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We present here a finite element (FE) model for the efficient modelling of deep drawing and
crashworthiness simulation of multi-material structures. The multi-layered continuum FE is
formulated in large strains with normal and transverse shear stresses to model effectively the
behaviour of a wide variety of structures from very thin, thick and volumetric 3D. The FE
model is implemented in LS-DYNA code, in its implicit and explicit formulations, using a
2� 2 integration in the shell plane for each layer, respectively and an arbitrary number of
integration points in thickness direction. Numerical examples are presented and compared to
experimental measurements to demonstrate the effectiveness of the present FE model.

Nous présentons ici un modèle FE pour la modélisation efficace de l’emboutissage et du
crash de structures multi-matériaux. Le modèle EF multicouches est formulé en grandes
déformations avec prise en compte de la déformation transverse et des déformations de
cisaillement ce qui permet de modéliser efficacement le comportement d’une grande variété
de structures allant de très mince, à volumétrique. Le modèle FE est implémenté dans le
code LS-DYNA, à la fois en statique implicite et en dynamique explicite, en utilisant une
intégration 2x2 dans le plan moyen de chaque couche et un nombre arbitraire de points
d’intégration dans le sens de l’épaisseur. Des exemples numériques sont présentés et com-
parés aux mesures expérimentales pour démontrer l’efficacité du modèle FE proposé.
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1. Introduction

The continuum elements are increasingly used for simulation of industrial applications such
as forming and crashworthiness analysis. These elements can better describe the normal stres-
ses in the thickness direction than classical thick shell elements where normal stress is zero
since plane stress assumption is often used (Hannachi, Naceur, & Batoz, 2007). Moreover,
continuum elements have only translational degrees of freedom, which reduce the complexity
of rotational degrees of freedom. On the other hand, the total computation time needed by the
use of such elements is reasonable when compared to standard brick 3D models (Shiri, Nac-
eur, & Roelandt, 2009).

Sze and Ghali (1993) and Domissy, Bouabdallah, and Batoz (1995) are probably the first
authors to suggest a solid-shell approach for the analysis of plates and shells. Since that time,

*Corresponding author. Email: hakim.naceur@univ-valenciennes.fr

European Journal of Computational Mechanics
Vol. 21, Nos. 3–6, June–December 2012, 351–364

ISSN 1779-7179 print/ISSN 1958-5829 online
� 2012 Taylor & Francis
http://dx.doi.org/10.1080/17797179.2012.714852
http://www.tandfonline.com



solid-shell concept has gained enormous contributions and models are continuously under
improvements. Many recent works such as Harnau and Schweizerhof (2006), Hannachi et al.
(2007), Quy and Matzenmiller (2008), Nguyen, Pham, Hogge, and Ponthot (2008), Shiri
et al. (2009) and many others, who propose different techniques to carry out the general for-
mulation of solid-shell finite element. They also deal with their application in the general
structural mechanics with both linear and geometrical non-linear behaviour. However, they
limit their validations to academic application such as plates, cylinders and spherical shells.

The objective of this work is the development of a numerical approach for the modelling of
multi-layered structures and the identification of their behaviour in deep drawing and crashwor-
thiness simulation. In order to achieve this goal, it was chosen to use a multi-layered multi-
material solid-shell finite element in large strains with normal and transverse shear stress to
model effectively the behaviour of complex structures containing a level of non-linearities
(Shiri et al., 2009). As a first attempt, we present an efficient hexahedral solid-shell element for-
mulation for analysis of large deformable multi-layered shell structures with non-linear materi-
als, using the first-order equivalent single-layer approach. This model uses 2� 2 integration in
the shell plane for each layer and an arbitrary number of integration points in thickness direc-
tion. Thus, highly non-linear stress states over the sheet thickness can be incorporated in an
efficient way. A particular attention will be given to the problems of numerical locking.

The element formulation and material model have been implemented into LS-DYNA
commercial code (Hallquist, 2001) by means of the user-defined elements (UEL) interface.
Numerical examples involving explicit dynamic analysis of multi-layered structures with both
material and geometric non-linearities are presented and compared with experimental results
to demonstrate the accuracy of the present methodology.

