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This paper deals with the numerical simulation of combined cycle fatigue, which is charac-
terised by two periodic loads, whose frequencies are very different one from the other.
Rather than using classical fatigue life estimations, a time transient evolution model is
solved using a periodic time-homogenisation method. This latter is based on the assump-
tion that the time scales associated with the two periodic loads are decoupled. Different
results on academic as well as industrial examples are presented. An extension of the pro-
posed method up to three time scales is eventually proposed in order to speed up the
numerical simulations.

On considère ici la simulation numérique de la fatigue à cycles combinés (CCF),
caractérisée par deux chargements périodiques de fréquences très différentes. Plutôt que
d’utiliser les méthodes classiques de durée de vie en fatigue, on souhaite utiliser un modèle
temporel d’évolution dont l’exploitation numérique est rendue possible par une méthode
d’homogénéisation périodique en temps. Cette méthode repose sur une hypothèse de sépa-
ration des échelles de temps liées aux deux chargements périodiques. Différents résultats
surdes exemples académiques et industriels sont présentés. Une extension de la méthode à
trois échelles de temps est enfin proposée afin d’accélérer encore plus les calculs.
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1. Introduction

This paper aims at the numerical simulation of combined cycle fatigue (CCF), which is char-
acterised by two periodic loads acting on the studied structure. Usually the frequencies associ-
ated with these two loads are very different one from the other. Since the classical fatigue life
estimations do not allow to accurately take into account the chronology of the applied cycles,
or the inertia effects associated with the fast cycles, it seems more relevant to use a time tran-
sient evolution model describing how internal variables such as plastic strain evolve with
respect to time. Because of the significant difference between the two loading frequencies,
such a numerical simulation would be too costly as is. Therefore, a periodic time-homogeni-
sation strategy was proposed in Guennouni (1988), Guennouni and Aubry (1986) in the case
of quasistatic problems. This strategy was inspired from classical schemes used in space
homogenisation (Bensoussan, Lions, & Papanicolaou, 1978; Sanchez-Palencia, 1980). Since
then, similar concepts have independently emerged: ‘Oscillatory Stroboscopics’ (Blekhman,
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1994) or multiple scales homogenisation (Chen & Fish, 2001) and have led to various appli-
cations. For example, extensions to the estimation of damage rather than plasticity have also
been proposed in Devulder, Aubry, and Puel (2010), Oskay and Fish (2004). More recently,
whereas the other references only dealt with quasistatic studies, the time-homogenisation strat-
egy presented here has been extended in dynamics and validated on academic examples
(Aubry & Puel, 2010). The aim here is to apply this strategy on an actual specimen geometry,
whose number of degrees of freedom is very high. The specimen proposed here comes from
the European project PREMECCY dealing with CCF in aeronautics.

2. Basis of the time-homogenisation method

The time-homogenisation method aims at the effective numerical simulation of a structure under a
high number of loading cycles, when the associated material behaviour is described by a time tran-
sient model. Even if, similarly to Guennouni (1988), Guennouni and Aubry (1986), this method is
briefly presented here in the case of a generic viscoplastic behaviour, it is described in its extension
to dynamics, proposed in Aubry and Puel (2010), which takes inertia effects into account.

2.1. Time scales

A CCF loading is assumed: typically, two periodic loads with very different frequencies are
simultaneously applied to the studied structure. Two time scales are then defined:

• a slow time scale, denoted t, associated with the low-frequency load F and
• a fast time scale, denoted s, associated with the high-frequency load F=n.

The ratio n ¼ t=s is assumed small enough so that these two time scales could be considered
as independent one from the other. In this case, any time-dependent variable a can be written
as a function of both time scales, and its time derivative leads to:

da
dt

¼ @a
@t

þ 1

n
@a
@s

¼ _aþ 1

n
a0 ð1Þ

where da=dt, _a and a0 stand for the total time derivative, the partial time derivative with
respect to the slow time scale t and the partial time derivative with respect to the fast time
scale s, respectively.

