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The present work deals with the formulation and the evaluation of a discrete finite element
model for Reissner/Mindlin composite plates, including the introduction of zigzag form in
order to improve plane and shear stress accuracy. The model is characterised by a piece-
wise linear variation of displacement, which allows to fulfil the stress continuity require-
ments. For this purpose, a new four-node quadrilateral enhanced finite element based on a
quadratic displacement field is proposed. In the second version, it incorporates two addi-
tional zigzag terms and does not require shear correction. The element is validated across
some known problems in the literature, highlighting the improvement of thickness stress
distributions, by comparison with the initial model without zigzag function.

Le présent travail traite de la formulation et I’évaluation d’un model d’élément fini discret
de Reissner/Mindlin pour les plaques composites, incluant 1’introduction de la forme en zig-
zag en vue d’améliorer la précision de contraintes planes et de cisaillement transversal (CT).
Le modéle est caractérisé par une variation linéaire par couche du déplacement, ce qui per-
met de satisfaire aux exigences de continuité des contraintes. En conséquence, un nouvel
¢lément fini a quatre nceuds amélioré, avec un champ de déplacements quadratique, est pro-
posé. Dans une seconde version, il comporte deux termes additionnels de zigzag et ne
nécessite pas une correction du CT. L’¢lément est validé a travers quelques problémes tests
connus de la littérature, mettant en évidence notamment une amélioration des distributions
de contraintes a travers 1’épaisseur, par rapport au modgle initial sans la fonction zig-zag.
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1. Introduction

In the last decades, important theories for modelling and analysing of composite and sand-
wich plates were developed. The aim is to reduce the 3D problems to 2D ones and to respect
the conditions derived from the continuum mechanics. Despite the fact that these require-
ments are never simultaneously realised, some theories for finite elements application appear
as an adequate model.
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Examining performances of some theories mentioned in specialised reviews and continuity
requirement in revolution composite structures, where the mechanical, piezoelectric and ther-
mal behaviours are coupled. Although it is well known that the first-order deformation theory
alone is unable to represent reliable local effects in composite structures, scientists have
always a tendency to preserve the global part of kinematics field in their improved formula-
tion. That is why elements based on first-order theory (Reissner/Mindlin or Kirchhoff theo-
ries) are still in development and remain inescapable, as for the isotropic or multilayer
structures. Good global responses are obtained by using Reissner—-Mindlin or mixed Hellin-
ger—Reissner models and by introducing additional techniques to eliminate defects created by
several computational mechanisms. These techniques have greatest importance and are more
justified for large-scale non-linear analysis. For this context, exhaustive references are cited in
the literature and refer to the pioneers of works (Mindlin, 1951; Reissner, 1943).

In the early 1980s, much work has been devoted under the well-known discrete Kirchhoff
formulation (integral sense). Thereafter, several finite elements have been developed success-
fully based on this concept (Batoz & Tahar, 1982). Unfortunately, these elements were inca-
pable of presenting thick plate behaviour. For this purpose, the Mindlin hypotheses become a
necessity for the subsequent developments, citing elements formulated for isotropic plates,
well-known, simple and robust (Ayad, Dhatt, & Batoz, 1998; Katili, 1993; Lardeur, 1990).
Although this formulation leads often to a constant shear strain element and a shear parame-
ter, the technique remains convincing for use as support to any future improved formulation
for multilayer composites.

In recent years, a great part of research has been focused on finite element formulation of
models which provide accurate prediction of the transverse shear stresses. The adoption of
the last approach constitutes one among our current interest items, where a new displacement
variational model, called Displacement Discrete Mindlin (DDM), is developed (Ayad, 2002).
The effect of transverse shear is taken into account. The obtained elements pass the patch
tests. Also, they are immune to all numerical problems (locking, distortion, etc.) (Sakami,
2008). In order to apply this concept for composite structures, two local modified discrete
Mindlin hypotheses have been introduced to the isotropic model. The first assumption is kine-
matic; it consists of introducing, as a contour integral form, a kinematics equation of trans-
verse shear deformation. It allows the elimination of transverse shear locking without
introducing bubble functions as well as recourse to the reduced integration, which is com-
monly known as assumed natural strain. The second is mechanical hypothesis. While the mul-
tilayered plate aspect is respected, both bending and transverse shear behavioural laws and
two equilibrium equations are used. Its main advantage is the local elimination of mid-side
rotation degrees of freedom (DOF), initially assumed to have a quadratic approximation.