Figure 1. Kinematic description of the 3D shell.
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2. FE formulation of the eight-node hexahedron

2.1. Kinematics of solid-shell model

In this section, the formulation of the eight-node solid-shell element is briefly recalled (for
more details, see Hannachi et al., 2007). With respect to nodal designation, the coordinate
vector X and displacement vector Uq of the element are (Figure 1)

x ¼ x0ðn; gÞ þ f
2
xnðn; gÞ ¼

X4

i¼1

Niðn; gÞ 1� f
2

x�i þ 1þ f
2

xþi

� �
ð1Þ

u ¼ u0ðn; gÞ þ f
2
unðn; gÞ ¼

X4

i¼1

Niðn; gÞ 1� f
2

u�
i þ 1þ f

2
uþ
i

� �
ð2Þ

where Ni are the 2D isoparametric Lagrangian interpolation functions, n, g and f are curvilin-
ear coordinates, x�i , u

�
i and xþi , u

þ
i are, respectively, the coordinate and displacement vectors

of the ith node on the bottom and top shell surfaces (Figure 1).
In this work, linear, isoparametric hex-shell elements are used with bilinear interpolation

in membrane and linear interpolation in thickness direction. The displacement gradient in the
cartesian framework is obtained from its image in the parametric description

L ¼ Lf F
�1
f ð3Þ

Lf and Ff are the displacement gradient tensor and the deformation gradient tensor, respec-
tively, they are expressed in the parametric space, and are given by

Lf ¼ ½u;n
..
.
u;g

..

.
u;f�

Ff ¼ ½a1f ..
.
a2f

..

.
a3f�

ð4Þ

with the contravariant basis vectors a1f ¼ ~x;n þ 1
2f V;n, a2f ¼ ~x;g þ 1

2f V;g and a3f ¼ 1
2f V.

Cartesian components of the Green–Lagrange strain tensor E can be related to the curvi-
linear strain tensor Et using the orthonormal transformation operator Q ¼ ½t1f ..

.
t2f

..

.
nf�, it can

be also connected to the covariant basis En, using

Et ¼ QT E Q E ¼ F�T
f En F

�1
f ð5Þ

Using Equation (5), one can obtain a direct relationship between curvilinear and the covariant
strains:

Et ¼ CT
f En Cf ð6Þ

with Cf ¼ F�1
f Q. The covariant Green–Lagrange strain tensor is then given by

En ¼ FT
f Lf þ LT

f Ff þ LT
f Lf ð7Þ
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2.2. Weak formulation

In order to deal with the several lockings, we need to separate the expression of virtual inter-
nal work by uncoupling the membrane/bending, transverse/thickness and shearing (Hannachi
et al., 2007).

Wint ¼
Xnelt
e¼1

W e
int; We

int ¼ Wmb
int þ W tr

int þ W sh
int ð8Þ

Wmb
int ¼

Z
V 0

dEmb Smb dV ¼ duT fmb
int ; fmb

int ¼
Z
V 0

BT
mb Smb dV ð9Þ

W tr
int ¼

Z
V 0

dEtr Str dV ¼ duT f trint; f trint ¼
Z
V 0

BT
tr Str dV ð10Þ

W sh
int ¼

Z
V 0

dEsh Ssh dV ¼ duT f shint; f shint ¼
Z
V 0

BT
sh Ssh dV ð11Þ

with E, the Green–Lagrange strain tensor split into three components Emb ¼\E11 E22

2E12[, Etr ¼\E11 E22 E33[, Esh ¼\2E13 2E23[. The second Piola-Kirchhoff stress tensor
S is also decomposed into three parts Smb ¼\S11 S22 S12[, Str ¼\S11 S22 S33[ and
Ssh ¼\S13 S23[. The internal force vector on the element level is then given by

fuint ¼ fmb
int þ f trint þ f shint ð12Þ

A solid-shell element formulated using Equations (9)–(11) with standard integration based on a
2� 2 Gauss scheme in the in-plane of the shell element will fail because of numerous locking
phenomena.

