more significant improvement than
DMQP model, remains comparable to that founded by refined high-order model. In compari-
son with piecewise approach, results obtained by the present zigzag model, for the aspect
ratio b/a = 3 (Table 3), appear quite similar to refined non-linear zigzag shear deformation the-
ory (FSDTZZ), developed by Fares and Elmarghany (2008). On the whole, obtained values
of transverse shear stresses remain satisfactory, even better than DSQ, E.O. and HSDT.

For a moderate thick multilayer square plate (a/h= 4), the in-plane displacement u at point
B and the stress σxx in the centre of the plate are plotted (Figure 5). The curves are illustrated
for two versions of DMQP elements. For the first case, a piecewise linear displacement is
shown with a change of sign of displacement slope between layers. This curve is obtained by
the addition of two functions: the linear standard term due to βy and the zigzag term related
to the coefficient (�1)l and the additional degree of freedom, which is not equal to zero on
this location.

The same effect was found for the stress σxx curve, where the slope of the in-plane strain
is slightly decreased, which results in greater stress values on the layer interfaces. In compari-
son with exact and FSDT results, (Pagano, 1970; Whitney, 1969), the obtained curves are
quasi-identical to those given as benchmark (Pagano, 1970). In this example, hence the zig-
zag effect appears clearly in in-plane displacement and stress.

On the other hand, regarding the shear stress curves, the alternate sign of the additional dis-
placement coefficient used thereafter in the equilibrium equation integral leads also to a slight
curvature in τxz curve (Figure 6), where two inflexion points appeared in layer interfaces.

Table 2. Deflection and stresses in square (0/90/0) laminate plate under sinusoidal load, (b=a ¼ 1).

a/h Models �rxC �ryC �sxyA �sxzD �syzB �wC

4 DMQP/ml �.392 �.613 ±.0439 .305 .218 2.238
DMQPz �.687 �.524 ±.0480 .247 .206 1.972
E.O. �.391 �.572 ±.0448 .308 .251 –
HSDT �.734 �.503 ±.050 .286 .209 1.922
RFSDT �.620 �.661 ±.045 .262 .254 1.891
Elasticity �.755 �.556 .0505 .256 .217 –

.801 .534 �.0511
10 DMQP/ml �.5026 �.293 ±.0270 .369 .1115 .7709

DMQPz �.5745 �.280 ±.0281 .354 .1154 .7414
ED1 �.5096 �.2376 .0055 .1538 .1117 .7417

.5113 .2382 �.0055
EDZ1 �.5625 �.2757 .0076 .3777 .1408 .7417

.5106 .2762 �.0076
E.O. �.500 �.279 ±.0280 .369 .130 –
HSDT �.568 �.269 .028 .369 .117 .713
RFSDT �.549 �.289 .027 .364 .123 .723
Elasticity �.5900 �.288 .0289 .357 .1228 .7530

.5900 .285 �.0289
50 DMQP/ml �.540 �.184 ±.0213 .3879 .0829 .4453

DMQPz �.5432 �.183 ±.0214 .390 .0878 .4443
E.O. �.541 �.164 ±.233 .392 .0843 –
Elasticity �.541 �.185 ±.0234 .393 .0842 –

100 DMQP/ml �.541 �.180 ±.0211 .3837 .1039 .4346
DMQPz �.542 �.180 ±.0212 .389 .107 .4344
E.O. �.542 �.167 ±.0224 .393 .0827 –
Elasticity �.539 �.181 ±.0213 .395 .0828 –
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Usually, this could not have occurred in first-order shear deformation models. Both of the
shear stress curves are quite close to 3D (Figure 6). So, the contribution of zigzag form intro-
duced in DMQP model is more confirmed here.

5.2. Example 2

A laminated composite plate with a nine-layer symmetric cross-ply [0/90/0/90/0]sym made of
unidirectional fibrous composite material is considered. The geometry, loading and material
properties are assumed to be the same as those in example 1, except that the total thicknesses
of layers 0° and 90° are equal, and layers of the same orientation have all the same thickness.
Due to symmetry, only the quarter of plate is modelled using a 6� 6 mesh. Transverse dis-
placement and stresses w at point C (Figure 4), in-plane stresses at points A and C and shear
stresses τxz and τyz at points D and B, respectively, are computed using the following adimen-
sional form:

wC ¼ wða=2; a=2; 0Þ p4Q

12S4hq0
; rxC ¼ rxða=2;a=2;h=2Þ 1

q0S2

Figure 6. Distribution shear stresses along the multilayer plate thickness, a/h= 4.

Figure 5. In-plane displacement and stress curves along the multilayer plate thickness, a/h= 4.
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ryC ¼ ryða=2; a=2; 2h=5Þ 1

q0S2
; rxyD ¼ rxyð0;0;h=2Þ 1

q0S2

sxzD ¼ sxzð0; a=2; 0Þ 1

q0S
; syzB ¼ syzða=2;0;0Þ 1

q0S

with Q ¼ 4G12 þ E1 þ E2 1þ 2m23ð Þ
ð1þm12m21Þ ; S ¼ a

h

The deflection obtained at the plate centre (a/2, a/2, 0) is accurately presented by the
DMQP/ml element, a good performance similar to the mixed model and better than the DSQ
element. However, deflection in thick plate (a/h = 4 and 10) obtained by zigzag model is
underestimated, but stresses are well presented nevertheless (Table 4).