In the second part of the present work, with the aim to overcome constant shear strain
along the element, an improved technique is required. According to many reviews on materials
approaches and formulation of multilayered plates, several scientists have concluded that the
verification of the inter-laminar stress continuity necessarily requires a transverse strain discon-
tinuity. This condition can be concretised by the piecewise linear or non-linear displacement,
i.e. zigzag form. In fact, among the proposed models, three fundamental approaches can be
found. They are derived from Lekhnitskii, Ambartsumian and Reissner works. More detailed
classification is given in Carrera (2002). The first zigzag theory has been given by Lekhnitskii
(1935) for beam frameworks. Ambartsumian (1969) added thereafter noteworthy contributions
to the plate and shell theories. The Lekhnitskii method was rarely considered in the literature.
The approach of Amartsumian—Whitny—Rath—Das (Ambartsumian, 1969; Rath & Das, 1973;
Whitney, 1969) is also a technique that takes into account zigzag form in distribution of dis-
placements, it has the particularity to preserve the same number of unknown variables as that
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of First-order Shear Deformation Theory (FSDT), i.e. three displacements and two rotations (or
shear strain). The last approach has been recently developed by Murakami (1986), it is based
on the addition of a zigzag function. A brief description is given in a subsequent section.

Briefly, based on modified discrete Mindlin hypotheses, a four-node, bending/shear multi-
layer anisotropic plate element of quadrilateral shape is proposed. The element incorporates
only three nodal DOF, namely transverse displacement and two quadratic rotations. In order
to involve a piecewise linear displacement to present model, a second form based on Muraka-
mi zigzag approach, requires two additional displacement terms, is evaluated.

2. Theoretical formulation of the DMQP plate model

The new plate element, called Discrete Mindlin quadrilateral element for multilayer plate
(DMQP), is an extension to the multilayer case of the discrete Kirchhoff-Mindlin quadrilat-
eral isotropic model proposed by Katili (1993) that could be obtained by equivalent model of
MiSP4 + (four-node quadrilateral element based on mixed shear projection model) (Ayad,
2002; Ayad & Rigolot, 2002).

Initially, DMQP/ml element is based on eight-node quadrilateral element, baptised DMQP,
then again reduced to four nodes only. It preserves the quadratic kinematics fields in the final
form, with three DOF per node (w, j,, and f,): the transverse displacement along the z-axis and
two rotations of the normal to the mid-surface in two planes x-z and y-z, respectively.

2.1. Displacement field

Description of displacement fields of the present model for shear-bending problem is devoted
to its simplified version; Equation (1) which is based on first-order theory, the effect of the
additional zigzag terms can be introduced into the DDM model with only in-plane displace-
ment variables. However, their expressions will not be explicitly mentioned in this context,
for more details on the theoretical zigzag model (Section 4) the author can refer to (Carrera,
1996, 2002; Murakami, 1986).

—

ﬁ(x,y,z) 0 éx(‘xhy)
ﬁq(x7y7z) = \_/'(x,y,z) = 0 +z :By(x’y) (l)
w(x,y,z) w(x,y) 0

As the transverse displacement w is assumed linear, we propose to approach the rotations f,
and g, with an incomplete quadratic interpolation that will reveal increases of rotations Afy
on all four elementary sides. Af,;, are the variables associated with the quadratic representation
of f and p,.

They are given by the expression below:

{g}:ZN{ﬁ} sn{$han @

By and B, are the nodal rotations at the quadrilateral corners 1-4. Af,; is the nodal increment
of the tangential rotation at the mid-nodes 5-8. N; and P, are the interpolating shape
functions prescribed, respectively, in terms of linear and quadratic independent functions
(Table 1).
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Table 1. Shape functions used in DMQP.

{N;} {Pi}

4Ny = (1 -&)(1 - 1) 2Ps = (1-&)(1—n)
4Ny = (1+ &)1 —n) 2Pg = (1+&)(1—n?)
ANy = (1+&)(1+n) 2P; = (1-&)(1+n)
ANy = (1= (1 +n) 2Pg = (1= &)(1 —n?)

The coefficients C; and S are the direction cosines of vector associating node i—j of side
k (Figure 2).

