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This work deals with the computation of the non-linear solutions of the vibration of
damped plates by coupling a harmonic balance method and the asymptotic numerical
method. These computations can lead to lengthy central processing unit (CPU) times if the
solution sought contains an important number of harmonics. In this study, we propose two
reduced order models which can be applied to solve this type of problem. Both reduced
methods are based on a first computation carried out with a small number of harmonics
(here two). Numerical examples of plate vibration show that these algorithms help save a
great deal of computational time and can be applied to problems involving numerous
harmonics.

Ce travail porte sur le calcul des solutions non linéaires de vibration des plaques minces
amorties par le couplage de la méthode d’Equilibrage Harmonique et la Méthode Asympto-
tique Numérique (MAN). Ces calculs peuvent conduire à un temps significatif si la solution
recherchée contient un nombre important d’harmoniques. Dans cette étude, nous proposons
deux modèles pour réduire le temps de calcul. Les deux méthodes sont basées sur un pre-
mier calcul réalisé avec un petit nombre d’harmoniques (ici deux). Des exemples numéri-
ques de plaques montrent que ces algorithmes aident à économiser beaucoup de temps et
peuvent être appliqués à des problèmes impliquant de nombreuses harmoniques.
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1. Introduction

Today, thin plates are widely used in industrial applications including in aeronautics or the
automobile industry. This type of structure generates the drawback of vibrating with large
amplitudes. These large displacements are mainly due to their small thickness leading to geo-
metrical non-linearities. The simulation of these problems thus requires efficient numerical
methods. Classical methods consist of coupling temporal discretisation with an iterative
method. The latter can be, for example, the Newton method. An alternative to the previous
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methods is the harmonic balance method (HBM) (LaBryer & Attar, 2010; Mickens, 2010)
which is well adapted to time-periodic problems. This method enables the transformation of
the initial time-dependent problem into a static non-linear one. This non-linear problem is
then solved by using, for example, the Newton algorithm or the asymptotic numerical method
(ANM) (Cochelin, Damil, & Potier-Ferry, 1994). The latter includes the advantage of provid-
ing analytic solutions with smaller computational times than the ones required for a Newton
scheme (Abdoun, Azrar, Daya, & Potier-Ferry, 2009).

The main drawback of the HBM is that the size of the problem can be considerably
increased if the number of harmonics required in the study is important. Consequently, the com-
putational times increase dramatically. In this work, specific numerical methods are proposed to
deal with the substantial size of the problem leading to a considerable computational time. Over
the last two decades, various works have focused on reducing the computation time required to
study such problems. Specific linear solvers which are well adapted to ANM can be chosen.
One can quote, for example, the works of Médale and Cochelin (2009) or Cadou and Potier-
Ferry (2010). Another way to decrease computational time is to use reduced order models.

In a recent work (Boumediene, Duigou, Boutyour, Miloudi, & Cadou, 2011), we have
developed a reduced method to compute the dynamical response of thin damped plate. This
method is based on the projection of the unknown vector onto a matrix built from a previous
computation of the same problem. Hence, the first step of calculation is done on the full size
problem; the following computations (or following steps) are carried out on a reduced size
problem obtained with the help of the previous computed quantities. The drawback of such
an approach is that the reduction technique requires a first computational step, on the full size
problem, which can be difficult to do if the number of harmonics is substantial or if the num-
ber of unknowns is great.

In this paper, we suggest two reduction procedures which are not based on computations
on the full size problem. The first one is quite identical to the method proposed in Boumedi-
ene et al. (2011), but the projection basis is defined with a calculation carried out with a num-
ber of harmonics lower than the initial problem. For example, the full size problem requires
six harmonics but the projection basis is built with a computation done with two harmonics
only. The second method studied in this work is among the most useful reduction techniques
in the field of fluid or solid mechanics: the proper orthogonal decomposition (POD) (Holmes,
Lumley, & Berkooz, 1996; Wriggers, 2008; Yvonnet & He, 2007). This method requires a
first computation (or a prior knowledge of the solution) to construct the projection basis. In
order to avoid long computational times, this first computation is carried out, on a problem
including a small number of harmonics (two), as for the first reduction technique. Thus, from
this first computation a snapshot matrix is built by considering either the time or the circular
frequency as parameter. Therefore in this study, the POD is coupled with the ANM to provide
an efficient numerical tool.