In addition, it is also assumed that any time-dependent variable aðt; sÞ is periodic with
respect to the fast time scale s. This so-called ‘quasiperiodicity’ assumption is all the more
justified as the ratio n is small, and can then be written as:

aðt; sÞ ¼ a t; sþ n
F

� �
8t; s ð2Þ

Eventually, the fast time scale averaging of variable aðt; sÞ is introduced in order to pass
from the fast to the slow time scale:

hai ¼ F

n

Z n
F

0

aðt; sÞ ds

The consequent homogenised quantity hai is a function of the slow time scale t only. The
residual associated with this averaging is denoted a� ¼ a� hai, and depends on both time
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scales t and s. Moreover, with the previous notations, it is possible to find an equivalent
expression for the quasiperiodicity assumption (2):

ha0i ¼ 0 ð3Þ

2.2. Asymptotic expansion of the mechanical problem

Any field from the solution of the mechanical problem (displacement uðx; t; sÞ, stress
rðx; t; sÞ, total strain eðx; t; sÞ and plastic strain epðx; t; sÞ) is assumed to be written in
terms of an asymptotic expansion with respect to n. For example, the stress field is expressed
as:

rðx; t; sÞ ¼ r0ðx; t; sÞ þ nr1ðx; t; sÞ þ Oðn2Þ ð4Þ

The mechanical problem consists of solving, in the domain � associated with the studied
structure, the following equations (along with null initial conditions):

Divxrþ fb ¼ q
d2u

dt2
ð5Þ

r ¼ Cðe� epÞ ð6Þ

e ¼ 1

2
ðDxuþ Dxu

TÞ ð7Þ
dep

dt
¼ aðrÞ ð8Þ

where q, C and a stand for the mass density, the (linear) elasticity tensor and a generic (non-
linear) operator describing the material evolution law. Divx and Dx are the divergence and the
gradient operators, respectively. fbðx; t; sÞ is the body force defined in the domain �,
whereas f sðx; t; sÞ is the surface force applied to its boundary @�:

r n ¼ f s ð9Þ

where n is the unit outer normal defined at each point of @�. Without loss of generality, it
can be considered that the surface force is applied only to a part of the boundary @�, and that
a given displacement is imposed on the complementary part.

Asymptotic expansions similar to (4) are used for each calculated field, and are introduced
in Equations (5)–(9). By using the total differentiation rule (1), equations with the different
powers of n are obtained. For example, the evolution Equation (8) gives, up to order one:

1

n
ep00 þ ð _ep0 þ ep01 Þ þ nð _ep1 þ ep02 Þ þ Oðn2Þ ¼ aðr0Þ þ nDraðr0Þr1 þ Oðn2Þ

with Draðr0Þ the gradient of a expressed at r0. With the assumption of decoupled scales
(n � 1), it can be written that, in any of these equations, the equalities have to stand for each
order of n independently from the other orders, leading to the equations detailed in Sections
2.4 and 2.5.
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2.3. Asymptotic expansion of the dynamic equilibrium equation

Here is the detailed asymptotic expansion of the dynamic equilibrium equation. Using the
total differentiation rule (1) allows to write the acceleration field up to order one as follows:

d2u
dt2

¼ 1

n2
u00
0 þ

1

n
ð2 _u0

0 þ u00
1Þ þ ð€u0 þ 2 _u0

1 þ u00
2Þ þ nð€u1 þ 2 _u0

2 þ u00
3Þ þ Oðn2Þ

Before applying this expression to Equation (5), however, the magnitude of the inertia
terms should be studied first. More precisely, it can be assumed that for most usual materials,
the ratio between the mass density and a norm characteristic of the magnitude of the elasticity
tensor is such that:

q
jjCjj ¼ bn2 ð10Þ

with b ¼ oð1=nÞ. This assumption is correct if the inverse of the ratio n is smaller than the
pressure waves propagation celerity within the material. Such assumptions are commonly
addressed in space periodic homogenisation (Sanchez-Palencia, 1980). Eventually the right
side of Equation (5) reads, up to order one:

q
d2u
dt2

¼ bjjCjju00
0 þ nbjjCjjð2 _u0

0 þ u00
1Þ þ Oðn2Þ ð11Þ

2.4. 1=n -order equations

The first expression coming from the asymptotic expansions of the different equations of the
mechanical problem is associated with the order 1=n in Equation (8):

ep00 ¼ 0; hence ep0ðx; t; sÞ ¼ ep0ðx; tÞ ð12Þ

This can be explained by the fact that the viscoplastic behaviour is basically (meaning at the
zeroth order) a slow-evolving phenomenon when compared with the period of the fast cycles.

