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In the extended finite element method framework, the advantage of being able to represent
cracks independently from mesh rests on the use of level sets. Propagation simulation is
connected to the update of these level sets, following the resolution of differential equa-
tions of evolution. In this document, we analyse these equations so that fast and robust
mixed-mode propagation methods can be put forward. The proposed methodology can also
manage the separation of a crack front into several fronts as well as the merging of several
fronts during the propagation process. An example of 3D non-planar propagation is pro-
posed at the end to show the efficiency of our choices.

Un des avantages de la méthode X-FEM est de permettre la représentation des fissures en
utilisant le maillage sain d’une structure et leur localisation par des courbes de niveau. Leur
propagation est alors réalisée par la mise à jour de ces courbes de niveau, dont l’évolution
est obtenue par la résolution d’équations différentielles. Nous proposons d’analyser ici
l’ensemble de ces équations pour aboutir à une méthode de propagation en mode mixte à
la fois robuste et rapide. La méthodologie proposée permet en outre de pouvoir traiter la
séparation du front de fissure en plusieurs fronts ainsi que la fusion de plusieurs fronts au
cours de la propagation. Un exemple illustratif de propagation 3D hors plan est donné en
fin d’article afin de démontrer l’efficacité des choix adoptés.
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1. Introduction

Over the last decade, the extended finite element method (X-FEM) (Belytschko & Black,
1999; Moës, Dolbow, & Belytschko, 1999) coupled with a representation of cracks by level
sets (Gravouil, Moës, & Belytschko, 2002; Moës, Gravouil, & Belytschko, 2002) has proven
to be an interesting tool for crack propagation simulation, even if optimised meshing tools are
still leading the way in terms of performance, such as ZENCRACK developed by Zentech or
Z-set co-developed by the Ecole des Mines in Paris, MW Numerics and Onera, among others.
The most interesting aspect of the X-FEM method is that cracks may be introduced into the
structure, in which they may develop, independently of the initial mesh. In principle, there-
fore, the crack does not need to be meshed, or at least not in relation to the structural mesh.
Discontinuity in the displacement field across the crack surface and the singularity of the
stress field at the crack front are taken into account directly in the formulation of the finite
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elements close to the crack (Moës et al., 1999)). The crack surface and front are located by
the use of two families of level sets which are orthogonal to each other. The crack propaga-
tion may be taken into account by the change of these level sets, without the need to change
the structural mesh (Gravouil et al., 2002).

Several techniques have been put forward to enhance the level set update: some of them
concern the resolution of differential equations, which mathematically describe the problem of
the level sets evolution (Adalsteinsson & Sethian, 1995; Gravouil et al., 2002; Moës et al.,
2002; Peng, Merriman, Osher, Zhao, & Kang, 1999) while others use non-differential equa-
tions and geometric evolutions (Duflot, 2007; Ventura, Budyn, & Belytschko, 2003). A com-
parison between these different methods can be found in Duflot (2007).

2. Level sets propagation

The level sets propagation stages are herein assessed so that 3D mixed-mode propagation and
the consequent kink of the crack surface can be simulated. Whatever the method used, the
propagation methodology described in Moës et al. (2002) can be adopted as a starting point on
account of its wide applicability. The update process of level sets can be broken down into
four stages. Firstly, level sets are updated in order to take into account crack propagation. Fol-
lowing this stage, the level sets no longer constitute distance functions and are no longer
orthogonal to each other. Therefore a re-initialisation stage must be carried out for each level
set, followed by a stage which makes the two level sets orthogonal to each other. A Hamilton-
Jacobi (Moës et al., 2002) differential equation can be applied to each of these stages.

