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We present a way to handle contacts between rigid particles in shear flow. The influence of
such a modeling is shown by studying an example with 13 particles in 3D. Studying a
concentrated suspension in 2D, we demonstrate that contact modelling as well as choice of
boundary conditions influences the macroscopic properties of the suspension.

Cet article présente une modélisation du contact entre particules solides dans un écoulement
cisaillé. On montre ici l’importance du modèle de contact sur un cas d’étude 3D compor-
tant 13 particules. Une analyse plus détaillée sur une suspension concentrée 2D montre
l’influence des conditions aux limites et de la description du contact sur le déplacement des
particules et les paramétres rhéologiques des suspensions.
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1. Introduction

In the field of materials forming, as well as in many other industrial fields, determining the
rheological behaviour of dense suspensions remains of great importance. Lots of different
computational methods can be used to handle such fluid–structure interactions but in this
work, we propose to study the behaviour of solid particles in a shear flow with the immersed
domain method. First introduced in the late 1990s by Glowinski, Pan, Helsa, and Joseph
(1999), these methods encounter an increasing success in fluid–structure or multiphase prob-
lems. In this way, the computations are made in a static domain with an Eulerian approach
(each phase being described by a characteristic or level set function).

Before considering a large amount of particles, we explain the methodology on the
description of contact for a few particles in a shear flow. To avoid particle overlapping during
displacement of particles, contact models which handle both inelastic collision and viscous
contact are compared. The later model was introduced by Maury (2007) and has been inten-
sively studied by Lefebvre (2007, 2009) for granular applications.
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We then focused our analysis on the choice of the boundary conditions for describing
dense suspensions in a representative way. We present in detail the way of extending the
computational domain and we focus on the description of sliding biperiodic conditions of
Lees–Edwards (Beaume, 2008; Hwang, Hulsen, & Meijer, 2004; Lees & Edwards, 1972).

In the last part of this article, we present some representative results that confirm the dif-
ferent choices we have done in this study. First, the importance of the contact modelling will
be pointed out with a 3D example of 13 particles in a shear flow. Finally, some examples of
suspensions will also demonstrate the rheological modifications due to the choice of boundary
conditions.

2. Numerical model

In this part, we briefly describe the main features of the numerical model that has been used
for this study. The importance of the contact modelling is therefore explained at the end of
the section.

2.1. The immersed domain approach

The immersed domain method is achieved by splitting the computational domain X into two
subdomains Xf ðtÞ and XsðtÞ, respectively, for the fluid and solid parts (see Figure 1). Note
that, these two subdomains evolve in time (depending on the position of the particles). In the
case of multiple particles, the solid domain is the union of domains corresponding to each

particle, namely XsðtÞ ¼
SN

i XsiðtÞ for N particles. We restrict our study to monodisperse sus-
pensions and all the particles are spheres (or circles) of radius a.

The interface CsðtÞ between the two phases is described by the zero isosurface of a signed
distance function:

aðx; tÞ[0 if x 2 XsðtÞ or \0 if x R XsðtÞ ð1Þ
which allows to define a “smooth” characteristic function:

Iðx; tÞ ¼
¼ 1 if aðx; tÞ[e
¼ aðx;tÞ

e if 0\aðx; tÞ\e
¼ 0 if aðx; tÞ\0

8<: ð2Þ

where e the mixing thickness depends on the mesh size around the interface. In addition, a
global viscosity g is defined thanks to a mixing relation:

Figure 1. Computational domain X and fluid domain Xf with spherical particles; homogenisation is
made on representative elementary volume XREV.
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g ¼ Igs þ ð1� IÞgf ð3Þ

where gf is the fluid viscosity and gs ’ rgf is the solid viscosity (or penalty factor) usually
taken much bigger than gf (r � 103).