2.2. Strain field

The strain field is obtained by substituting Equation (1) into the linear strain—displacement
relation, which allows us, first, to write:

<8t> = <<g5> <ys>>7 ez=0 (3)

(es) and (y,) are, respectively, the bending and transverse shear strains, with:

<8s> - <8X 8)’ ,yxy> = Z<X> (4)
where, the bending curvature, is defined as:
(0 =(Bex By BotB) (5)
Substitution of the nodal interpolation of rotations, Equation (2) into Equation (5), yields:
Uy
= (8] pe § = (Bl ) + [Buss) 85, ©)
where
0 a 0 ---
' . a; = julNie +ji12Niy
By|l=10 0 b --- i=1,2,34/, . ; 7
[ bﬁ] 0 b a - b; = jaiNi¢ + jnNiy (7)
[/] is the inverse Jacobian matrix, defined as:
: U [y pe Xpe Do
—_ ) ¢ J — 9 ¢ 8
=g [ 2] w=[ 2 )

and

Ci (/11Pk.§ +j12Pk,;7) e
[Byag| = Sk (j21 Pre + jo2Pry) o k=5,6,7,8 )
Ci(j21Prc + Jj22Prsy) + Skc(j11Pre +j12Pry)
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(Uy) = <W1 By ﬁyl wy B Bo w3 B ﬁy3 wy By ﬁy4> (10)

<Aﬁn> = <Aﬁ35 Aﬁs6 Aﬂﬂ Aﬁ38> (11)

The transverse shear strains can be written in the following form:

o= {1} = ) (12)

yyz
where
(70) = (Wox + B wop +B,) (13)

We define the Cartesian strain of transverse shear in function of isoparametric strain {y:}.
They are linearly interpolated, two by two, on each elementary side (Figure 1).

oo} = {2} »
(o=l gt 0

Yerss Ynce» V7 and y,.5 are the isoparametric shear strains, at sides 5, 6, 7 and 8, respectively.
They are related to edge tangential shear strains ys, g6, 757 and y,g as follows:

Ve = det(Jor) v (16)

The following expressions can be obtained by substituting the coordinates of each kth mid-
side in Equation (16);

LS L7 L6 L8
ycf;S = 7 Vsss V§;7 = - 7 V579 Vr,;G = ? V565 yngg = - 7 Vss (17)

where L is the length of side £.
Therefore, {yo} will then be written in terms of {yy} as:

{vo} = INV{va} (18)
where
(N} =1 LsJyi(1 =n) LeJin(1+¢) —LaJu(1+n) —LgJin(l = <) (19)
’ 4 L5J21(1 - '7) Lerz(l + 5) —L7J21(1 + '7) —L8J22(1 - f)
and T
{ysk} = <VS5 Vsﬁ ys7 VS8> (20)

These terms, will be projected on the elementary DOF {U,} and {Af}, are defined by a
contour integral along either side .
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Elimination of A 4

3
(a) Initial element: DMQPp (b) Final element DMQP
(quadratic Rotations)
Figure 1. DMQP plate element.
Infinitesimal
plate element
h A, : ransverse section
X A, : normal section
5 edge direction
n : normal direction
Figure 2. Modified Mindlin hypotheses on the side k£ of a multilayer element.
Ly
/ {7% — 74} ds = 0 (Kinematic Hypothesis) (21)
0
where -
Vsk = (st + ﬁs)k (22)
and

p= (1 —ﬂfk)_ﬁﬂ + B+ (1-2)88, -

(1=2)Bu+28,
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Introducing kinematic hypothesis (21) on the side k, which are projected on the element using
above interpolations of f; and S, (23), lets us rewrite the edge tangential shear strains as fol-

lows:

Wi~ Wi

1 2
+ 5 (B + By) + gAﬁyk (24)

In order to eliminate the nodal variables of the mid-sides Af;, we have opted for a heuristic
method that equalises the shear force calculated by Hooke’s law and their values obtained
from equilibrium equations of moments, respecting the multilayered composite plate character.
This technique is considered as a modified Mindlin hypotheses (Ayad, 2002; Ayad, Talbi, &
Ghomari, 2009; Sakami, 2008).

Considering tangential strain as function of shear force, we can write the following local
modified expression.