2.1. Numerical resolution of the update stage

The update stage, as described in Moës et al. (2002), is aimed at re-calculating the level sets
following crack propagation. Extending to the 3D case, the corrections made by Duflot
(2007) to the update equations reported in Moës et al. (2002), the level sets update can be
described by means of the following equations (Colombo & Massin, 2011):

@unðtÞ
@t

þrunðtÞ:VN ¼ 0

@utðtÞ
@t

þrutðtÞ:VT ¼ 0

ð1Þ

with un and ut the normal and tangential level sets, respectively; and VN and VT the propaga-
tion velocity at the crack front normal and tangential to the crack surface, respectively. Since
Equations (1) are applied on the whole calculation domain but the velocity field is known at
the crack front only, an extrapolation of the velocity is required. An example of such extrapola-
tion can be found in Gravouil et al. (2002), which is based on the use of partial differential
equations. This approach can be improved adopting an equivalent scheme based on the normal
projection of each point M of the domain on the crack front (Colombo & Massin, 2011).

Given a point P which is the projection of point M on the crack front, the following
velocity vectors are calculated:

VP
N ¼ ðVP � nPÞnP ¼ VP

Nn
P

VP
T ¼ ðVP � tPÞtP ¼ VP

T t
P

ð2Þ
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where VP is the propagation velocity vector at point P and ðtP; nPÞ are the vectors tangent
and normal to the crack surface at the same point, respectively.

For the evolution of the tangential level set at all the points not included in the crack
opening, a velocity equal to the one at the projected point on the crack front is considered.
On the contrary, a linear extrapolation is used for the calculation of the velocity assigned to
the normal level set if utðMÞ[0, whereas for the other points where utðMÞ � 0, a null veloc-
ity is adopted in order to preserve the existing crack surface (Gravouil et al., 2002). Thus:

VM
N ¼ 0 if utðMÞ � 0

VM
N ¼ VP

N � utðMÞ
VP
TDttot

if utðMÞ[0

8<
:

VM
T ¼ VP

T

ð3Þ

where Δttot represents the time or the number of fatigue cycles taken into account in the prop-
agation step. For any point M, the velocity vectors of Equations (1) are finally calculated as
follows:

if utðMÞ � 0
VM

N ¼ 0

VM
T ¼ VP

TrutðMÞ

(

if utðMÞ[0
VM

N ¼ VM
N nP

VM
T ¼ VP

T t
P

( ð4Þ

ðut;unÞ are the distances to the iso-zero tangential and normal level sets which are
orthogonal to each other; therefore, ðrut; run) define an orthonormal base at the nodes
where ðut; un) are estimated. For all the points ahead of the crack characterised by ut[0,
precise computations need to be conducted in order to locate the iso-zero surface of the nor-
mal level set and the new crack front. The level sets evolution is governed by the crack front
evolution, with a propagation direction given in the ðtP; nPÞ local base at the crack front,
which is not necessarily coincident with the level set gradient base (rut; run), as shown in
the following part of this section. For all the other points lying in the crack opening, for
which ut\0, less precise computations may be performed since the iso-zero of the normal
level set is already fixed and independent of the crack front evolution: ut is the only one to
be modified and the direction of propagation for the ut\0 domain is then given in a simple
way by the tangential level set gradient rut.

The calculation of the local base ðtP;nPÞ of Equations (4) is completely reviewed in rela-
tion to what is done in Gravouil et al. (2002), whose authors use the level set gradient inter-
polations. Yet, if the level set gradients are basically orthogonal to each other by construction
at the nodes in the immediate vicinity of the crack, this is not the case for their interpolations,
which causes errors in the extension stages (4). This point was already raised by Duflot
(2007) who proposes the construction of a local base by favouring the normal level set and
its gradient, with respect to the tangent one, for the construction of the base. Two reasons jus-
tify this choice: the accurate updating of the normal level set is vital when there is a change
of direction in the crack propagation and the linear variation of the normal velocity in relation
to the distance at the crack opening during the extension stage.

An improvement to what is done in Duflot (2007) is thus made, which allows obtaining a
smooth velocity field all over the calculation domain. The crack front is represented piecewise
linearly as in Fries and Baydoun (2011) by connecting the points where it intersects the
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elements faces. The local base can be calculated at these points by means of the aforemen-
tioned method (points I and J of Figure 1), whereas for any other position (point P of Fig-
ure 1) on each crack front segment, it can be calculated from the ones at the two ends of the
segment. For that, we use a rigid rotation which turns the local base at one segment end into
the local base at the other end. Euler’s theorem assures that this rotation is unique and is
defined by its axis of rotation and its angle of rotation hE.