2.2. Governing equations

Neglecting inertia and gravity, the fluid–solid problem can be written with the following set
of equations:

r � r ¼ 0; r � u ¼ 0
½½u��Cs

¼ 0; ½½r � n��Cs
¼ 0 on Cs

u ¼ uC on the external boundary C

8<: ð4Þ

where u is the fluid velocity, _�ðuÞ is the rate of strain tensor, r is the stress tensor
(r ¼ 2gf _�ðuÞ � pI for Newtonian fluid, E being the identity matrix), p is the pressure and gf
is the fluid viscosity (the symbol ½½f ��Cs

means the jump of scalar f across the interface Cs).
Patankar, Singh, Joseph, Glowinski, and Pan (2000) have proposed to extend the above
Stokes equation to the solid domain thanks to a Lagrange multiplier by using the rigidity con-
dition _�ðuÞ ¼ 0 on Xs. In this way, the motion in solid domain Xs corresponds to a fluid
motion with an additional stress field. Indeed, if k is the corresponding Lagrange multiplier,
this is equivalent to take the stress tensor r inside the solid domain of the form

r ¼ 2gs _�ðuÞ � pIþ _�ðkÞ ð5Þ

2.3. Weak formulation of the FSI problem

Equation (5) allows us to write the following weak formulation over the whole computational
domain X, where Dirichlet boundary conditions are imposed:

Find ðu; p; kÞ such that 8 ðv; q; lÞ 2 H1
0ðXÞ � L2

0ðXÞ � H1ðXsÞ:

0 ¼ R
X 2g _�ðuÞ: _�ðvÞdX� R

X pr � vdXþ R
Xs

_�ðkÞ: _�ðvÞdX
0 ¼ R

X qr � udX
0 ¼ R

Xs
_�ðlÞ: _�ðuÞdX

8>><>>: ð6Þ

where H1
0ðXÞ is the classical Sobolev space satisfying the Dirichlet boundary condition on C.

This formulation corresponds to an augmented Lagrangian function where k is the Lagrange
multiplier and gs is the penalty factor. This equation is solved using an Uzawa algorithm
(Laure, Beaume, Basset, Silva, & Coupez, 2007).

2.4. Contact modelling

The particles displacement is then achieved by using the velocity of the fluid, solution of
Equation (6) and a Lagrangian approach. Namely the position Xnþ1

i of particle i at time
tnþ1 ¼ tn þ Dt is computed with the second-order Adams–Bashfort scheme:

Xnþ1
i ¼ Xn

i þ
Dt
2

½3Vn
i � Vn�1

i � ð7Þ
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where Vn
i is the velocity of particle i at time tn. Vn

i is computed from the velocity field
obtained by solving Equation (6). It can be shown that, theoretically, using the solutions to
this continuous Stokes problem shall allow to avoid overlappings between the particles.
Indeed, the lubrication force acting on neighbouring particles is sufficient to prevent the
distances to go to zero in finite time. However, since this force becomes singular when
the distance goes to zero, we have to cope with very stiff systems and it has been observed
that numerical overlappings can occur, due to space and time discretisations. In order to avoid
this non-physical behaviour, we used the viscous contact model that has been introduced by
Maury (2007) and Lefebvre (2009), which allows to avoid overlappings and takes the lubrica-
tion forces into account.

This model can be seen as a predictor–corrector model based on the action of the lubrica-
tion force. The predicted velocity, Vn;�

i ¼ uðXn
i ; t

nÞ will be corrected in a way that it satisfies
the non-overlapping condition, namely by solving a least-square problem:

1

2
jVn � Vn;�j2 ¼ min

V2KðXn;cnijÞ
1

2
jV� Vn;�j2 ð8Þ

where K is the space of admissible velocity defined by

KðXn; cnijÞ ¼ V
eDnþ1

ij ðVÞ � 0 8 i; jeDnþ1
ij ðVÞ 	 0 if cnij\0

�����
( )

ð9Þ

where eDnþ1
ij is the estimation at first order and at time nþ 1 of the distance between particle i

and j:

eDnþ1
ij ðVÞ ¼ Dn

ij þ
3Dt
2
ðVj � ViÞ � enij �

Dt
2
ðVn�1

j � Vn�1
i Þ � enij ð10Þ

where eij is the unitary vector connecting the centres of particle i and j. The constraints in (9)
are put in the form of the two inequality in order to introduce two Karush–Kuhn–Tucker mul-
tipliers. Then, the problems (8) and (9) are put in a classical saddle-point form by introducing

two Lagrange multipliers k
ij for each couple ij of particles which satisfy the Kuhn–Tucker

conditions (Kuhn & Tucker, 1951). These two Lagrange multipliers can be linked to lubrica-
tion forces and give the correction for velocities. Their values are obtained using again an
Uzawa procedure (Verdon, Lefebvre-Lepot, Lobry, & Laure, 2010; Verdon, Beaume, Lefeb-
vre-Lepot, Lobry, & Laure, submitted).