2. Problem formulation

Let us consider a thin rectangular plate with a coordinate system (O, x, y, z). The plate is sub-
mitted to multiharmonic time-dependent excitation in the z direction of the form:

Pðx; y; z; tÞ ¼
XH�1

j¼0

Pjcðx; y; zÞ cos jxt þ Pjsðx; y; zÞ sin jxt� � ð1Þ

where H is the number of harmonics, t is the time, ω is the circular frequency, symbols c and
s denote, respectively, the cosine and sine factors and j is the harmonic number with.
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The displacement components of the plate’s middle surface are denoted by vector U. As
the excitation is multiharmonic, the displacement response of the plate is supposed to be also
multiharmonic and it can be written in the following form:

Uðx; y; z; tÞ ¼
XH�1

j¼0

ðUjcðx; y; zÞ cos jxt þ Ujsðx; y; zÞ sin jxtÞ ð2Þ

With application of the von Karman theory, the Harmonic Balance Method (HBM) and
the discretisation of the plate into ND degrees of freedom (dof) by the finite element method
(FEM), the governing equation is cubic with respect to unknown parameters (ω, U) as
follows (Boumediene, Miloudi, Cadou, Duigou, & Boutyour, 2009):

KU3 þ xCU� x2 MU ¼ P ð3Þ

where M is the mass matrix, K is the stiffness matrix, C is the viscous damping matrix (Ray-
leigh type C = αM+ βKl, Kl is the elastic stiffness matrix) and P and U are written as
follows:

P ¼ ½P0 P1c P1s � � � PðH�1Þc PðH�1Þs � ð4Þ

U ¼ U0 U1c U1s � � � UðH�1Þc UðH�1Þs� � ð5Þ

Then, the problem has ND� (2H� 1) dof, where ND is the dimension of Ujc and Ujs

(j= 0, H� 1).
The problem is to solve system (3) in which the unknowns are the displacement vector

and the frequency. In order to simplify the use of the ANM, some rearrangements can be
done to rewrite this equation in quadratic form (Cochelin & Vergez, 2009; Potier-Ferry et al.,
1997). To do so, new unknowns should be added to Equation (3): the stress vector N of
dimension ND� (2H� 1) and the scalar Ω=ω2. The displacement, the frequency and the
additional unknowns constitute one unknown vector XT ¼ ðx X UT NT Þ of dimension
NT= 2 + 2�ND� (2H� 1) the non-linear governing equation is written then in the following
form (Boumediene et al., 2011):

RðXÞ ¼ 0 ð6Þ

In order to solve Equation (6), the ANM is used, which is a continuation technique where
the non-linear problem is transformed into a sequence of linear ones. This method has been
successfully used in different fields, such as in fluid mechanics (Cadou, Cochelin, Damil, &
Potier-Ferry, 2001) or recently to solve the fracture problem (Daridon, Wattrisse,
Chrysochoos, & Potier-Ferry, 2011).

3. Asymptotic numerical method

Within asymptotic-numerical techniques, the unknown X is sought in the form of truncated
power series with respect to a path parameter ‘a’:
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XðaÞ ¼ X0 þ
Xn

p¼1

apXp ð7Þ

X0 is a regular solution of the non-linear problem (6) and Xp is the unknown, at each
order p (p= 1, n) to be computed. n is the truncation order.

The series (7) are inserted in Equations (6). Then, from the identification of the like pow-
ers of ‘a’, a set of recurrent linear problems is obtained at each order p as follows:

Kt0Xp ¼ Fnl
p ð8Þ

where Xp is the unknown vector at order p, Fnl
p is the second member vector at order p

computed in function to known parameters Xi given in precedent orders (i= 1, p�1) and Kt0

denotes the Jacobian matrix at the initial point X0.
The governing system has one more unknowns than equations. Then, another equation

must be added. To do so, the path parameter ‘a’ is identified as the projection of the unknown
vector increment (X�X0), on the tangent vector X1:

a ¼ TX1ZðX� X0Þ ð9Þ

where Z is a diagonal matrix, the components of which are equal to 1 or 0 to define the
ANM parameterisation (Mottaqui, Braikat, & Damil, 2010). In this study, a pseudo arc-length
scheme is used. The implementation of Equation (7) in the latter (9) makes it possible to pro-
vide the additional equation at each order (Boumediene et al., 2009).