The position of P on the segment IJ, defined by s ¼ kIP!k=k IJ!k, is used to determine the
intermediate rotation from the local base at I to the local base at P in Figure 1, allowing to
define the rotation angle hPE ¼ shE around the Euler axis previously defined for segment IJ.
Similarly, by means of a propagation law, the crack propagation velocity is calculated only at
the points defining the crack segments. To ascertain the velocity at any point P on a crack
segment, the position s of point P on the crack segment is used once again, thereby enabling
us to write (Figure 1):

kVPk ¼ ðkVJk � kVIkÞ:sþ kVIk ð5Þ

The propagation direction VP in the plane ðtP; nPÞ is thus obtained in a similar way by
using linear interpolation between the angles formed by the vectors (VI; tI) and (VJ; tJ), or hI
and hJ , respectively. The velocity vector VP is therefore expressed as follows (Figure 1):

VP ¼ kVPk½cosððhJ � hIÞsþ hIÞtP þ sinððhJ � hIÞsþ hIÞnP� ð6Þ

Being VP and the local base ðtP; nPÞ known, Equations (1) can be completely solved.
Despite these corrections, it has been shown that numerical instabilities appear when the

crack tips drastically change direction (Colombo & Massin, 2011). Moreover, in such a case,
if an explicit integration scheme is used, to solve the Hamilton-Jacobi Equations (1), the time
step must be drastically reduced to satisfy the CFL (Courant–Friedrichs–Lewy) condition,
which is detrimental to the calculation performance. This problem may be avoided if an
implicit integration scheme is used but at the expense of an increased complexity in the cal-
culation code programming. Recently, a solution with one sole resolution iteration, based on
the use of the “fast marching method”, was put forward in Sukumar, Chopp, Béchet, and
Moës (2008), Shi, Chopp, Lua, Sukumar, and Belytschko (2010). However, as indicated in

Figure 1. Local bases at the crack opening. (a) Use of local bases at I and J, points of intersection of
the crack front with the X-FEM finite elements, to determine the local base at any point P of the crack
front inside the element by using Euler’s rotation, which means that the local base at I can be turned
into the local base at J. (b) The propagation velocity is only known at points I and J. The velocity at
point P is calculated by using the velocity at these points.
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Sukumar et al. (2008), the calculated solution is susceptible to errors near to the boundaries
of the solid. Several ingredients are therefore required to solve the problem of instability.

An alternative solution is put forward in Colombo and Massin (2011) and Fries and
Baydoun (2011) which is based on an explicit polynomial equation, and which does not
require an integration scheme or an iterative resolution. The method proposed here is simpler
than the one of Fries and Baydoun (2011) which relies on the use of three level sets instead
of two combined with a physical geometrical extension of the crack surface, as in Geniaut
and Massin, which we do not need here. It means that good performance and resolution sta-
bility can go hand in hand, while having only a slight computing impact on the code. The
evolution of the level sets is thus calculated in the following way, which represents the dis-
continuous form of (1):

Dun ¼ �ðrunðtÞ:VM
N ÞDttot

Dut ¼ �ðrutðtÞ:VM
T ÞDttot

ð7Þ

With respect to (1), formulation (7) presents the advantage of not having to verify the
CFL condition in the event that explicit resolution algorithms, as the Runge–Kutta family, are
used. This is the most restrictive point to be solved since in the normal level set propagation
equation (first equation of (1)) the velocity VN increases linearly with the distance to the
crack front (see (3)), causing the critical time step to decrease proportionally, thereby reducing
the performance of the algorithm and preventing the important crack deviation angles from
being treated numerically. The methodology put forward here enables us to treat crack propa-
gation at almost 90°, which is impossible to model as of (1) (Colombo & Massin, 2011).