L
/o (ysk — (H™, H, >{ 7T:i }) ds =0 (Mechanical hypothesis) (25)

H™ and H™, are two shear behaviour terms of the inverse matrix [H) ™" for the kth side:
where

[Hy] = [PH[P] ™ (26)

Ck Sk :| { Ck = COS Hk (27)

f— 71 p—
[PA] o [Pk] o |:Sk —Ck Sk = sin Hk

[H.] is the constitutive transverse shear of the entire multilayer and 6, is the angle between if
vector, defined by i and j nodes of the k side, and the x-axis.

T, and T, are the transverse shear forces, we use the equilibrium relations on middle sur-
face of the side k to calculate their values in terms of bending moments. They are written as
follows:

Ts MY‘S + Mn,n

Tn - Mvms + Mz,n (28)
where

M;

{M} = M, o =[H{x} (29)
The homogenised stiffness matrix is given as:
+h/2

[H] = / 2[H (2))dz (30)

—h/2

{x} is the bending curvatures defined as:
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Xs Bs.s
{b=q 1 ¢ = B (31)
Xsn ﬁs,n + ﬁn,s

We define the strains {y,} as function of second derivatives of f; and f3, through Equation
(28) and two constitutive laws in bending and shear. We obtained:

Vsk = _(P;cnlAﬁsk (32)

@™ is the influence factors of transverse shear, defined at either side as:

Hinv Hinv
oF = 8<Hf11 —5+ Hn 2'312) (33)
k 3

The combination of the two Equations (24) and (32) gives us:

3
S 2+ 3¢

AR, Bt ) (34)

The substitution of the last equation on either elementary k& side permits to write the nodal
displacements of the mid-sides as a function of those of corners.

{AB,} = [Aul[Ago]{un} (35)

Finally, the Cartesian transverse shear is obtained by replacing both Equations (32) and (35)
in (18)

{0} = [N)] [A(/,] [4,)[Aco){un} (36)

In terms of influence factors of transverse shear, the diagonal square matrices [4,,] and [4,]
are read as follows:

—o™ 0 1 0 0
|0 e 00
[AGD] - 0 0 _(pr7n1 0 (37)
0 0 0 —oM
3
24300 0 0
0 3 0 0
2+43¢M
[4,] = ° (38)
0 U
0 0 0 S

T
24303

where [Ago] is the matrix of dimension 4 x 12, defined by length and direction cosines of
vector element sides.
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2/Ls —Cs —Ss —2/Ls —Cs —Ss

oo 0 0 2/Lq —Cs —Ss
Mool =3 0 0 0 0 0
—2/Ly —Cs —S 0 0 0

0 0 0 0 0 0 (39)
—2/L¢ —Cs Ss 0 0 0
2/L, —C; =8, —2/L, —C; -8
0 0 0 2/Ly —Cs —Ss

3. Variational displacement formulation

The expression of the principle of virtual work is defined by its generalised form as follows:

W= (W= We) =0; W', BB (40)

elts

withw*:ﬁ;:ﬁij;w:W, B. =P, [)’yzﬁy on S,.
Where W,y is the virtual work done by external forces and W, is the elementary internal
work, which can be written as

Wi = Wy + WS = fVC (<es>{os} + <yi>{w}) dV (41)
Using the constitutive laws of stress—strain, taking into account the multilayered aspect and

the stratification technique, the explicit integration of the first term of the integral [39] is
given as:

we= [ ()l ) da 2)

where 4. is the elementary surface.
Under nodal form

Wi = () [k} (43)

The element stiffness matrix regarding the bending part is written as:

) = [ (" te)i31) aa (44)

wher
o [B] = [Busg] + [Bioag] [44][4co] (45)

Following the same procedure, the work done by internal shear force can be written as fol-
lows:

we= [ (oY) ad (46)
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The shear stiffness matrix can be obtained from the following form:

e = (uy) [k} (47)
where
k) = [ Bl Bl ad (a8)
and
[BLO] [N/] [Aw] [An] [AGO} (49)
The constitutive matrix is given as:
+h/2
H.| = H.(z)] dz 50
p= [ ) (50)

Finally, both clementary stiffness matrices [kf| and [k¢] are obtained by an exact numerical
integration scheme, i.e. 2 X 2 Gauss points. The homogeneous constitutive matrices are com-
puted analytically through the direction z.