These asymptotic expansions have a limited range of validity which can be evaluated by
using a simple criterion (Cochelin et al., 1994). The maximal value ‘amax’ of the path parame-
ter ‘a’ is defined using the inequality (10): the relative difference between the displacements
at two consecutive orders must be smaller than a given parameter (choosing as the ANM tol-
erance parameter η), which leads to:

kUn � Un�1k = kUn � U0k � g ð10Þ

The maximum value of the path parameter, amax is computed from the latter expression.
Then, amax is introduced in (7) to compute a new starting point X0. From this point, one can
apply the perturbation method and compute a supplementary part of the non-linear solution
branch. This defines the so-called continuation method and enables the computation, of the
non-linear solution branch in a step-by-step method. Nevertheless, as it has been previously
shown (Elhage-Hussein, Potier-Ferry, & Damil, 2000), the best path algorithm is the one
based on the Padé approximants: the polynomial representation is replaced by rational frac-
tions named Padé approximants.

At this stage, the equation to be solved has a high number of dof. In order to reduce
them, as well as the computation time, the reduced order models are introduced in the
discrete form (8). This procedure is described in the following section.

4. Reduction model

Reduction model is applied at each order on the linear problem (8) obtained after using ANM
and FEM. In order to reduce the number of dof, the unknown vectors of dimension NT are
projected onto a low-dimensional subspace as follows:
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Xp ¼ Uxp ð11Þ

where xp is the reduced unknown vector of dimension nt = 2 + 2� nd� (2H� 1) (nt <NT)
and Φ is the projection basis (projection matrix) of dimension NT� nt.

Xp is substituted by expression (11), in Equation (8). Multiplying the left of each side by
the transpose of the projection matrix Φ, Equation (8) becomes:

kt0xp ¼ fnlp ð12Þ

where kt0 and fnlp , respectively, denote the reduced forms of Kt0 and Fnl
p given in Equation

(8), where:

kt0 ¼ UTKt0U

fnlp ¼ UTFnl
p

In order to avoid a lengthy computing time and great size operators to be stored, the pro-
jection method is applied to the elementary level before the assembly of the tangent matrix
Kt0 and the second member Fnl

p .

4.1. Reduction method based on a non-linear calculation: non-linear basis

The reduction model is built from the resolution of the dynamical problem. One ANM step is
achieved without reduction. The vector calculated at each order p is then used to construct
the projection matrix. This basis is denoted non-linear basis (NLB), because these columns
are the results of a non-linear computation. This makes it possible to introduce the non-linear
effect in the projection basis to improve the solution quality. This reduction technique has
already been studied in a previous work (Boumediene et al., 2011). The novelty here is that
the first ANM step, giving the non-linear vectors for the projection, is made with two har-
monics only, whatever the harmonic number is for the response study. This preliminary calcu-
lation is done with one harmonic excitation force defined as follows:

P ¼ P1c cosxt ð13Þ

and by considering two harmonics only in the displacement vector. Then, the displacement
and the force vectors are given, respectively, as follows:

U ¼ ½U0 U1c U1s�
P ¼ ½0 P1c 0� ð14Þ

U and P have dimension ND� (2H� 1) (here, H = 2).
Finally, this database is used to calculate the answer to a problem containing a harmonic

number greater than 2 and to a multiharmonic excitation. The advantage of this approach is
that it avoids the construction of large matrices and it reduces the required computational
times for the basis definition which is the drawback of the proposed method in Boumediene
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et al. (2009). The displacement vector is computed then in a reduced form with dimension
nd� (2H� 1) only. After that, the full size order ND� (2H� 1) displacement vector is built.