2.5. Zeroth-order equations

The next expression coming from the evolution Equation (8) is associated with order zero,
where there are both the zeroth-order and first-order plastic strains. Using the quasiperiodicity
relation (3) allows to make the first-order plastic strain disappear:

_ep0 ¼ haðr0Þi ð13Þ

where we used that h _ep0i ¼ _ep0 according to Equation (12). This means that the zeroth-order
plastic strain evolves as the average over a fast cycle of the evolution law expressed in terms
of the zeroth-order stress field. This latter has to be considered as an ‘instantaneous’ quantity
r0ðx; t; sÞ, which depends on both time scales.

In order to evaluate this quantity, the first step consists in defining the zeroth-order
homogenised equations coming from Equations (5)–(7), (9) by using the same technique as
for the evolution Equation (8):

European Journal of Computational Mechanics 315



Divx hr0i þ hfbi ¼ 0 ð14Þ
hr0i ¼ Cðhe0i � ep0Þ ð15Þ

he0i ¼ 1

2
ðDxhu0i þ Dxhu0iTÞ ð16Þ

hr0i n ¼ hf si ð17Þ

This shows that the zeroth-order homogenised equilibrium equation is a quasistatic equa-
tion, where the inertia terms are not present any more.

The second step consists of solving the residual equations coming from the previous
homogenisation process:

Divx r�
0 þ f�b ¼ bjjCjju�00

0 ð18Þ
r�
0 ¼ Ce�0 ð19Þ

e�0 ¼
1

2
ðDxu

�
0 þ Dxu

� T
0 Þ ð20Þ

r�
0 n ¼ f�s ð21Þ

where Equations (14)–(17) have been subtracted from the zeroth-order equations correspond-
ing to the initial ones (5)–(7), (9). The previous equations correspond to the definition of a
dynamic linear elastic problem, whose solution r�0ðx; t; sÞ is completely decoupled from the
solution of Equations (14)–(17) and can be computed once for all. As a result, Equations
(14)–(17) are solved along with Equation (8) using the fact that
r0ðx; t; sÞ ¼ hr0iðx; tÞ þ r�0ðx; t; sÞ.

3. Application to a simple example

In order to show the validity as well as the efficiency of the method, the following academic exam-
ple is proposed: a cylindrical bar of length L withstands a normal loading defined as the sum of a
slow-evolving load of frequency F and a fast-evolving load of frequency F=n. The chosen material
law is viscoplastic with two hardenings as defined in Lemaitre and Chaboche (1990).

3.1. Reference problem

The reference problem consists of the transient equations, which have not yet been homoge-
nised. The dynamic equilibrium equation is scalar and deals with the longitudinal displacement
uðx; t; sÞ of the bar’s median axis as well as with the normal stress rðx; t; sÞ within the bar:

@r
@x

¼ q
d2u

dt2
ð22Þ

where x 2 ð0; LÞ. Here, it is assumed that there is no body force within the bar, and that the
only loading is the surface force fsðt; sÞ applied in x ¼ L. In x ¼ 0, the bar is clamped. The
elastic constitutive relation is given by:

r ¼ E
@u

@x
� ep

� �
ð23Þ
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where E and epðx; t; sÞ are the Young’s modulus and the longitudinal plastic strain, respec-
tively. The evolution law is viscoplastic with two non-linear hardenings, which in its uniaxial
expression, coming from Lemaitre and Chaboche (1990), consists of the following equations
(along with null initial conditions):

dp

dt
¼ jr� X j � R� k

K

� �n

þ

dep

dt
¼ dp

dt
signðr� X Þ

dX

dt
¼ 2

3
C
dep

dt
� c0

dp

dt
X

dR

dt
¼ bðQ� RÞdp

dt

where haiþ ¼ ð1þ sign aÞa=2 is the positive part of aðt; sÞ. dp=dtðx; t; sÞ, X ðx; t; sÞ and
Rðx; t; sÞ stand for the equivalent plastic strain rate, the (uniaxial) kinematic hardening vari-
able and the (uniaxial) isotropic hardening variable, respectively. k, K, n, C, c0, b and Q are
material parameters, which are constant at given temperature.