2.2.1. Remedies for shear locking

An effective method of resolving shear locking is the assumed natural strain (ANS) method
in which the natural transverse shear strains are sampled and then interpolated at some dis-
crete element points with a specific order (Dvorkin & Bathe, 1984; Batoz & Dhatt, 1992).

The transverse shear strains Enf and Egf are calculated according to the average surface
plan (f=0), assuming that they vary linearly (Equation (13)), and are functions of En and Eg

at the mid-side points (see Figure 2(a)).

Figure 2. ANS method: (a) shear locking treatment and (b) trapezoidal locking treatment.
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nf ¼ 1� g
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2
EB2
g ð13Þ

The covariant components of the Green–Lagrange shear strain components are given by

2EA1
n ¼ a1f � u;f þ a3f � u;n þ u;n � u;f with ðn ¼ 0; g ¼ �1; f ¼ 0Þ

2EA2
n ¼ a1f � u;f þ a3f � u;n þ u;n � u;f with ðn ¼ 0; g ¼ þ1; f ¼ 0Þ

2EB1
g ¼ a2f � u;f þ a3f � u;g þ u;g � u;f with ðn ¼ �1; g ¼ 0; f ¼ 0Þ

2EB2
g ¼ a2f � u;f þ a3f � u;g þ u;g � u;f with ðn ¼ þ1; g ¼ 0; f ¼ 0Þ

ð14Þ

In Equation (11), the shearing strains Esh are substituted by the new ANSs EANS
sh given by

Equation (13), thus the internal force vector due to shearing stresses takes the following
expression:

f shint ¼
Z
V 0

BANST

sh Ssh dV ð15Þ

For the numerical evaluation of the integral in Equation (15), we use a 2� 2 Gauss inte-
gration scheme in the element plane.

2.2.2. Remedies for trapezoidal and volumetric locking

Similar to shear locking, trapezoidal locking occurs when lower order elements such as eight-
node hexahedral elements are used to model curved shells so that their cross-sections assume
the trapezoidal shape. These excessive number of sampled thickness strains can be reduced
by using a bilinear interpolation of the transverse normal strains sampled at the four corners
of the element mid-surface (see Figure 2(b)), namely

EANS
ff ðn; gÞ ¼

X4

i¼1

Niðn; gÞ Efðni; giÞ ð16Þ

Volumetric (or material) locking is controlled by a material parameter, the Poisson ratio m.
Poisson’s ratio coupling requires the thickness strain to be a linear function of f. Because our
solid-shell element has only two layers, as a consequence the thickness strain does not vary
with f thus the element fails in reproducing the plane-stress condition.

To overcome this problem, the transverse strain is enhanced, by introducing a linear varia-
tion in f, leading to the so-called enhanced assumed strains, namely

~EEAS
ff ðn; g; fÞ ¼ EANS

ff ðn; gÞ þ a f t33 ð17Þ

where a represents an additional internal parameter which will be eliminated by special con-
densation technique on the element level, t33 is required for transformation to the local ele-
ment coordinates. An additional condition has now to be satisfied locally, leading to the
increment of the additional degrees of freedom.

@Wint

@u
Duþ @Wint

@a
Da ¼ �Wintðu; aÞ ð18Þ
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On the element level, the internal virtual work can now be computed with the compatible
and the enhanced strains as in Equation (18).

Wint ¼
Xnl
i¼1

Z
n

Z
g

Z fiþ1

fi

ðdEmb Smb þ dEEAS
tr Str þ dEANS

sh SshÞJdndgdf ¼ duT f eint ð19Þ

nl is the number of layers and fi is the transverse reference coordinate of the ith layer along
the cross-section of the element.

In the context of modelling multi-layered composite materials using solid-shell elements,
there exist two possibilities regarding the numerical implementation:

• Case of one element per layer: This is the easiest way for modelling the entire thick-
ness of the structure using several elements (one element per layer) see Figure 3(a). In
this case the numerical implementation of the model is straightforward and does not
require any efforts in the implementation compared to the case of isotropic material
modelling. The user has to provide the following basic properties:

(1) Declaration of n groups of different elements in the FE mesh, the groups corre-
spond to the n different layers constituting the laminate.