4.2. Proper orthogonal decomposition

The second way to define the projection operators in this study is based on the POD. This
method has been initially built to analyse data from random processes by introducing new
systems based on statistics. Lately, it has become a very effective method for multiple tasks
of data analysis, compression and model reduction. Applications of this approach are found
in several disciplines: analysis of random variables, image processing, signal analysis, data
compression, process identification, chemical engineering, oceanography, etc. The POD is a
very effective technique for analysing data in order to approximate a system of large dimen-
sion by another of much smaller dimension. This method is a linear process, enabling to
determine a basis of the most probable representative orthogonal eigenmodes (Holmes et al.,
1996; Wriggers, 2008). The POD is applied with success in different fields even in non-linear
vibrations (Amabili, Sarkar, & Paıdoussis, 2003; Antoulas & Sorensen, 2001; Goncalves,
Silva, & Del Prado, 2008; Lall, Krysl, & Marsden, 2003). The POD can be applied on a dis-
crete interval named snapshot matrix (for more details the reader can see references cited in
this paragraph). This snapshot matrix is calculated in function to a parameter defining the pro-
cess and generally referring to time, but it can also refer to the load. Here, the POD is applied
on snapshot matrices using either the time or the excitation frequency as parameter.

To use the POD method, a first computation has to be made by ANM without reduction,
in a large interval around the first mode to gather a lot of information on dynamical response.
The basis is built for an excitation form given by (13) using two harmonics only. From this
calculation, a snapshot matrix is built by changing either the excitation circular frequency or
the time parameter by setting the circular frequency value. Bases built from frequency and
time snapshot matrices are noted POD-ω and POD-t, respectively.

5. Numerical discussion

Consider a simply supported, isotropic and homogeneous rectangular plate. Its dimensions
are: length L= .6m, width l= .3m and thickness h= .001m. The material is aluminium whose

Figure 1. Plate dynamic response using ANM (H= 6, P (Equation (11)) +NLB and POD (base: H= 2,
P (Equation (11)). ANM; ANM+NLB (nd = 15); ANM+POD-ω (nd = 8); ANM
+POD-t (nd = 8).
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characteristics are: Young’s modulus E = 70,109 Pa, density ρ = 2778 kg/m3 and Poisson’s ratio
υ= .3. The damping matrix is proportional to the elastic stiffness matrix (Kl) with a coeffi-
cient β = .0001 (C = β ·Kl). This plate is subjected to a harmonic exciting force perpendicular
to the mean surface and uniformly distributed P= 40N/m2. The force vector has the form
(13).

The plate is modelled using DKT triangular shell elements with three nodes and six dof
per node (u, v, w, hx, hy, hz) (Batoz & Dhatt, 1992). For reasons of symmetry, only one quar-
ter of the plate is modelled and discretised into 435 nodes (i.e. 2610 dof for one harmonic
bloc). The plate first natural frequency ωl is equal to 208.67 rad/s. Depending on previous
work (Boumediene et al., 2011), the following ANM parameters are used: tolerance η = 10�4

and the order of truncation of the asymptotic approximations n= 20. These parameters are
used in all calculations. For the decomposition of the tangent matrix, we used the classical
Crout method.

In this section, the three procedures (NLB, POD-ω and POD-t) are compared and applied
for resolution with higher harmonic number. These numerical tests make it possible to vali-
date the proposed reduction procedures. For the case H = 6 (Figure 1), response curves found
by reduction models are compared to those obtained by ANM without reduction. The NLB
matrix contains 15 vectors whereas the bases POD-t and POD-ω contain eight vectors (num-
ber selected by an energy-related criterion). One notes in Figure 1 that all the curves coincide
perfectly. Only a small difference is visible at the second symmetrical mode. Around this
mode, POD-ω and NLB give good results. However, for large amplitudes, one notes that the
NLB gives the best results.