3.2. Zeroth-order homogenised equations

When using the same technique as in Section 2.4, the same conclusion is obtained, that is
zeroth-order viscoplasticity is a slow-evolving phenomenon:

p0ðx; t; sÞ ¼ p0ðx; tÞ ep0ðx; t; sÞ ¼ ep0ðx; tÞ

X0ðx; t; sÞ ¼ X0ðx; tÞ R0ðx; t; sÞ ¼ R0ðx; tÞ

Then by applying the steps of Section 2.5, the zeroth-order homogenised and residual
equilibrium equations are the following ones:

@

@x
E

@hu0i
@x

� ep0

� �� �
¼ 0 ð24Þ

@

@x
E
@u�0
@x

� �
¼ bEu�000 ð25Þ

along with the following boundary conditions in x ¼ 0 and L, respectively:

hu0i ¼ 0 and E
@hu0i
@x

� ep0

� �
¼ hfsi ð26Þ
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u�0 ¼ 0 and E
@u�0
@x

¼ f �s ð27Þ

Eventually the zeroth-order homogenised evolution laws are given by:

_p0 ¼
jr0 � X0j � R0 � k

K

� �n

þ

� �
ð28Þ

_ep0 ¼
jr0 � X0j � R0 � k

K

� �n

þ
signðr0 � X0Þ

� �
ð29Þ

_X 0 ¼ 2

3
C _ep0 � c0 _p0X0 ð30Þ

_R0 ¼ bðQ� R0Þ _p0 ð31Þ

where the instantaneous zeroth-order stress can be expressed as:

r0ðx; t; sÞ ¼ E
@hu0i
@x

ðx; tÞ þ @u�0
@x

ðx; t; sÞ � ep0ðx; tÞ
� �

ð32Þ

3.3. Numerical results

Equations (24)–(31) are solved using a time-dependent finite element model with respect to
the slow time variable t. It is assumed that the force applied in x ¼ L can be written as:

hfsiðtÞ ¼ f0 þ f1 cos 2pFt and f �s ðsÞ ¼ f2 cos 2pFs

where f0, f1 and f2 are given constants, and the slow and fast frequencies are F ¼ 0:05Hz and
F=n ¼ 500Hz, respectively. This example, which is consistent with what is applied in CCF,
allows to write that u�0 is a function of x and s only. Figure 1 depicts the surface force that is
applied on the numerical examples below: the high discrepancy between the two frequencies
only allows to see the envelope of the surface load.

The elastic dynamic Equation (25) along with Equation (27) can then be solved indepen-
dently from the other equations, that is, it can be solved once for all, in a preprocessing step,
over the fast period. This fast time solution u�0 is then used to estimate the instantaneous
stress (32) required in Equations (28)–(31). The fast time scale averaging of aðt; sÞ is then
computed using a quadrature rule, such as the classical trapezoidal rule:

hai � 1

N

aðt; 0Þ
2

þ
XN�1

j¼1

aðt; j

N

n
F
Þ þ aðt; n

FÞ
2

 !
ð33Þ

with N chosen as a trade-off between the accuracy of the estimate and the calculation cost.
Eventually, the remaining Equations (24), (26), (28)–(31) depend only on the slow time
variable t.
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The simulations are carried out for a bar made of TA6V titanium alloy, whose material
properties at 350 °C are given in Lemaitre and Chaboche (1990). In order to validate the pro-
posed time for homogenisation method, a reference calculation, which consists in directly
solving the equations from Section 3.1, is carried out on the time interval ½0; 20�s corre-
sponding to the first slow load period. The accuracy of this calculation is guaranteed by
choosing a very fine time step (10�4 s) corresponding to a 20th of the fast load period. The
associated results will then be compared with these obtained with a zeroth-order time-homog-
enised calculation on the same time interval, but using a 0.04 s-time step, hence reducing the
number of iterations by 400.