With this approach, the contact between particles is then described by the new variable cij
which can be seen as a microscopic distance between particles i and j:

cnij ¼
\0 if there is contact between particles i and j
¼ 0 else

�
ð11Þ

The evolution of cnij is given by the following equation

dcij
dt

¼ � 1

a2
kij with kij ¼ kþij � k�ij ð12Þ

where a is the radius of particles.

400 N. Verdon et al.



Note that the inelastic collisions model can easily be implemented from this model by
imposing cij � 0, that is to say kij[0.

3. Description of boundary conditions

When increasing the concentration of solid particles in a suspension, we notice that the choice
of the boundary conditions becomes of great importance. Indeed, the number of contacts
between particles is also increased and hence the boundary conditions (BC) can affect the
rheology of the suspension. In this section, we present different choices that can be made and
we focus on a Lee–Edwards biperiodic conditions which extends the usual periodic boundary
conditions in the shear direction.

3.1. Representative elementary volume

In the numerical study of suspension, it is important to work on a suitable representative ele-
mentary volume (REV) in order to get suitable macroscopic values. Ideally, we would like to
be able to know the behaviour of suspensions in a large computational domain X with bound-
aries far enough from the domain of interest XREV, as depicted in Figure 1.

Unfortunately, this kind of approach is nowadays very computationally expensive, espe-
cially for 3D simulations. That is why we have to deal with the boundary conditions in order
to have a suitable representative domain. For low concentrated suspension, it is common to
work with a computational domain equal to the REV but if the concentration increases, it is
no more representative. Indeed, in XREV the influence of the particles from the domain
XnXREV are taken into account whereas in a smaller domain such that X � XREV, the parti-
cles near the boundary do not see particles from outside and their computed velocities will be
affected by imposed boundary conditions.

3.2. Extension of the computational domain and sliding biperiodic boundary conditions

In the computational domain X, the velocities on the upper and lower boundaries are hence
imposed in order to get the desired shear rate _c, namely U is equal to 
 _cH=2, where H is
the height of the computational domain. In addition all velocity components normal to the
boundary are equal to zero in order to get a perfect Couette flow. Finally, the computation of
macroscopic variables are made on an unitary square (or cubic) XREV. Initially for dilute sus-
pensions, the computational domain X is equal to representative elementary volume XREV as
dipicted in Figure 2(a). In this case, we impose a “weak” periodic condition on the horizontal
directions. That means that each particle that goes outside the domain through vertical walls
re-enters in the domain from the other side. However, the velocities may be incorrectly esti-
mated, due to the conditions of a null normal velocity and to the fact that we do not take into
account the particles that are outside of XREV but near its boundary. Indeed, although the
motion of particles is periodic, their computed velocities are not. That is why we proposed to
extend the computational domain in the x-direction as depicted in Figure 2(b). In this
extended domain, particles are added by using periodic rules from particles belonging to
XREV. Thanks to this extension, the particles near a boundary of XREV see those from the
opposite side. These additional particles are taken into account for the computation of the
velocity field (Equation (6)) and for the contact modelling. The finite element computations
gives the velocity for each particle inside the REV XREV by a simple interpolation. For the
contact modelling, the velocity of the additional particles are deduced from those inside XREV

by simple rules as explained in next section.
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In practice, we can extend the computational domain as much as we want and kx and ky
are the two real parameters in 2D which characterise the extension of the computational
domain in, respectively, x- and y-direction. Assuming that XREV is an unitary square, kx ¼ 1
and ky ¼ 0 in the configuration in Figure 2(b). Therefore, the domain is extended in x-direc-
tion of length 1 in both sides so that the computational domain is then three times larger than
the original domain XREV. In that case, if a particle is labelled by i, the duplicate particles iþ

and i� which are its x-periodic images are obtained with the following rules in 2D,

if xi þ 1 2 ½1; 1þ kx�; then xiþ ¼ xi þ 1;
if xi � 1 2 ½1� kx; 0�; then xi� ¼ xi � 1;

�
ð13Þ

their vertical components yi
 being unchanged. Figure 3(a) schematically represents the dupli-
cation of two particles for an extension with ðkx; kyÞ ¼ ð1; 0Þ.