4. General aspects of the zigzag function

In the context of Reissner multilayer theory applications, Murakami has introduced for the
first time, a function through the coordinate thickness, which is able to imitate the zigzag
form (Carrera, 1996, 2002; Murakami, 1986). Such function, called “Murakami zigzag func-
tion,” is defined as follows:

M(z) = (1) (51)

As z is the coordinate thickness of the whole multilayered plate, {; = 2z /A is an adimen-
sional coordinate of the layer 1, of thickness 4. The shape function is illustrated in Fig-
ure 3. It has local properties of zero at the middle plane of each layer, (1) and (—1) at
the top and bottom interfaces, respectively. The theoretical strength lies in systematic fulfil-
ment of inter-laminar continuity condition. Their terms can be easily inserted as much that
in in-plane displacement field that in out-of-plane. This constitutes a further advantage
compared to other zigzag theories: of Liknitskii as well as Ambartsumian (Carrera, 2002).
We should note its wide applicability to all classical theories of multilayered plates (equiv-
alent single layer) (Classical Laminate Theory, FSDT and High Shear Deformation Theory
[HSDT]).

The application of the Murakami’s zigzag formulation on DDM model can be summarised
in the following form:

ii(x,y,2) 0 B(x.) ' (x,y)
V(x,y,2) = 0 p+29 B(x,y) ¢ M) ud'(x,») (52)
w(x,p,z) w(x,y) 0 0
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Figure 3. Geometrical representation of Murakami zigzag function (four-layer structure).

where the subscripts (1) and (2) indicate the vector displacement components in two
directions of the plate coordinate system.

uM and u)! are the effective amplitudes of the zigzag effect, having the sense of displace-
ments. In fact, these terms have an intrinsic description of Equivalent single-layer model. This
reality does not constitute a limitation of Murakami Zig-Zag Function, since it has the same
description as in other multilayered theories of Ambartsumian and Liknitskii.

It should be also noted that the improved model of first-order shear deformation theory
(with the Murakami zigzag function) has two or three additional DOF more than the classical
model (FSDT).

5. Numerical results and discussion

Four numerical examples of multilayer composites and sandwich plates are solved. We pro-
ceed to compare obtained results with the first and higher order results. Moreover, hybrid-
mixed variational approach is mentioned to carry out a correlation with our previous works
regarding a Mindlin multilayered hybrid-mixed quadrilateral element (Tafla, Ayad, & Sedira,
2010).

The boundary conditions are the same in all cases, the restrained DOF appropriate to sim-
ply supported conditions are given as follows:

w = f, = u) = 0, boundary line parallel to x-axis
w =, = u}' = 0, boundary line parallel to y-axis

5.1. Example 1

A cross-ply (0/90/0) rectangular laminate is considered, simply supported at the four edges
using 6 x 6 mesh size of the quarter plate only (Figure 4). The plate is subjected to doubly
sinusoidal load with intensity g = g, sin(zmx/a) sin(zy/b). The three layers have equal thickness
h=h/3 and identical mechanical properties (E,/E,=25, G,,= G..=0.5 E,, G,.,=.2 E, and
v=0.25). The analysis is carried out by taking two geometric aspects b/a=1 and 3 and dif-
ferent thickness ratio a/h= 4, 10, 50 and 100, where % is the thickness of the plate.
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Figure 4. Geometrical properties of sandwich and multilayered plates.

The results are compared with those of Di-Sciuva (1992) labelled RFSDT (Refined
First-order Shear Deformation Theory) and HSDT. Few results for specific thickness ratio
are furnished by Carrera and Demasi (2002) for the nine-node quadrilateral element with
zigzag function, used by the author to evaluate the use of zigzag function in first-order
shear deformation theory. Other elements and theoretical results are also used and listed as
follows:

» DSQ: Discrete Shear Quadrilateral element (Lardeur, 1990).

« E.O.: Engblom & Ochoa element, based on higher-order displacement theory. It is an
eight nodes quadrilateral element with 10 DOFs (Engblom & Ochoa, 1985).

* EDI, EDZI: nine-node quadrilateral elements belong to equivalent single-layer model,
based on first-order shear deformation theory and displacement formulation, the second
one is formulated with zigzag function (Carrera & Demasi, 2002).

e FSDTZZ: First Shear Deformation Theory with Zig-Zag, based on nonlinear fileds
using a modified mixed variational formulation (Fares & Elmarghany, 2008).

* PRHSDT: a four-node rectangular element based on Present Refined Higher-order Shear
Deformation Theory (Topdar, Sheikh, & Dhang, 2003).

e HSDT: higher order shear deformation theory (Reddy, 1984).

