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In the former paper, we have introduced an original morphing approach based on Proper
Orthogonal Decomposition (POD) of shapes, designed to replace parametrized CAD models
in structural optimization. Here, we expand the method to interpolate exclusively between
admissible instances of structural shapes, thus permitting a global understanding of the
design domain and also reducing the size of the optimisation problem. The result is a bi-
level reparametrization approach for structural geometries based on Diffuse Approximation
in a properly chosen locally linearized space, and the geometric parameters are replaced with
the smallest set of variables needed to represent a manifold of admissible shapes for a cho-
sen precision. We demonstrate the approach in a typical shape optimisation problem.

Notre article précédent a introduit le concept original de morphing basé sur la Décomposi-
tion Orthogonale aux valeurs Propres (POD) des formes, qui vise à remplacer la démarche
classique, basée sur les modèles CAO paramétriques, par un méta-modèle géométrique per-
mettant de diminuer le nombre de variables dans les problèmes d'optimisation de forme. Ici,
on étend ce concept pour permettre d’interpoler entre les instances de la géométrie de mani-
ère à obtenir toujours des structures admissibles, et d’avoir une “compréhension” globale du
domaine de conception tout en minimisant le nombre de paramètres. C’est une approche bi-
niveau de réparamétrage basée sur l’Approximation Diffuse dans un espace linéarisé où les
paramètres de conception sont remplacés par un nombre réduit de variables permettant de
représenter la variété de formes admissibles pour une précision donnée. Nous illustrons l’ap-
proche proposée sur un cas typique d’optimisation de forme.
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1. Introduction

Shape optimisation may be viewed as the task of combining a parameterised geometric model
with a numerical simulation code in order to predict the geometric state that minimises a
given cost function while respecting a set of equality/inequality constraints. In this paper, we
consider the task of shape/mesh interpolation or hypothesising the structure, which occurs
between shape/mesh instances given by a sequence of parameter values. The need for this
arose during the development of multidisciplinary optimisation techniques, because CAD
parameterised models involved in automatised computing chains suffered from excessive
design space dimensionality eventually leading to crashes of either the mesh generator or the
solver. This phenomenon is due to the difficulties in expressing all the technological and
common sense constraints (needed to convert a set of geometric parameters to an admissible
shape) within existing parametrisation methods.
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Most current approaches to shape parametrisation require hand-constructed CAD models.
We are interested in developing an alternative approach in which the interpolation system
builds up structural shapes automatically by learning from existing examples. One of the cen-
tral components of this kind of learning is the abstract problem of inducing a smooth nonlin-
ear constraint manifold from a set of the examples, called “Manifold Learning” by Bregler
and Omohundro (1995) who developed approaches closely related to neural networks for
doing it. Carlberg and Farhat (2010) proposed a similar approach in the domain of reduced
order modelling (ROM) for complex flow problems. In this paper, we apply manifold learn-
ing to the shape interpolation problem to develop a parametrisation scheme tailored to the
structural optimisation problem (e.g. airplane wing, A/C duct, engine inlet, etc.).

Several techniques (Ravindran, 2000; Willcox & Peraire, 2002; Bui-Thanh, Willcox,
Ghattas, and van Bloemen, 2007) have been used to replace a complicated numerical model
by a lower order meta-model, usually based on polynomial response surface methodology
(RSM), kriging, least squares regression and moving least squares (Breitkopf, Naceur,
Rassineux, & Villon, 2005). Surrogate functions and reduced order meta-models have also
been used in the field of control systems to reduce the order of the overall transfer function
(Willcox and Peraire, 2002). A very popular physics-based meta-modelling technique consists
of carrying out the approximation on the full vector fields using PCA and Galerkin projection
(Berkooz, Holmes, & Lumley, 1993) in CFD (Raghavan and Breitkopf, 2012) as well as in
structural analysis (Cordier, El Majd, & Favier, 2010) and has been successfully applied to a
number of areas such as flow modelling (Couplet, Basdevant, & Sagaut, 2005), optimal flow
control (Ravindran, 2000), aerodynamics design optimisation (Coelho, Breitkopf, & Knopf-
Lenoir, 2009) or structural mechanics (Dulong, Druesne, & Villon, 2007). In Carlberg and
Farhat (2008), a snapshot-weighting scheme introduced using vector sensitivities as system
snapshots to compute a robust reduced order model well-suited to optimisation. Carlberg and
Farhat (2010) also demonstrated a goal-oriented local POD approach that is computationally
less expensive than using a global POD approach.