(2) Provide the physical characteristics of the layer.

• Case of several layers per element: This second technique consists of stacking directly
the different layers within the same element (see Figure 3(b)). Each FE is a stack of
several layers, thus stress calculation and numerical integration of the internal force
vector is carried out using the single-layer approach (identical to that commonly used
for integration of plasticity). In the present investigation, this second method has been
chosen and implemented because it is more general and more convenient since it
requires only one element in the thickness of the structure (gain of computing time in
the case of industrial applications).

In this case, the numerical implementation of the FE model requires some modifications of
the stresses calculation and the integration of the internal force vector. For each FE, the user
has to provide the following basic properties:

(1) Declaration of n groups of the different materials, the n groups correspond to the
different layers constituting the multi-layer structure.

Figure 3. Composites modelling using solid-shell elements: (a) one element per layer and (b) several
layers per element.

356 S. Shiri et al.



(2) Provide the physical characteristics for each material.
(3) Provide for each layer i, the thickness hi (with

Pn
i¼1 h

i ¼ h total thickness of the
structure).

The numerical implementation is as follows, for example, the membrane/bending internal
force vector, we have:

fmb
int ¼

Z
A

Xnl
i¼1

Zz¼þhi
2

z¼�hi
2

BT
mb Smbdz

0
BB@

1
CCAdA ð20Þ

where nl is the number of layers, hi represents the layer thickness and h is the total thickness
of the structure.

Equation (20) implies that for each layer of material, all operators are reported to the mid-
plane of the layer then performs the numerical integration using Lobatto integration scheme
with N points through the thickness. This operation is repeated for each layer, to cover the
total thickness of the structure.

3. Numerical applications

3.1. Bending of cantilever beam

We consider in this very simple application, a benchmark for shear locking, well known from
static analyses – the clamped cantilever beam with tip load – the geometrical and material
parameters are given in Figure 4.

This benchmark is used to demonstrate the efficiency of the proposed solid-shell element
compared to other classical solid elements regarding the shear locking phenomenon. To this
end, the beam thickness is varied from L=h ¼ 1� 1000, which allow us to show the ability
of the proposed solid-shell element, to model both 3D solids as well as thin shell structures
without suffering from any shear locking effects.

The numerical solution of the beam bending problem was carried out using three different
FE models: a 1-point integration hexahedron element (ELFORM01 of Ls-dyna code), a full
integration hexahedron element (ELFORM02) and the proposed solid-shell FE model.

Table 1 shows the deflection solution obtained by the three models, function of the mesh
refinement in both directions of the beam (length and thickness). First, we can observe from
Table 1, that the proposed model gives very good results for the case of 3D solids even with
few elements. When the ratio L/h increases, the structure becomes thinner, the proposed
model keeps the same accuracy of solution, while the solution of the two other solid elements
exhibit shear locking phenomenon.

Figure 4. Test for shear locking; cantilever with tip load, varying L=h ¼ 1� 1000.
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3.2. Wagoner deep drawing benchmark

This benchmark was proposed by Lee, Wagoner, and Nakamachi (1990), it consists of the
stretching analysis process of a thin sheet by a hemispherical punch. The final shape of the
sheet is a hemisphere of radius 59.18mm and depth 40mm. All geometrical and material data
can be found in Lee et al. (1990). Due to symmetry conditions, only a 1/4 of the blank is
modelled, only 500 solid-shell elements are used for the discretisation of the 1/4 of blank,
with only one solid-shell element in the thickness (Figure 5(a)). The deep drawing simulation

Table 1. Comparison of beam deflection obtained numerically to the analytical solution.

nb elem ELFORM01 ELFORM02 Present model Analytical

L� h� b L/h= 1 (3D solid structure)
1� 1� 1 4.245 .816 .733 1.000
5� 5� 5 1.162 1.005 1.013 1.000
10� 10� 10 1.097 1.010 1.009 1.000
20� 20� 20 1.040 .995 1.002 1.000