2.2. Numerical resolution of the re-initialisation and re-orthogonalisation stages

After the update stage of the level sets, their property of distance to the crack front is not nec-
essarily maintained and neither is the orthogonal property between the two level sets. It is
therefore necessary to proceed to the following corrective stages (Gravouil et al., 2002):

• The normal level set is re-initialised so that a distance function can be re-established
(krunk ¼ 1):

@un

@s
¼ �signðunÞðkrunk � 1Þ ð8Þ

• The tangent level set is re-orthogonalised in relation to the normal level set
(run:rut ¼ 0):

@ut

@s
¼ �signðunÞ

run

krunk
:rut ð9Þ

• The tangent level set is re-initialised so that a distance function can be re-established
(krutk ¼ 1):

@ut

@s
¼ �signðutÞðkrutk � 1Þ ð10Þ
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Equations (8)–(10) are solved until their fixed points are set, with τ as a virtual time, as
opposed to Equations (1). It can also be remarked that they all have the same form which is
expressed in fine as:

@u
@s

þ u:ru ¼ c ð11Þ

As soon as the iso-surfaces of the level sets are formed, having ascertained the velocity at
the crack front, the order in which the above stages are executed becomes important. Indeed,
in case of curved cracks, it is not possible to form level sets which verify Equations (8)–(10)
at the same time, at each point of the domain (but the Equations (8)–(10) will be verified at
the crack front). In order to easily obtain the distance at the crack front, we end the process
by re-initialising each family of level sets.

In order to efficiently integrate the equations of the form (11), the simplex method of
Barth and Sethian (1998) has been adopted in Gravouil et al. (2002) and Geniaut and Massin.
The advantage of this method, of which a detailed description can be found in Geniaut and
Massin, is that it can be directly applied to 2D triangular and 3D tetrahedral meshes. Further-
more, meshes of industrial structures, which are often non-structured, may easily be split into
triangles or tetrahedral elements.

Despite this advantage, based on the experience of the authors, this is not necessarily
the most stable of the methods. Methods of finite difference type have proven to be highly
interesting: initially used in 2D (Prabel, Combescure, Gravouil, & Marie, 2009), in the
framework of dynamic crack propagation, their use has recently been extended to 3D
(Sukumar et al., 2008) on simple examples in association with the “fast marching
method”.

Based on the work of Prabel et al. (2009) in 2D, a finite difference scheme of the first
order based on a regular grid is established. This solution requires a projection of the level
sets between the grid and the finite element mesh, where the mechanical calculations are car-
ried out. Two obstacles must overcome in relation to this kind of algorithm:

• the side effects at the domain boundaries, which introduce stray reflections and favours
instability,

• the performance, if the calculation domain is not localised (Colombo & Massin, 2011).
In order to improve it, a restriction on the projection domain is proposed, as well as a
localisation around the crack front of the domain where Equations (8)–(10) are solved.
The localisation also allows improving the stability of the algorithm. A similar solution
put forward by Shi et al. (2010) is improved herein.

Equation (11) is a transport equation, propagating the information in the direction of u
from the iso-zero surface to the whole domain. Only information obtained in the windward
direction is used to find the solution. Looking at the form of Equation (11), the points on the
boundaries of the domain, for which the integration scheme cannot be used in its current
form, can be easily identified. A 2D illustration is provided in Figure 2. For the points in
black, the points below are missing, whereas for the points in grey the information about the
points situated above would be required.

In order to solve this problem, the “phantom point technique” is used in fluid dynamics
(Randal, 2002), which is based on an extrapolation of information using the nearby points
and physical fields such as pressure or velocity. In our case, the extrapolation process has to
be carried out on a less meaningful physical quantity over which it is more difficult, if not
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impossible, to exercise control. Therefore, we avoid employing this method and we suggest
the direct introduction of the missing information at the problematic points on the boundary
by directly calculating level sets values, that is for the re-initialisation stages; the distance to
the iso-zero surface of the level set being re-initialised; and for the re-orthogonalisation stage,
the value of the tangent level set at the orthogonally projected point on the normal level set
iso-zero (Colombo & Massin, 2011).