Deflection at the laminate centre and stresses are evaluated and written in terms of the fol-
lowing normalised quantities and locations:

we = w(100Eywh? /goa®), Owa = 045,(0,0,h/2) P qoa?,
o =0 (a/2,b/2,h/2)I? [qoa®, Tp = T::(0,b/2,0)h/qoa,
Oyc = ay(a/Z, b/zv h/6)h2110/a2; Ty = Tyz(a/?-v 0, O)h/%a

The values of the transverse displacement, in-plane and transverse stresses for both shapes of
the plate are shown in Tables 2 and 3. The accuracy of normal in-plane stress o,c obtained
by different first-order elements (DMQP/ml, DSQ) appears affected for the thick plate (a/
h=4). Whereas this is not the case for those obtained by DMQPz, where they appear more
accurate. Both DDM models show a good performance regarding the in-plane stresses results
(0y¢ and 7,,,) and central deflection, especially for thickness ratio a/A=50 and 100 (Table 3).
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Table 2. Deflection and stresses in square (0/90/0) laminate plate under sinusoidal load, (b/a = 1).

ll/ h MOdelS OTxC (fyC fxyA fxzD fyzB WC
4 DMQP/ml F.392 F.613 +.0439 305 218 2.238
DMQPz F.687 F.524 +.0480 247 206 1.972
E.O. F.391 F.572 +.0448 308 251 -
HSDT F.734 F.503 +.050 286 209 1.922
RFSDT F.620 F.661 +.045 262 254 1.891
Elasticity —.755 —.556 .0505 256 217 -
.801 534 —.0511
10 DMQP/ml F.5026 F.293 +.0270 369 1115 7709
DMQPz F.5745 T.280 +.0281 354 1154 7414
ED1 —.5096 —.2376 .0055 .1538 1117 7417
5113 2382 —.0055
EDZ1 —.5625 —2757 .0076 3777 .1408 7417
.5106 2762 —.0076
E.O. F.500 F.279 +.0280 369 130 -
HSDT T.568 F.269 028 369 117 713
RFSDT F.549 T.289 027 364 123 723
Elasticity —.5900 —.288 .0289 357 1228 7530
.5900 285 —.0289
50 DMQP/ml F.540 F.184 +.0213 3879 .0829 4453
DMQPz F.5432 F.183 +.0214 390 0878 4443
E.O. F.541 T.164 +233 392 .0843 -
Elasticity F.541 F.185 +.0234 393 .0842 -
100 DMQP/ml F.541 F.180 +.0211 3837 .1039 4346
DMQPz F.542 F.180 +.0212 .389 .107 4344
E.O. F.542 F.167 +.0224 393 .0827 -
Elasticity F.539 F.181 +.0213 395 0828 -

For a thick plate (a/h=4), the DMQPz element shows a more significant improvement than
DMQP model, remains comparable to that founded by refined high-order model. In compari-
son with piecewise approach, results obtained by the present zigzag model, for the aspect
ratio b/a=3 (Table 3), appear quite similar to refined non-linear zigzag shear deformation the-
ory (FSDTZZ), developed by Fares and Elmarghany (2008). On the whole, obtained values
of transverse shear stresses remain satisfactory, even better than DSQ, E.O. and HSDT.

For a moderate thick multilayer square plate (a/hA= 4), the in-plane displacement u at point
B and the stress o,, in the centre of the plate are plotted (Figure 5). The curves are illustrated
for two versions of DMQP elements. For the first case, a piecewise linear displacement is
shown with a change of sign of displacement slope between layers. This curve is obtained by
the addition of two functions: the linear standard term due to f§, and the zigzag term related
to the coefficient (—1)" and the additional degree of freedom, which is not equal to zero on
this location.

The same effect was found for the stress o, curve, where the slope of the in-plane strain
is slightly decreased, which results in greater stress values on the layer interfaces. In compari-
son with exact and FSDT results, (Pagano, 1970; Whitney, 1969), the obtained curves are
quasi-identical to those given as benchmark (Pagano, 1970). In this example, hence the zig-
zag effect appears clearly in in-plane displacement and stress.