L/h = 10 (thick shell structure)
1� 1� 1 7.281 .026 .749 1.000
10� 1� 1 9.829 1.197 .995 1.000
20� 2� 1 1.283 .976 .997 1.000
30� 3� 1 1.106 .983 1.000 1.000

L/h = 100 (thin shell structure)
1� 1� 1 7.331 .000 .750 1.000
10� 1� 1 9.899 .026 .997 1.000
20� 2� 1 1.277 .095 .999 1.000
30� 3� 1 1.099 .189 1.000 1.000

L/h = 1000 (very thin shell structure)
1� 1� 1 7.322 .000 .749 1.000
10� 1� 1 9.900 .000 .998 1.000
20� 2� 1 1.275 .001 .999 1.000
30� 3� 1 1.098 .002 1.001 1.000

Figure 5. (a) Tools and blank mesh at the initial configuration and (b) effective plastic strain
distribution.
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has been carried out using our model in its explicit dynamic version. Plastic strain distribution
at the final deformed state is given in Figure 5(b).

Figure 6(a) shows the evolution of the total punch force in function of the stroke. As we
can observe, the obtained force is in good agreement with the reference solution. Also the
final thickness strain distribution along the initial radius is plotted in Figure 6(b) and
compared to the reference solution as well as to the numerical solutions obtained using the
Belytschko-Tsay (BT) shell elements and solid elements of Ls-dyna code. As we can observe,
the present solid-shell element allows a good transverse strain estimation using only one
element through the thickness.

3.3. S-rail deep drawing

The S-rail benchmark problem corresponds to one of the benchmarks proposed in
NUMISHEET’96 (Lee, Kinzel, & Wagoner, 1996). The drawn part selected for this

Figure 6. Principal results: (a) total punch force evolution and (b) thickness strain distribution along
the radius.

Figure 7. S-rail benchmark: (a) tools FE mesh and (b) punch force vs. stroke.
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benchmark contains combined bending and drawing zones, but the controlling of wrinkling
and springback is a key problem.

The geometrical data of the tools can be found in Lee et al. (1996). Figure 7(a)
shows the mesh used for the tools. The punch travel is 37mm and the blank sheet of
1mm thickness is made of Al6111 – T4. The material data used in this simulation are
the same as the one used in the experiment by ALCOA (Young’s modulus 69GPa,
Poisson ratio .3 and the hardening parameters A= 368MPa, B = 207MPa, and
C = 9.74MPa).

The deep drawing simulation is carried out using the implicit static version of the
developed model using 6631 solid-shell elements with only one element in the
thickness.

Figure 7(b) shows the punch force vs. the stroke, as we can notice that the obtained result
from numerical simulation is situated within the two experimental border curves (extreme
measurements), which indicated the effectiveness of the proposed FE model even if we use a
quite coarse mesh.

Figure 8. Plastic strain distribution – multiple configurations.

Figure 9. Impact force evolution vs. time.
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3.4. Tube crush impacted by a moving wall

This application was introduced by Reid (2001), it consists of a tube of rectangular symmetri-
cal cross-section which is impacted by a rigid wall of 800 kg with an initial speed of 8.94m/s
during 15min.

All geometric and material data can be found in Reid (2001). Due to the symmetry, only
1/4 of the tube is modelled with only 467 solid-shell elements. Numerical simulations of
crushing are performed using our model in its explicit dynamic version.

Figure 8 shows different deformed configurations with the equivalent plastic strain distri-
bution at different time increments during lobes formation.

Figure 9 shows the normal impacting load, compared to those obtained by LS-DYNA
classical models: B-T shell four-node shell element and the eight-node solid fully integrated.
As we can notice, the obtained result matches those of LS-DYNA models, which indicates
the efficiency of the proposed model.

3.5. Draw bending of double curved Al/PP/Al sandwich sheet

In this section, the draw-bending process of a sandwich sheet which includes two face sheets
and a low-density core material (Figure 10) is investigated. This example is taken from the
investigation described in Parsaa, Nasher al ahkamia, and Ettehadb (2010). The double curva-
ture forming consists of bending the sheet with different curvatures at different directions as
shown in Figure 10. The dimensions of the tools used in the numerical simulations are given
in the above mentioned reference.