The results of these two simulations are depicted in Figure 2. The zeroth-order time-
homogenised plastic strain (blue dotted line) is in very good agreement with the reference
plastic strain in x ¼ 0 (red dashed line); this is confirmed by Table 1. In order to evaluate
the effect of taking the inertia terms into account in the equilibrium Equation (5), additional
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Figure 1. Applied surface force, with f0 = 250MPa, f1 = �200MPa and f2 = �50MPa.

Figure 2. Plastic strain in x ¼ 0: reference solutions (in red) and time-homogenised (in blue) solutions
(dynamic and quasistatic) and quasistatic solution when the fast cycles are not taken into account in the
homogenization process (in black).
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calculations have been carried out in the quasistatic case, that is by assuming that q ¼ 0 in
Equation (22) or that b ¼ 0 in Equation (25). Figure 2 and Table 1 show the significance
of the inertia terms at the studied frequencies as well as the good match between the
results of the reference calculation (red continuous line) and of the time-homogenised calcu-
lation (blue dashed–dotted line). Eventually, the necessity of correctly taking the fast cycles
into account in the time-homogenisation process is demonstrated by the black curve, where
the plastic strain has been calculated by assuming that _ep0 ¼ aðhr0iÞ instead of Equation
(13), that is without taking into account the fast cycles in the plastic strain evaluation. Fig-
ure 3, which is a zoom of Figure 2, makes easier the comparison between the reference
calculation (in red) and the zeroth-order time-homogenised calculation (in blue): whereas
the reference plastic strain increases step by step (each step corresponding to each fast
cycle), the time-homogenised plastic strain evolves more smoothly and remains close to the
reference one.

These results show the efficiency of the time-homogenisation method allowing to reduce
by 400 the number of calculated time steps. It is then possible to solve problems, which
would be impossible to calculate as is. Figure 4 shows how the zeroth-order time-homoge-
nised plastic strain evolves for a time interval of one hour, which is equivalent to applying
180 slow cycles along with 1,800,000 fast cycles. With the time-homogenisation method,
only 90,000 time steps of length 0.04 s are calculated, instead of the 36,000,000 time steps
required for a reference calculation using a time step of 10�4 s.

It is important to note that there is no limitation regarding the fast load amplitude com-
paratively to the slow load amplitude; the previous results have been calculated when the
ratio of the former over the latter was one-fourth. It is even possible to study the limit case
when there is no slow load applied to the structure, that is the high cycle fatigue (HCF)
case. Once again, the agreement between reference and time-homogenised calculations is
very good, as shown by Figure 5 in the quasistatic case for loading frequencies of 0.001
and 10Hz.

Table 1. Comparison of the different calculations for the plastic strain at t= 20 s.

Simulations x = 0 x =L

Reference dynamic 5.361 � 10�3 4.654 � 10�3

Zeroth-order time-homogenized dynamic 5.389 � 10�3 4.595 � 10�3

Reference quasistatic 4.491 � 10�3 4.491 � 10�3

Zeroth-order time-homogenized quasistatic 4.493 � 10�3 4.493 � 10�3

Figure 3. Plastic strain in x ¼ 0 (zoom).
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Ultimately, it is possible to evaluate a fatigue criterion based on the plastic strain evolu-
tion; if it is assumed that fracture occurs beyond a given threshold epm, the cycles limit number
is obtained by calculating the time tm such that:

Z tm

0

jr0 � X0j � R0 � k

K

� �n

þ
signðr0 � X0Þ

� �
dt ¼ epm

Figure 4. Zeroth-order time-homogenised plastic strain in x ¼ 0 (blue-dashed line) and in x ¼ L (red
continuous line).

Figure 5. Plastic strain in HCF: reference calculation (red continuous line) and time-homogenised
calculation (blue-dashed line).
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4. Application to an industrial example

The time-homogenisation method is applied to an actual geometry, used in the European pro-
ject PREMECCY, and depicted in Figure 6.