On the other hand, regarding the shear stress curves, the alternate sign of the additional dis-
placement coefficient used thereafter in the equilibrium equation integral leads also to a slight
curvature in 7., curve (Figure 6), where two inflexion points appeared in layer interfaces.
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Figure 5. In-plane displacement and stress curves along the multilayer plate thickness, a/h=4.
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Figure 6. Distribution shear stresses along the multilayer plate thickness, a/h=4.

Usually, this could not have occurred in first-order shear deformation models. Both of the
shear stress curves are quite close to 3D (Figure 6). So, the contribution of zigzag form intro-
duced in DMQP model is more confirmed here.

5.2.  Example 2

A laminated composite plate with a nine-layer symmetric cross-ply [0/90/0/90/0]sy,,, made of
unidirectional fibrous composite material is considered. The geometry, loading and material
properties are assumed to be the same as those in example 1, except that the total thicknesses
of layers 0° and 90° are equal, and layers of the same orientation have all the same thickness.
Due to symmetry, only the quarter of plate is modelled using a 6 x 6 mesh. Transverse dis-
placement and stresses w at point C (Figure 4), in-plane stresses at points A and C and shear
stresses 7, and 7, at points D and B, respectively, are computed using the following adimen-
sional form:

0 1
M, ch—ox(a/27a/2,h/2)—

we =w(a/2,a/2,0) s
0
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1 1
c=0,(a/2,a/2,2h/5)—, oup =04(0,0h/2)—
o,c = ay(a/2,a/ / )QOSZ OxyD Ty / )C]()Sz
— 1.(0,0/2,0)— — 1,.(a/2,0,0)—
Tzp = Tx\U, 4/ 2, q0S7 TyzB - Tyz a "y qoS

E] +E2(1 + 2\)23)
(1+vi2var)

with Q = 4G12 +

L S=1

The deflection obtained at the plate centre (a/2,a/2,0) is accurately presented by the
DMQP/ml element, a good performance similar to the mixed model and better than the DSQ
element. However, deflection in thick plate (a/h=4 and 10) obtained by zigzag model is
underestimated, but stresses are well presented nevertheless (Table 4).

5.3. Example 3

Aimed at evaluating the effect of heterogeneous anisotropic properties along the thickness on
accuracy prediction of the present element, a square sandwich plate (f/c/f) with thickness ratio
a/h=4 and 10 was analysed. The plate is simply supported and subjected to a doubly sinusoi-
dal load; it has a total thickness of & where the thickness of the core is 0.8/ and that of each
ply in the top and the bottom face sheets is 0.14. Only the quarter of the plate is meshed
(DMQP/ml 8 x 8 and 19 x 19, DMQPz: 6 x 6 elements) (Figure 4). Mechanical properties are
given as follows:

Face: E,/E,=25, G,=G.=.5 E,, G,.=02 E,, v=.25
Core: EX:E}/: '04’ ze: Gyz: 06, ny: 016, V= .25

A reference solution from 3D elasticity is given for the first time by Pagano (1970). In addi-
tion, the comparison is carried out with results obtained by Topdar et al. (2003). With finite

Table 4. Deflection and maximum stresses in nine-layer square plate.

a/h Models OxC oy Oyd TeeD Ty we

4 DMQP/ml 475 Sl .0217 225 255 4.1872
DMQPz 518 .585 .0224 218 264 3.6217
DSQ 491 487 — 235 243 4.235
MiSP4/ml 455 .536 — 22 265 4.133
Elasticity .684 .628 .0328 223 223 4.079

10 DMQP/ml 5142 4646 .0213 241 234 1.5171
DMQPz S18 481 .0215 .240 235 1.4353
DSQ 519 455 - .246 228 1.516
MiSP4/ml .505 476 — 242 237 1.512
Elasticity 551 477 .0233 247 226 1.512

50 DMQP/ml 541 432 .0211 249 230 1.021
DMQPz 541 434 .0211 247 226 1.0175
DSQ 538 432 - 253 216 1.015
MiSP4/ml .54 435 - 256 218 1.019
Elasticity .539 433 .0214 258 219 1.021

100 DMQP/ml 542 433 .0210 244 250 1.0049
DMQPz 542 433 .0210 237 242 1.0042

Elasticity .539 431 .0213 259 219 1.005




138 L. Sedira et al.

Table 5. Deflection and shear stresses in simply supported square sandwich (f/c/f) plate, under
sinusoidal load.