However, we have not observed much if any research into using decomposition-based sur-
rogate models to reducing dimensionality of the design domain in shape optimisation, and for
that matter, structural optimisation of any type. This area, we feel is promising considering
the obvious advantages of having far fewer parameters describing the domain: easier visual-
isation, more flexibility in the choice of admissible shapes, better applicability to gradient-
based solvers due to reduced dimensionality and thus a reduction in the overall size of the
optimisation, and of course a separation between the CAD and the optimisation phases in sys-
tem design by giving the optimisation group a protocol to reparametrise structural shapes for
a given set of admissible shapes/meshes that can be generated by the CAD group, and using
the presented algorithm (or a variant thereof) on these to get the new set of design variables.

In this paper, we extend the POD-morphing approach presented in Raghavan, Breitkopf,
and Villon (2011) and present a manifold learning approach combining diffuse approximation
and principal component analysis, whose performance is easily compared to that of simple
linear interpolation, “classical” morphing (Sofia, Meguid, & Tan, 2010) and a posteriori mesh
parametrisation (Chappuis, Rassineux, Breitkopf, & Villon, 2004).

We propose a four-step “a posteriori” reparametrisation approach to reduce the number of
design variables needed while describing the shape of a structure:

• Discretisation of a shape to get the indicator function.
• Decomposition by principal components analysis.
• Two-level dimensionality reduction: in the first reduction phase, the snapshot “pixel

arrays” (or “voxels” in 3D) are reduced to obtain a small number of dominant basis

326 B. Raghavan et al.



vectors spanning the physical design domain and the vector of coefficients �a is then
obtained by projecting a structural shape onto the basis U.

In the second reduction phase, diffuse approximation performed in the a-space gives the
final minimal set of parameters t1; . . . ; tp; p � m, thus a two-level model reduction. Since
they have been obtained from an “a posteriori” sweep of the design domain followed by
decomposition, these new variables can be directly used in an optimisation algorithm to
obtain the optimal shape for a given performance objective.

The methodology is described in the next section with the overall algorithm and the opti-
misation test-case and results are presented in Section 3. We close with a discussion of possi-
ble future work.

2. A posteriori grid parametrisation methodology

This approach works by first studying a sampling of structural shapes sweeping the physical
design domain, typically in a Lagrangian description with a sampling of the geometry-based
design variables within their range, (this could simply be the finite set of points describing
the edges/boundaries of a series of CFD meshes/grid points).

In order to work directly with the shape rather than just a set of geometric parameters, we
use a unique, common and parameter-free representation of structural shape, the shape indica-
tor function vð�xÞ where:

vð�xÞ ¼ 1; �x 2 X

¼ 0; �x R X ð1Þ

where X � R2 (R3 in 3D) is the set of all points in space contained in the shape v. The indi-
cator function may be obtained in discrete form in several ways (voxelisation (Kaufman,
Cohen, & Yagel 1993), topological level sets (Allaire, DeGournay, Jouve, & Toader, 2005) or
“marching cubes” for negligible computational cost; but in all results presented in this article,
we have used pixel/voxel maps where we simply map the edges/boundaries for each snapshot
onto a reference grid to generate a binary array with a value 1 for every “penetrated” cell and
0 for every cell outside the boundary: Si 2 RNc ; i ¼ 1; . . . ;M , where Nc is the grid resolution.