3. Level sets geometrical calculation as an alternative to level sets propagation

By combining the ideas at the basis of the velocity extension process (Section 2.1), of the
formulation of Equations (7) and of the domain localisation for the re-initialisation and re-
orthogonalisation stages (Section 2.2), a fully geometrical approach for level set re-calcula-
tion at each propagation step can be formulated (Colombo, 2012). This enables robustness
and fast calculation, because all the stages presented above are condensed in one stage for
which only explicit geometrical equations are used. In fact, now being clear from the dis-
cussion and the equations presented above that the problem is always a 2D problem in the
ðtP; nPÞ plane of point P, projection of a generic point M of the calculation domain, the
two level sets can be re-calculated directly by means of the following equations (see
Figure 3):

Figure 2. Example of a 2D propagation. Auxiliary grid showing problematic points (black and grey
points) at boundary.

Figure 3. Distance to the crack front. Local base at the new position Q of the crack front and iso-
surfaces in the ðtp; npÞ plane after application of (7)–(10).
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unðMÞ ¼ MQ
��! � nQ

utðMÞ ¼ MQ
��! � tQ

ð12Þ

Point P is the projection of point M on the actual crack front and Q is its new position
after the propagation. Its position can be found by adding to the coordinates of point P the
propagation vector D~a at point P, which is known with both the crack advancement Δa and
the crack propagation angle β obtained from the propagation law. Similarly, the local base
ðtQ; nQÞ can be calculated by a rotation of the local base ðtP; nPÞ around the axis tP ^ nP. In
order to preserve the normal level set iso-surfaces in the vicinity of the existing crack surface,
Equations (12) are applied only at the points for which the tangential level set is positive.

In case a point M has no normal projection on the actual crack front (Figure 4), point P
is taken coincident with one end of the crack front as in Colombo and Massin (2011) or
Geniaut and Massin and both level sets are always evaluated by means of Equations (12) by
substituting tP

�
to tP (Figure 4) so as to obtain the local base ðtQ; nQÞ. tP�

is parallel to PM⁄,
where M⁄ is the projection of point M on the plane orthogonal to nP at point P. It is oriented
in such a way that the scalar product tP � tP�

remains positive at point P, except when
tP � tP� ¼ 0 in which case the orientation of tP

�
is given by PM⁄.

Equations (12) allow the elimination not only of the velocity extension step and the
update phases, but also of the re-initialisation and re-orthogonalisation stages, which results
in a huge decrease of the computational time and increases the stability of the algorithm. This
is further enhanced by the fact that neither the grid projection nor the domain localisation is
necessary anymore. Finally, it must be remarked that Equations (12) can successfully manage
fronts splitting and merging during the propagation (Colombo, 2012).

4. Example of out-of-plane 3D crack propagation

A three-point flexural precracked sample is modelled as shown in Figure 5 (Lazarus,
Buchholz, Fulland, & Wiebesiek, 2008). The crack is initially inclined with respect to the
loading direction, which means that a considerable twisting of the crack surface is observed
thereby enabling the numerical choices we have put in place to be validated in a relevant
way. The crack displays a mixed-mode charge I + II + III with a crack front which twists to
propagate in mode I. This evolution has been modelled in Citarella and Buchholz (2008): a
qualitative evolution of the solution may only be given as the information on the law of

Figure 4. Distance to the crack front. For points that have no projection on the discretised iso-zero
normal level set. (a) Point M has no projection on the crack front. (b) Local base rotation adopted to
correctly calculate the distance of point M to the crack front.
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propagation used in Citarella and Buchholz (2008) is not provided. In that case, in order to
sufficiently refine the mesh around the crack front for fracture mechanics calculations, the
automatic re-meshing procedure of Code_Aster which makes use of Homard software is
employed. This refinement does not concern the level sets calculation grid because that would
not make any improvement, since the interpolation required to go from one grid to the other
would not add any information.

The direction of propagation used in Citarella and Buchholz (2008) is the one given by
the minimum local energy density of Sih (1974). This direction is not influenced by the value
of the KIII stress intensity factor. As a matter of fact, mode III activation is linked to the rota-
tion of the crack front with respect to tP, which cannot be represented by a regular continuous
crack front. Experimental results of Lazarus et al. (2008) show a discontinuous factory roof
profile of the crack front characterising a mode III presence. However, the general evolution
of the crack profile can be obtained with a local criteria of maximum normal stress (Erdogan
& Sih, 1963), similar to the one of Sih (1974), which just takes into account mode I and II.