5.3. Example 3

Aimed at evaluating the effect of heterogeneous anisotropic properties along the thickness on
accuracy prediction of the present element, a square sandwich plate (f/c/f) with thickness ratio
a/h = 4 and 10 was analysed. The plate is simply supported and subjected to a doubly sinusoi-
dal load; it has a total thickness of h where the thickness of the core is 0.8h and that of each
ply in the top and the bottom face sheets is 0.1h. Only the quarter of the plate is meshed
(DMQP/ml 8� 8 and 19� 19, DMQPz: 6� 6 elements) (Figure 4). Mechanical properties are
given as follows:

Face: Ex/Ey= 25, Gxy =Gxz = .5 Ey, Gyz = 0.2 Ey, ν = .25
Core: Ex=Ey= .04, Gxz =Gyz = .06, Gxy = .016, ν= .25

A reference solution from 3D elasticity is given for the first time by Pagano (1970). In addi-
tion, the comparison is carried out with results obtained by Topdar et al. (2003). With finite

Table 4. Deflection and maximum stresses in nine-layer square plate.

a=h Models rxC ryC rxyA sxzD syzB wC

4 DMQP/ml .475 .511 .0217 .225 .255 4.1872
DMQPz .518 .585 .0224 .218 .264 3.6217
DSQ .491 .487 – .235 .243 4.235
MiSP4/ml .455 .536 – .22 .265 4.133
Elasticity .684 .628 .0328 .223 .223 4.079

10 DMQP/ml .5142 .4646 .0213 .241 .234 1.5171
DMQPz .518 .481 .0215 .240 .235 1.4353
DSQ .519 .455 – .246 .228 1.516
MiSP4/ml .505 .476 – .242 .237 1.512
Elasticity .551 .477 .0233 .247 .226 1.512

50 DMQP/ml .541 .432 .0211 .249 .230 1.021
DMQPz .541 .434 .0211 .247 .226 1.0175
DSQ .538 .432 – .253 .216 1.015
MiSP4/ml .54 .435 – .256 .218 1.019
Elasticity .539 .433 .0214 .258 .219 1.021

100 DMQP/ml .542 .433 .0210 .244 .250 1.0049
DMQPz .542 .433 .0210 .237 .242 1.0042
Elasticity .539 .431 .0213 .259 .219 1.005
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element series: PFSDT (Present First-order Shear Deformation Theory), PRHSDT and the last
one called HOZZT (Higher Order Zig-Zag Theory), it has the same order as the previous ele-
ment and fulfils the zigzag form (based on cubic in-plane displacement fields, nine node and
11 DOFs/node).

The transverse displacement and shear stresses at different points are presented in Table 5,
with the next normalised. The proposed improved element provides results in very good
agreement with the 3D elasticity. It shows competitive performance compared to those
obtained by PFSDT model or higher order models mentioned as references. The in-plane
stresses are also given by such models (Table 6). Values obtained by the DMQPz element are
generally, closest to those of Pagano (1970).

w ¼ wCð100EYh3=q0a4Þ; rx
2 ¼ rxða=2; b=2; 0:4hÞh2=q0a2;

r1
x ¼ rxða=2; b=2; h=2Þh2=q0a2; r2

y ¼ ryða=2; b=2; 0:4hÞh2=q0a2;
r1
y ¼ ryða=2; b=2; h=2Þh2=q0a2; s1xy ¼ sxyð0; 0; a=2Þh2=q0a2;

s1xz ¼ sxzð0; b=2; 0Þh=q0a; s1yz ¼ syzða=2; 0; 0Þhq0a; sxz1 ¼ sxzð0; b=2; 0:4hÞh=q0a

6. Conclusion

Two versions of four-node quadrilateral elements for bending/shear sandwich and multilayer
plates are formulated. Based on displacement discrete Mindlin model, in which two discrete
Mindlin assumptions are introduced. As a first hypothesis, the kinematics equation of trans-
verse shear strain is assumed as a contour integral and projected on either edge.

It allows the elimination of shear transverse locking without using bubble functions or
reduced integration techniques. The second hypothesis requires bending and transverse shear
behaviour laws, and two equilibrium plate bending/shear equations. They have a main advan-
tage of local elimination of rotation DOF, initially introduced in the middle elementary edge
with quadratic approximation. Thus, the first element baptised DMQP/ml has only three

Table 5. Deflection and shear stresses in simply supported square sandwich (f/c/f) plate, under
sinusoidal load.

DMQP/ml
(8� 8)

DMQP/ml
(19� 19)

DMQPz
(6� 6)

HOZZT
(8� 8)

PRHSDT
(8� 8)

PFSDT
(8� 8) Pagano

a=h ¼ 4
w 7.890 7.8656 7.6672 7.655 7.6042 4.7602 7.5962

s1xz .2525 .255 .2346 .250 .2592 .1259 .239

s2xz .2497 .2525 .2412 – .2136 1.0494 –

.2497 .2525 – – .2136 .1259 –
s1yz .1172 .11,775 .1057 .1151 – – .1072

s1xy .1269 .1275 .1459 .1462 – – .1484

a=h ¼ 10
w 2.22 2.217 2.2083 2.2003 2.199 1.5601 2.5

s1xz .309 .311 .2972 .3146 .3256 .1409 .300

s2xz .307 .310 .2976 – .2683 1.1745 –
.307 .310 – – .2683 .1409 –

s1yz .0565 .056 .0521 .056 – – .0527

s1xy .0675 .067 .0708 .070 – – .0717
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degrees of freedom; it presents a good global behaviour and achieves advantages compared to
those found in literature. However, in order to fulfil some requirements regarding their local
responses, a zigzag form inspired from the Murakami–Reisser–Carrera approach is incorpo-
rated in the DDM model. As a result of additional terms, which are displacement type, a new
form is formulated without having recourse to the correction technique. The comparison with
those based on either higher or improved first-order shear deformation theory shows a further
improvement of the DMQP model and yields to obvious accuracy of in-plane and shear
stresses.
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