2.1. Creation of “pixel map” snapshots

We build the parametrisation scheme after studying the full range of admissible shapes (i.e.
snapshots (Chatterjee, 2005)) constituting the design domain. For structural optimisation prob-
lems of a fixed topology, these admissible shapes could be obtained in a Lagrangian descrip-
tion by a sampling of the geometry-based design variables within their feasible range
�X 2 ½�LB; �UB� � RN or simply from the finite set of points describing the edges/boundaries of
a series of CFD meshes/grid points for an initial random sampling of M designs. We next
map the edges/boundaries for each snapshot onto a reference grid and store them as arrays
(Si 2 RNc ; i ¼ 1; . . . ;M ) of 1 s and 0 s (Figure 1), where Nc is the chosen resolution.

2.2. Principal components analysis

This is the first phase of model reduction. We first calculate the deviation matrix DS and
covariance matrix Cv for the snapshots using:
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DS ¼ ½ S1 � �S S2 � �S . . . SM � �S �; Cv ¼ DS � DT
S ð2Þ

where M\\Nc=number of snapshots, Si = ith individual snapshot binary array (pixel map)
and �S is the mean of all the snapshots allowing us to express any Sj in terms of the eigenvec-
tors �/i of Cv

Sj ¼ �S þ
XM
i¼1

aij �/i; aij ¼ �/T
i S

j ð3Þ

In the first reduction phase, we limit the basis to the first m\\M most “energetic” modes
for a given reconstruction error �ðmÞ (Berkooz et al., 1993)

~Sj ¼ �S þ
Xm
i¼1

aij �/i and �ðmÞ ¼ 1�
Pm

i¼1 kiPM
i¼1 ki

ð4Þ

2.3. Model reduction and design domain dimensionality

Equation (3) does not provide a sufficient basis for establishing the value of m as one needs
to specify the threshold value for �. Also, the aij may not be taken as design variables without
taking into account the possible relationships between them so as to render feasible shapes.

Let us consider the same system (plate with circular hole Rmin � r � Rmax. Ignoring the
fact that the dimensionality is 1, we construct 50 random snapshots by varying the radius r.
The pixelisation and PCA are then performed in succession giving us a set of a’s correspond-
ing to each snapshot. As illustrated in Figure 2, the a’s form a set of one-dimensional mani-
folds, clearly indicating that the design domain is parametrised by ONE single parameter t,
which in this case happens to be the hole radius (in the general case we obtain a vector
�t 2 Rp; p � m), i.e. a1 ¼ a1ðtÞ; a2 ¼ a2ðtÞ; . . .. These manifolds are easily obtained by per-
forming a diffuse approximation (Breitkopf et al., 2005, Nayroles, Touzot, & Villon, 1992)
over all the a1 . . . aM obtained from snapshots S1 to SM . Furthermore, the curves of
a1; a2; . . . vs t may be interpreted as possible “constraints” (direct geometric constraints, tech-
nological constraints, etc. that are difficult to express mathematically) on the geometric
parameters �X (here simply the single hole radius r) in the a-space, since points lying outside
the manifolds will produce inadmissible shapes as shown. Thus, in the second reduction
phase, we locally introduce the parametric expression of the a-manifolds.

Figure 1. Reference grid mapping for pixel map: plate with circular hole.
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2.4. Manifold approximation and updating

We present here a formal approach to locally identify the system dimensionality from the a-
manifolds. Consider a system of M pixel snapshots converted to the PCA-space retaining
m\M coefficients thus giving us a set of points �a1 . . . �aM 2 Rm. We would like to implement
an algorithm that:

(1) Detects the “true” dimensionality (p � m) from the local rank of the a-manifold in the
vicinity of the evaluation point, so that the feasible region may (locally) be expressed
as a1 ¼ a1ðt1 . . . tpÞ . . . am ¼ amðt1 . . . tpÞ.

(2) Constrains the evaluation point (�a ev) to stay on the feasible region of admissible
shapes, during the course of the optimisation.