The advance of crack tips for each calculation step is shown in Figure 6 both for
Code_Aster and for Citarella and Buchholz (2008). Similar trends are observed with crack
fronts which are a little more curved in our case (compare top left of Figure 6 to bottom left
of Figure 6), which could be caused by fatigue material parameters which are slightly
different but not shown in Citarella and Buchholz (2008).

In order to compare the results, the numerical solution has been calculated twice, once
by means of the level set propagation technique presented in Section 2 and once by means
of the geometrical approach presented in Section 3. Concerning the level set propagation
technique, an auxiliary regular grid has been used for the calculations and the updated level
sets have been projected on the finite element mesh. In particular, the update phase has

Figure 5. Crack formation path for a crack inclined at 45° in relation to the axis of a three points
flexural sample. On image (a), the sample is distorted with an amplification factor of five on the
displacements. On image (b) the iso-zero surface of the normal level set can be seen superimposed on
the plane of the initial crack, which means that the twisting of the crack can be seen so that stress in
mode I can be found.
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been carried out by means of the explicit Equations (7); and the re-initialisation and re-
orthogonalisation phases have been carried out by solving the set of the three PDEs (partial
differential equation) (8)–(10) by means of a first-order upwind finite difference scheme, as
detailed in Colombo and Massin (2011).

The solutions obtained with these two numerical techniques are similar. They are shown
in Figure 6. The left part of Figure 6 exhibits crack profiles in vertical sections parallel to the
Y–Z plane, while the right part exhibits crack profiles in horizontal sections parallel to the X–
Z plane; while propagating, the crack initially at 45° re-assumes a 90° orientation. The solu-
tions of Figure 6 in plane Y–Z show that the geometrical approach technique produces smooth
crack fronts, whereas the level set update technique produces minor oscillations, which get
smaller and smaller as the auxiliary grid is refined or as the crack advancement used in the
simulation step is reduced. As already stated in Section 2.1, small errors in the calculation of
crack advancement and velocity at the crack front are amplified far from the front due to the
linear interpolation of the normal velocity (Equation (3)). Small oscillations appear in the re-
calculated values of the level sets between two adjacent points of the grid. Such errors cumu-
late with the propagation steps since the level set is updated for a given step from the values
of the previous step. This is not the case for the geometrical technique, where the level sets
are re-calculated but not updated from a previous propagation step. Moreover, the finite dif-

Figure 6. Crack tips obtained for each propagation step. The results (vertical section on the left Y–Z
and horizontal section on the right X–Z) obtained with Code_Aster are given in the upper section (in the
Y–Z plot on the left, black lines refers to the level set update methodology, grey lines to the re-
calculation methodology, in the X–Z plot on the right the results correspond to the re-calculation) and
those obtained by Citarella and Buchholz (2008) are displayed in the lower section.
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ference scheme used in the level set update technique requires a finer mesh as the value of
the level set gradients increases.

If performances of both the techniques are compared, the computational time required
with the geometrical technique is 70–80% lower or 3–5 times faster than the one required
with the update based on Hamilton–Jacobi equations (see Colombo & Massin, 2011).

5. Conclusions

An overview of different techniques for crack propagation simulation has been presented, with a
crack surface model based on level sets and their update after propagation steps. In particular,
the discussion focused on solutions which can be adopted to solve the drawbacks and the stabil-
ity problems experienced in 3D high kink angle crack propagation simulations. The level sets
geometrical calculation technique presented in Section 3 is the most promising both in terms of
accuracy, robustness and performance. Moreover, it enables the propagation of cracks in sections
with holes, as shown in Colombo (2012), making it possible to automatically manage the divi-
sion of the crack front in several fronts and the merging of several fronts into a single one. This
feature is still the object of ongoing research efforts in order to simulate flawlessly 3D high kink
angles crack fronts dividing and merging. For all these reasons, this methodology will be the
one promoted for crack propagation in Code_Aster in the very next years.

Note
1. The Homard software is a free software, which is part of the software set available with Code_A-

ster. Please see http://www.code-aster.org/outils/homard for further information about this tool.
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