With this modification of the boundary conditions, we decrease the influence of the verti-
cal walls on the computation of the velocity. We can precise that only particles inside the ori-
ginal domain are moved. The new particles are introduced just for improving the computation
of the velocity field and their positions are determined only through geometric considerations.

(c)(b)(a)

Figure 2. Extension of the computational domain (XREV is in grey): (a) the computational domain is
equal to representative elementary domain (X ¼ XREV) and ðkx; kyÞ ¼ ð0; 0Þ and (b) the domain
extended in the x-direction CL ðkx; kyÞ ¼ ð1; 0Þ, (c) domain with sliding biperiodic boundary conditions
CL ðkx; kyÞ ¼ ð1=2; 1=2Þ.

(a) (b)

Figure 3. Schematic description of particle duplication: (a) BC with ðkx; kyÞ ¼ ð1; 0Þ and (b) BC with
ðkx; kyÞ ¼ ð1=2; 1=2Þ.
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In order to limit the influence of the horizontal walls, we also carry out biperiodic boundary
conditions such as presented in Figure 2(c). In case of shear flows, the methodology is
slightly different and has to be described more precisely. It is based on the Lees–Edwards’
biperiodic boundary conditions described in Lees and Edwards, (1972) and Hwang et al.
(2004). An example is presented in Figure 3(b): if i and i
 design a particle and its x-periodic
images, the label �i and �i
 design their images by the biperiodic boundary. In order to keep
the shear condition on the upper and lower boundaries of the domain of interest, it is neces-
sary to consider sliding boundary conditions as depicted in Figure 3(b) in which the upper
and lower additional domains move with velocity 
 _c=2, respectively. Then at time tn, the
positions of the duplicated particles are given by

if yi þ 1 2 ½1; 1þ ky�; then ðx�i; y�iÞ ¼ ðxi þ _c
2 t

n; yi þ 1Þ;
if yi � 1 2 ½1� ky; 0�; then ðx�i; y�iÞ ¼ ðxi � _c

2 t
n; yi � 1Þ;

�
ð14Þ

3.3. Computation of the distances between particles

Let us now consider the positions and the velocities of the two particles known at times tn

and tn�1. Using the Adams–Bashforth scheme, we are able to compute the positions of physi-
cal particles at time tnþ1 as follows:

Xnþ1
i ¼ Xn

i þ
Dt
2
ð3Vn

i � Vn�1
i Þ ð15Þ

and the positions of the corresponding images are computed with the velocity of physical
particles:

Xnþ1
i
 ¼ Xn

i
 þ Dt
2

ð3Vn
i � Vn�1

i Þ for the images in x-direction ; ð16Þ

Xnþ1
�i ¼ Xn

�i þ
Dt
2
ð3Vn

i � Vn�1
i Þ for the biperiodic images ð17Þ

For the gluey contact model, the condition that must be fulfilled in order to avoid the
overlapping is the following:

D ¼ minðDij;Dij;Dij
Þ � 0 ð18Þ

So, we have to compute the distances between the particles. Using (14), (16) and (17),
we obtain the following relationships:

Dnþ1
ij ¼k XiXj kn þ�t

2
ðð3Vn

j � Vn�1
j Þ � ð3Vn

i � Vn�1
i ÞÞ � eij ð19Þ

Dnþ1
i�j ¼k XiX�j kn þ�t

2
ðð3Vn

j � Vn�1
j Þ � ð3Vn

i � Vn�1
i Þ 
 _c � exÞ � eij ð20Þ

Dnþ1
ij
 ¼k XiXj
 kn þ�t

2
ðð3Vn

j � Vn�1
j Þ � ð3Vn

i � Vn�1
i ÞÞ � eij ð21Þ

In the numerical procedure, the distances between physical particles and all images are
computed in order to take into account the minimum value in the contact model.
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4. Numerical rheology