DMQP/ml  DMQP/ml DMQPz HOZZT PRHSDT  PFSDT
(8 x 8) (19 x 19) (6 % 6) (8 x 8) (8 x8) (8 x 8) Pagano
a/h =4
w  7.890 7.8656 7.6672 7.655 7.6042 4.7602 7.5962
2525 255 2346 250 2592 1259 239
2 2497 2525 2412 - 2136 1.0494
2497 2525 - - 2136 1259 -
o 1172 11,775 1057 1151 - - 1072
o, 1269 1275 1459 1462 - - 1484
a/h =10
w222 2217 2.2083 2.2003 2.199 1.5601 2.5
o309 311 2972 3146 3256 1409 300
2 307 310 2976 - 2683 1.1745 -
307 310 - - 2683 1409 -
10565 056 0521 056 - - 0527
<l 0675 067 0708 070 = - 0717

element series: PFSDT (Present First-order Shear Deformation Theory), PRHSDT and the last
one called HOZZT (Higher Order Zig-Zag Theory), it has the same order as the previous ele-
ment and fulfils the zigzag form (based on cubic in-plane displacement fields, nine node and
11 DOFs/node).

The transverse displacement and shear stresses at different points are presented in Table 5,
with the next normalised. The proposed improved element provides results in very good
agreement with the 3D elasticity. It shows competitive performance compared to those
obtained by PFSDT model or higher order models mentioned as references. The in-plane
stresses are also given by such models (Table 6). Values obtained by the DMQPz element are
generally, closest to those of Pagano (1970).

w = wc(100Ey A /qoat), 0> = 0.(a/2,b/2,0.4h)h* | q¢a?,

ol =0.(a/2,b/2,h/2)h*/qoa*, o, = a,(a/2,b/2,0.4h)1* /qoa®,

a, = a,(a/2,b/2,h/2)1* |qea’, 1y, = 145(0,0,a/2)h* /qoa’,

riz 7:(0,6/2,0)h/qoa, T, = 1,.(a/2,0,0)hqoa, t.' = 1..(0,b/2,0.4h)h/qa

6. Conclusion

Two versions of four-node quadrilateral elements for bending/shear sandwich and multilayer
plates are formulated. Based on displacement discrete Mindlin model, in which two discrete
Mindlin assumptions are introduced. As a first hypothesis, the kinematics equation of trans-
verse shear strain is assumed as a contour integral and projected on either edge.

It allows the elimination of shear transverse locking without using bubble functions or
reduced integration techniques. The second hypothesis requires bending and transverse shear
behaviour laws, and two equilibrium plate bending/shear equations. They have a main advan-
tage of local elimination of rotation DOF, initially introduced in the middle elementary edge
with quadratic approximation. Thus, the first element baptised DMQP/ml has only three
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Table 6. Normal stresses in simple supported square sandwich (f/c/f) plate, under sinusoidal load.

DMQP/ml DMQP/ml DMQPz HOZZT PRHSDT PFSDT
(8 x 8) (19 x 19) (6 x 6) (8 x 8) (8 x 8) (8 x 8) Pagano
alh =4
gi 7375 73,125 1.5206 1.5158 1.4539 .8385 1.556
g)% 588 .586 2210 - 3181 .6708 233
.0028 .00,286 .0004 - .0012 .0024
g‘]y 2343 235 2494 2495 2522 1565 2595
o2 1875 188 1621 - 1631 1252 -
008 .008 .0066 - .0069 .0053 -
a/h =10
g)l( 1. 1.02 1.1568 1.1438 1.1453 1.0475 1.152
(,-3 .796 793 .6315 - .6193 .8380 .629
.00,215 .00,215 .00,101 - .0018 .0020 -
g){ .107 107 .1088 .1082 1101 .0806 .1099
g')% .0855 .0855 .0823 - .0832 .0645 -
.00,364 .00,364 .00,305 - .0035 .0027 -

degrees of freedom; it presents a good global behaviour and achieves advantages compared to
those found in literature. However, in order to fulfil some requirements regarding their local
responses, a zigzag form inspired from the Murakami—Reisser—Carrera approach is incorpo-
rated in the DDM model. As a result of additional terms, which are displacement type, a new
form is formulated without having recourse to the correction technique. The comparison with
those based on either higher or improved first-order shear deformation theory shows a further
improvement of the DMQP model and yields to obvious accuracy of in-plane and shear
stresses.
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