2.4.1. Local rank detection of a-manifold

To locally detect the dimensionality of the a1 . . . am hypersurface in the neighbourhood of
�a ev, we first establish the local neighbourhood, this may be done in the original geometric
space (if available) or, if the original parameters are unavailable which is what this approach
is intended for, by using the a values if the neighbourhood is sufficiently dense. So, if
�b1 . . . �bnbd are neighbouring points in a-space, we next use a polynomial basis (here linear)
centred around the evaluation point

P ¼
1 b1

1 � aev1 b1
2 � aev2 . . . b1

m � aevm
� � � . . . �
1 bnbd

1 � aev1 bnbd
2 � aev2 . . . bnbd

m � aevm

2
4

3
5 ð5Þ

with an appropriate weighting function (e.g. Gaussian) and assemble the moment matrix
A ¼ PTWP, where W is the diagonal matrix whose elements correspond to the weighted con-
tributions of the nodes �b1 . . . �bnbd .

Figure 2. Feasible region for a plate with a circular hole of varying radius.
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Next, we detect the local rank of the manifold by calculating the singular values of the
moment matrix A for a chosen precision. This gives us the dimensionality p � m, as shown
in Figure 3 for a plate with a circular hole of varying radius, giving us p ¼ 1 allowing us to
parametrise the curve with a single parameter a1 ¼ a1ðt1Þ; . . . am ¼ amðt1Þ.

2.4.2. Tangent plane construction and diffuse “walking”

The idea is to bring the current design point given by the optimisation algorithm in subse-
quent iterations, down to the surface, which represents locally the manifold of admissible
shapes. The local surface tangent to the manifold is defined with respect to the projection
plane iteratively updated. To achieve this, we use a diffuse approximation-based manifold
“walking” scheme consisting of the following steps shown in Figure 4.

(1) Let Pi be the evaluation point (on the a-manifold) and P0
iþ1 be the new candidate

point (that needs to be brought back onto the manifold/feasible region). We first estab-
lish the neighbourhood �b1 . . . �bnbd of P0

iþ1.
(2) Calculate the centroid �bm ¼ ðPnbd

i¼1
�biÞ=nbd.

(3) Find the centroidal hyperplane for the neighbourhood from the eigenvectors �v1;�v2; . . .
of the covariance matrix Cnbd , the first eigenvector representing the plane normal:

Cnbd ¼ ð1=nbdÞ
Xnbd
i¼1

ð�bi � �bmÞð�bi � �bmÞT ð6Þ

Figure 3. Detecting dimensionality for a plate with a circular hole of varying radius.
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Figure 4. Walking the evaluation point along the a-manifold.
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(4) Project the evaluation point as well as the neighbourhood points in the local coordi-
nate system �v1;�v2; . . . (origin at centroid �bm) to get the local coordinates
h; t1; t2; . . . ; tp where h is the height over the centroidal plane using the equations (for
a general point �a).

h ¼ �vT1 ð�a� �bmÞ; t1 ¼ �vT2 �a; etc: ð7Þ

(5) Perform a diffuse approximation for the nbd points, to obtain the local surface
~h ¼ ~hðt1 . . . tpÞ using a polynomial basis P centred around �aev, with a weighting
matrix W .

~hð�t evÞ; @
~h

@t1
ð�t evÞ; @

~h

@t2
ð�t evÞ; . . .

" #T

¼ ðPTWPÞ�1PTW ½h1; . . . ; hnbd�T ð8Þ

where ½@~h@t1ð�t evÞ; @
~h

@t2
ð�t evÞ; . . .�T is the local tangent hyperplane at P0 in the neighbourhood

�b 1 . . . �b nbd .
(6) We then project the point P0

iþ1 onto this tangent plane to get the adjusted evaluation
point P1

iþ1 and then repeat the process by finding the new neighbourhood and new
tangent plane and new projection point P2 till the evaluation point stops changing

P f
iþ1.

In other words, we “walk” along the surface of the a-manifold to ensure that we stay in
the domain of feasible solutions.