The specimen, made of titanium alloy, is used to characterise CCF in turbine fans, and is
loaded at one of its ends, whereas the other end is clamped. Equations (5)–(7) and (9) are consid-
ered, as well as the viscoplasticity model with two hardenings (Lemaitre & Chaboche, 1990) in
its tridimensional expression. Two different calculations are carried out in order to demonstrate
the effect of the inertia terms in the plastic strain evolution. In both cases, a CCF loading is
applied with a low-frequency normal load along with a high-frequency transverse load at the
same end. For the first calculation, the high frequency (1,441Hz) corresponds to the first bend-
ing mode of the specimen, whereas the low frequency is chosen at 0.1441Hz. Because the speci-
men is excited at one of its resonance frequencies, Rayleigh damping (10�3) is added to the
dynamic Equation (5). For the second calculation, the high frequency is chosen at 10Hz, which
is much lower than the first natural frequency of the specimen, whereas the low frequency is
0.001Hz. In both cases, 100 slow cycles and 1,000,000 fast cycles are calculated. It is then seen
that the average longitudinal plastic strain within the specimen is much higher for the first calcu-
lation (1:25 � 10�6Þthan for the second one (2:90 � 10�7). This result highlights how much the
resonant excitation impacts the irreversible behaviour of the specimen, and eventually the fati-
gue life. However, the computation times for these two calculations remain still high (about one
day on a typical workstation), which means that, if more slow cycles are to be computed, the
CCF life estimation would still remain difficult to be evaluated.

5. Towards a three time scale homogenisation method

Regarding the previous remark, one way to further improve the computational cost would be
to use the fact that the low-frequency load is periodic. Then, if it is considered that the zer-
oth-order time-homogenised problem (13)–(17) is the new reference problem, it is possible to
apply once again the time-homogenisation strategy to this new reference problem. This is
equivalent to say that we consider a third time scale h such that t ¼ h=g, where g can be arbi-
trarily small. When considering for aðh; tÞ that:

da
dh

¼ @a
@h

þ 1

g
@a
@t

¼ �aþ 1

g
_a and ½ _a� ¼ F

Z 1
F

0

_aðh; tÞ dt ¼ 0

and using an asymptotic expansion of each zeroth-order time-homogenised variable, such as
the zeroth-order time-homogenised stress field:

hr0iðx; h; tÞ ¼ r00ðx; h; tÞ þ gr01ðx; h; tÞ þ Oðg2Þ

it can be shown that:

ep00ðx; h; tÞ ¼ ep00ðx; hÞ

�ep00 ¼ ½haðr00 þ r�
0Þi�
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Divx ½r00� þ ½hfbi� ¼ 0

½r00� ¼ Cð½e00� � ep00Þ

½e00� ¼ 1

2
Dx½u00� þ Dx½u00�T
� 	

½r00� n ¼ ½hf si�

and that a residual problem, analogous to Equations (18)–(21) in the quasistatic case, can be
defined for ~r00 ¼ r00 � ½r00� and associated fields ~e00 and ~u00.

An example consisting of a one-day simulation of the same bar as in Section 3.3 is pro-
posed in the quasistatic case, with a 10 Hz fast frequency, whereas the slow frequency is
0:001 Hz. Figure 7 shows for the plastic strain evolution, the comparison between the initial
two time scale and the newly proposed three time scale strategies. The agreement is quite sat-
isfactory, provided that the time steps are judiciously chosen in the three time scale method:
in this example, the solution is computed every second until the first slow loading cycle is
over (at t ¼ 200 s), then every 200th second. It seems indeed to be mandatory that the time
steps are small at the beginning of the calculation in order to ensure a good convergence.
Concerning the computation cost, the three time scale method only needs about 500 time

Figure 7. Plastic strain: two time scale (red line) and three time scale (blue line) time-homogenised
solutions.

Figure 6. Specimen used in the European project PREMECCY.
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steps, whereas the two time scale method requires around 50,000 time steps, which means
that a huge cost reduction is obtained.

6. Conclusion

The efficiency of the periodic time-homogenisation method has been demonstrated in the case of
academic as well as industrial examples. It allows to solve the different equations at the slow time
scale only, by taking into account the averaged effect of the fast frequency cycles in the homoge-
nised solution. In order to evaluate fatigue life, which is associated with a very high number of
cycles, a three-time step strategy is proposed to speed up the calculations. Work is in progress to
further improve the associated predictions as well as to validate it in the dynamic case.

Note
1. PREdictive MEthods for Combined CYcle fatigue in gas turbines, EU Project (6th RTD Framework

programme), http://premeccy.mecc.polimi.it/.
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