A three-ply sandwich sheet composed of aluminium alloy 3105 as face sheets and poly-
propylene as core material was considered as a blank sheet. The hardening behaviour of both
aluminium and polypropylene sheet material was assumed to obey Hollomon law rp ¼ Kenp.
The material properties of the used sandwich constituents are given in Table 2. Initial blank
size was 100� 100mm. The thickness of the sandwich layers is .48mm for the aluminium
alloy and 1.04mm for the polypropylene.

Within the free bending process, the workpiece originally resting on the die is undergoing
bending by pressing the sandwich sheet with an upward moving punch travelling with a con-
stant speed of 5mm/s against the edges of the die. The maximum punch stroke was 24.5mm.

The FE discretisation of the sandwich sheet in thickness direction is done using three dif-
ferent ways of modelling as shown in Figure 11.

Figure 10. Schematics of the considered models for FEM analysis: different ways of modelling.

Table 2. Material properties of the used sandwich constituents in modelling.

Material q (g cm�3) E (GPa) m ry (MPa) n K (MPa)

Aluminium 3105 2.7 70 .33 27 .23 169
Polypropylene 1.0 15 .3 15 .14 39

European Journal of Computational Mechanics 361



• The introduced eight-node layered solid-shell element with only one element in the
thickness direction.

• The standard multi-layered BT shell element with one integration point per layer.
• The standard one-point hexahedrons with three elements in thickness direction (one ele-

ment per layer).

The effect of element size on computational results and CPU time was checked and elements
size of 1�1mm showed a reasonable result for all simulations. The evolution of the punch
force as well as the final geometry of the sandwich sheet are investigated. The obtained
results with the present multi-layered solid-shell model are compared to the experimental
results reported in Parsaa et al. (2010). Also, the layered solid-shell solution was compared
with the standard reduced integration hexahedron, multi-layered shell element of Ls-dyna
solutions.

During bending, aluminium sheet layers and polymer materials with high radius of curva-
ture are in the elastic–plastic state. Figure 11 compares the final geometries of deformed sand-

Figure 11. Final geometry: (a) numerical solution using proposed element and (b) experimentally
formed sandwich sheet.

Figure 12. Total punch force evolution comparison numerical vs. experiments.
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wich sheet predicted by numerical simulation using present solid-shell and obtained experi-
mentally. As shown, there is a good agreement between experimental and simulation results.

The comparison between the simulation and the practical results from the test, in terms of
punch load-displacement can be observed in Figure 12. As shown, the simulations curves fol-
low the same trend predicted by experimental measurement.

The present result shows good performance of current layered solid-shell element which
can represent different material layers’ variable thickness inside one element with multiple
integration points through the thickness. This may explain the differences between the numer-
ical results, which are shown in Figure 11, especially for the zone of curves where the load
rises sharply with the displacement and influenced by the developing and spreading of the
plastic zone in the sandwich sheet.

4. Conclusion

In this paper, an efficient eight-node solid-shell element formulation for the analysis of multi-
layered structures is presented. While the ANS method has been used in order to remedy to
shear locking, the enhancement of transverse normal strain is adopted, thus full 3D aniso-
tropic constitutive models are incorporated without resorting to the plane-stress assumption.
The present formulation can predict the through-thickness effects with a high degree of
accuracy. Due to the absence of rotational degrees of freedom as an alternative to the shell
element, the present solid-shell element can be easily used in modelling shell structures. By
defining several layers inside one layered element, number of elements through the thickness
is remarkably reduced and significant computational time can be saved by avoiding the calcu-
lation of element stiffness matrix for each layer.

In fact, to model each ply with one solid element leads to undesirably big models and is
impractical for large structures. Modelling sandwich structures with standard multi-layered
shell elements, which neglect the normal stresses, will produce inaccurate results in transverse
normal direction. Thus, present model which gives full 3D strain and stress field representa-
tion and combines the advantages of shell and solid elements, is a promising alternative for
modelling layered structures.
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