2.5. Shape interpolation and identifying the original geometric parameters

There are two ways to do this step in order to recreate the structural shape for an arbitrary
design point (�t). In the first, we perform POD reconstruction to get the pixel map ~S

~Sð�tÞ ¼ �S þ
Xm
i¼1

aið�tÞ �/i ð9Þ

followed by density filtering using Canny’s algorithm (Canny, 1986) to eliminate possible
greyscale, then followed by locating the coordinates of the corner points/vertices of the
boundary pixels using one of various possible methods (Breitkopf, 1998) and finally a local
moving least square approximation using radial basis weighting functions (Breitkopf et al.,
2005; Nayroles et al., 1992) to construct the smooth structural boundaries/edges from the
vertices of the interpolated pixel map. The original geometric parameters �X may then be
directly identified from the smooth reconstructed shape if they are needed. This method of
shape construction could be difficult in case the original parameter set contains spline
parameters (for example). The other issue is the possible loss of precision that would make it
necessary to increase the resolution of the voxel maps in order to capture/identify very small
geometric facets (like chamfers, etc.) that might affect the value of the objective function.

For this reason, we use “reverse-lookup” i.e. an RSM between the geometric parameters
and the a-coefficients to get �X ð�aÞ if the manifold shape (and dimensionality) need a very fine
pixel/voxel resolution for convergenceor if direct identification of the �X is difficult or impos-
sible. We then rerun the original CAD model with �X ð�aÞ to obtain a full-featured shape.
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2.6. Objective function and gradients

The reconstructed shape is meshed and the numerical analysis is performed using a method
chosen based on the disciplines involved in the analysis i.e. CFD/Navier–Stokes for incom-
pressible flows (Larsson, Diez, & Huerta, 2010; Launder and Spalding, 1974), FEA for struc-
tural analysis, etc. The only difference is that instead of obtaining X opt

i we attempt to find the
final governing parameters �t opt and thus the coefficients �að�t optÞ optimise the performance
objective. An important phase here is remeshing the surfaces obtained. Chappuis et al. (2004)
developed an approach of calculating principal curvatures from an existing mesh or shape
using a secondary local model with diffuse interpolation and then, using these curvatures to
identify shape primitives, such as cylinders, torus, etc., for the purpose of meshing.

The drawback here is that a smooth shape needs to be reconstructed at every iteration. An
attractive alternative strategy is available where we only use the same set of 6–7 snapshots
around the evaluation point that were used to construct the a-manifold in Subsection 2.4.2
and obtain the function values at these points. This is followed by a second diffuse approxi-
mation for the objective function ~Jðt1; t2; . . .Þ that will yield the function values as well as the
gradient (sensitivities @J

@t1
; @J@t2; . . .) and Hessian in a single shot, rather than relying on a finite

difference grid with a prohibitively large number of evaluations.

3. Optimisation test-case: air-conditioning duct

We return to the problem of the air-conditioning duct modelled and optimised in Raghavan
et al. (2011) with 13 geometric parameters X1 . . .X13 shown in Figure 5.

The optimisation problem in the geometric space may be written as:

Find �X
opt ¼ Argmax PflowðX1; . . . ;X13Þ s:t: �LB � �X � �UB ð10Þ

P1P2

P3P4
P5

P6

P7

P8

P9P10

P11P12

350

300

250

200

150

100

 50

  50 100 150  0

P1P2

P3P4
P5

P6
P7

P8

P9

P11P12

P10

x5

x2
x1

x3

x4

x1, x2, x3, x4, x5 (5)
a1, b1, a2, b2, a3, b3, a4, b4 (8)

5+8 = 13 parameters

a

b

bezier curve x 4

Figure 5. Duct geometry showing four different regions.
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where Pflow = flow permeability = 1/(pressure loss from inlet to outlet) = 1=ðPinlet � PoutletÞ and
�UB and �LB are the upper and lower bounds on the 13 design variables. Once we switch over
to the reduced space, we can express the objective function as a function of the PCA coeffi-
cients (ai) and hence the new design variables �t, the optimisation problem may be written as:

Find �t opt ¼ Argmax Pflowð�aðt1 . . . tpÞÞ s:t: gmin � gið�að�tÞÞ � gmax and hð�að�tÞÞ ¼ 0 ð11Þ

where we now intend to find the pixelised shape Sð�að�t optÞÞ. The constraints gi; i 2 ½1;N � are
obtained by transferring bounds �UB and �LB on the a-space, while h represents the feasible
region (set of manifolds in �a-space). Both gi and h are taken into account implicitly with the
diffuse approximation-based approach outlined earlier allowing the a’s to be expressed locally
as functions of the final parameters t1; . . . tp.