As explained in the introduction, determining rheological properties of dense suspensions
remains important for many applications (Lefebvre & Maury, 2005). For this purpose, we
present here the way of calculating the macroscopic variables from our computations. Let us
first note hXiX the mean value of X at time t over X. We have:

hXiX ¼ 1

X

Z
X
XðxÞdX ð22Þ

By taking the mean value of the stress tensor r using (22), one gets:

hriX ¼ hrf iX þ hrsiX with
hrsiX ¼ 2gsh _eðuÞiXs

� hpiXs
Id þ hkiXshrf iX ¼ 2gf h _eðuÞiXf

� hpiXf
Id

�
ð23Þ

where hrsiX and hrf iX are, respectively, the solid and fluid mean stress tensors.
Theoretically, the xy-component of the mean stress tensor in the suspension is given by:

hrxyiX ¼ 2geff h _eðuÞxyiXf
ð24Þ

which allows us to write the effective viscosity as follows:

geff ¼
hrxyiX
h _ciX

ð25Þ

5. Results

In previous papers (Coupez et al., 2010; Verdon et al., 2010; Verdon et al., submitted), we
analysed the reversibility of Stokes equations with two particles in 2D and 3D and we have
studied interaction between three particles in a shear flow. These previous studies have
allowed to fix some numerical parameters: a penalty factor is 10 times the fluid viscosity,
eight Uzawa iterations are taken and the mesh is refined around the interface up to 10�3. In
the following, we study particle motions for more important concentrations.

5.1. Influence of the contact model

The example presented here is the motion of 13 particles of radius a ¼ 0:05 in a 3D shear
flow. Initially, the particles are located very close from each other (the compactness is close
to 0:74) in order to have as many contacts as possible. Figure 4 shows the evolution of the
particles trajectories in the ðx; yÞ plane up to t ¼ 12:5 s (around 2 days on 16 cores).

This figure emphasises the differences induced by choice of the contact model: whereas
the particles remain stuck during the whole computation with the viscous contact model, after
a few time steps the cluster of particles disappears with the inelastic collisions model and the
particles move away. This is due to the physical nature of the contact models. For the inelas-
tic collisions, the value kij of the Lagrange multiplier can be only positive which means that
it acts like a repulsive force between particles. Otherwise, in the viscous model, kij can be
either negative or positive, which indicates it acts like a lubrication force: an attractive force
is exerted on the particles when they go away from each other.
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5.2. Influence of the boundary conditions

In this section, we study the rheological behaviour of a 2D suspension of concentration
c � 0:24 with computations for the three different boundary conditions. Figure 5(a) presents
the time evolution of the effective viscosity whereas Figure 5(b) shows the position of the
particles at t ¼ 25 s. Figure 5(a) shows a rather large variation of the instantaneous effective
viscosity and therefore its temporal mean value hgeff it is used to look at the influence of
boundary conditions. Figure 5(b) points out that boundary conditions can significantly affect
the trajectories of the particles and hence the rheology of the suspension. Indeed, the biperi-
odic conditions limit the influence of the upper and lower walls, so that after 25 s the effec-
tive viscosity is lower (hgeff it � 1:766) than for the two other boundary conditions for which
they are hgeff it � 1:769 and hgeff it � 1:81 for BC (1/2, 0) and (0, 0), respectively. Moreover,
for boundary conditions (0, 0), there is a minor difference between viscous and inelastic con-
tact as the apparent viscosity is 1.778 for inelastic contact. At last, the computed values are
far from empirical ones (� 2:1–2:5), which emphasises the importance of 3D effects that are
neglected in this study.

(a) (b)

Figure 4. Influence of the contact modelling for the 13 particles. The trajectories of particles in ðx; yÞ
plane: (a) viscous contact and (b) inelastic collisions.

Figure 5. Influence of the boundary conditions for the 2D suspension of concentration c � 0:24.
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6. Conclusions

Throughout this article, we pointed out the importance of contact modelling as well as the
choice of well-suited boundary conditions. The 13 particles example shows a real big differ-
ence in the motion of the particles between the two implemented contact models whereas the
2D suspension example insists on the importance of the boundary conditions. The identifica-
tion of the rheological parameters indicates that biperiodic boundary conditions limit wall
effects that could be an advantage for future computations of dense suspensions. However, in
our example, the influence of boundary conditions and contacts does not appear very signifi-
cant. Nevertheless, we repeat here that these are just preliminary results, and in the future 3D
computations for higher concentration are mandatory for understanding the real behaviour of
suspensions.
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