Since the mapping to the new space is highly non-linear, we need to ensure we stay in
the feasible region during the course of the optimisation. As previously, we have used the
same M ¼ 102 snapshots and used the bi-level approach of model reduction using basis trun-
cation and the a-space diffuse approximation.

Figure 6 shows the dimensionality deduction based on Section 2. After analysing the set
of snapshots in a-space, it is clear from the set of 2D surfaces obtained that the behaviour of
the various a’s is governed by just two parameters (say t1 and t2).

The feasible regions are represented by the a-manifolds, and as explained in Section 2,
staying on the manifold ensures an admissible solution, even though we may need to invoke

Figure 6. Dimensionality (=2) and model reduction for A/C duct.
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the density filter from time to time during the optimisation. This also means that
�a ¼ ½a1ðt1; t2Þ; a2ðt1; t2Þ . . . amðt1; t2Þ� if using a truncated basis of size m.

We first perform optimisation (using a standard Newton algorithm) in the reduced space
getting �topt, and then calculating �að�toptÞ, and next to estimate �Xopt (original geometric parame-
ters) from the values of �að�toptÞ either by inspection of the optimised shape Sð�að�toptÞÞ or using
an RSM between the �Xi and ai. The permeability Pflow for every possible design was calcu-
lated using the inverse of the total pressure drop across the duct length (inlet to outlet) and
an optimal shape obtained using 5–8 modes, followed by identification by response surface
methodology over the values of the original 13 geometric design parameters for each �aopt, i.e.
getting �X ð�aoptÞ. The optimal solution obtained has been added to Figure 6 and as expected, it
lies on the edge of the constraint/feasible region. This is followed by “reverse look-up”
(Table 1) by projecting the pixel array obtained by shape generation/pixelisation, onto the
truncated basis of m modes to get �arev from �X ð�a optÞ, needed to account for the error intro-
duced by the RSM. The values of �aopt and �X ð�a optÞ are shown in Figure 7.

4. Conclusions

In this paper, the authors have introduced an “a posteriori” scheme with a two-level model
reduction to replace the geometry-based variables with a more compact and normalised set of
variables and replace the higher dimensional design space with a newer design space of lower
dimension, implicitly taking into account constraints on feasible shapes.

Table 1. Reverse look-up: comparison between aopt and arev for different m.

Modes
(m) �aopt �arevðSð�aoptÞÞ
5 �22.6226, 13.4301, 5.8149, �9.4755, 3.1751 �21.8192, 13.7669, 6.6731, �8.8569, 3.2854
6 �22.4873, 14.2647, 6.2187, �9.3431,

3.0856, 3.7891
�22.0924, 13.274, 5.8194, �9.2671, 3.0162,
4.2320

7 �22.7028, 14.4708, 5.6493, �9.5091,
3.1863, 3.9603, 5.2279

�22.1531, 13.8087, 5.2442, �9.1170, 2.8065,
4.2241, 4.6575

8 �22.3745, 14.7165, 5.1094, �9.7710,
3.2653, 3.9784, 5.2527, �4.2108

�22.0974, 13.8794, 5.6017, �9.4491,
2.4682, 5.2825, 4.7886, �2.3602

Figure 7. Optimisation in a-space and identification of geometric parameters �X .
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The presented methodology has a few possible areas of improvement. The first is in
resolving the difficulty in setting upper and lower bounds on the a-based design variables.
The second area is in the treatment of possible degenerate cases for the structural shape.
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