Previous results demonstrate that bases constructed from computation with two harmonics
can give good results for problems involving higher harmonic number (H = 6). They are used
hereafter to compute the dynamical responses for multiharmonic excitation type in order to
check the validity range of these bases. To do so, the plate is now submitted to
multiharmonic excitation of the form:

PðtÞ ¼ P0 þ P1c cosxt þ P1s sinxt; P0 ¼ P1c ¼ P1s

P ¼ ðP0 P1c P1s 0 � � � 0 Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ð2H�1Þblocs

ð15Þ

In all the tests, the bases are the same as the ones used in the previous example. More
precisely, the bases are built with an excitation load given in expression (13), which is not
the one considered in the full size problem (15).

In Figure 2, the response curves obtained with the three reduction techniques are com-
pared to the one computed with the classical ANM. These results correspond to the excitation
given by expression (15) and by taking six harmonics (H = 6) into account. In these curves,
one can see that the solution diverges before the resonance when the basis is constructed from
snapshots on time (Figure 2). Contrariwise, bases issued from POD-ω with snapshots on fre-
quency and NLB give very efficient solutions compared to those obtained with classical
ANM.

Figure 3 shows the dynamical response by taking 14 harmonics in the response (H = 14 in
(15)). The reduction methods (POD-ω and NLB) perfectly follow the classical ANM solu-
tions even when the harmonic number of the full size problem is large. Then, it does not
seem necessary to reconstruct the basis for computations differing in the applied loads.
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The previous results validate two of the reduced order models proposed in this study: the
NLB and the POD-ω. The POD-t can lead to divergence in the non-linear response curves
when the considered number of harmonics is great. In the following section, a computational
CPU time analysis is proposed to evaluate the benefit of using the reduced order models.

5.1. Computational time

This section is devoted to the comparison of the computational times needed by the classical
ANM and the reduced order models proposed in this study. A plate subjected to a multihar-
monic excitation vector is considered. Then, problems of dimension 2 + 2� nd� (2H� 1) are
resolved instead of 2 + 2�ND� (2H� 1). In order to construct the projection basis, full order
problems should be resolved. To do so, only one harmonic excitation force is taken into
account and H is taken equal to two. Then, the problem of dimension (2 + 6�ND) is
resolved to construct projection bases.

Figure 3. Plate dynamic response using ANM (H= 14, P (Equation (15)), NLB and POD (base: H= 2,
P (Equation (13)). ANM; ANM+NLB (nd = 20); ANM+POD-ω (nd = 20).

Figure 2. Plate dynamic response using ANM (H= 6, P (Equation (15)), NLB and POD (base: H= 2,
P (Equation (13)). ANM; ANM+POD-t (nd = 15); ANM+POD-ω (nd = 10); ANM
+NLB (nd = 10).
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The computational times for one step and the time needed to draw the curve around the
first mode in the interval [0, 2ωl] are shown in Table 1 for two harmonic numbers H = 6 and
H = 14. This table also gives the computational times required by a classical ANM calculus.

The results in the Table 1 show that the two reduction methods give nearly the same gain.
The POD-ω requires more computational times than the NLB to construct the basis. Never-
theless, the POD-ω makes it possible to select the dominant vectors and finally leads to a
number of vectors in the basis which is two times lower than the NLB. This small number of
vectors can then explain why both methods need approximately the same computational times
to determine the whole response curve.

This time-saving is very significant. One can note that to find the solution around the first
mode, the gain with six harmonics is around 91%. For H = 14, we do not do all the computa-
tion around the first mode with classical ANM because it can last up to over 11 days of calcu-
lation. Nevertheless, for one ANM step with H = 14, the gain with a reduction method is
around 96%.

6. Conclusion

In this work, we propose two reduced order models to compute the non-linear response curve
of damped plates. A first reduction technique, denoted by NLB, is an improvement of a pre-
vious published method (Boumediene et al., 2011) and the second one is based on a POD-ω
analysis. Both methods are issued from a first computation carried out on a problem involv-
ing a small number of harmonics (H= 2 in all our numerical tests). For the NLB technique, a
single step of ANM is carried out and makes it possible to define an efficient basis. For the
POD-ω, several steps on a chosen range of the angular frequency are carried out. From these
computations, two snapshot matrices are built: one with time as parameter and the second
one with the circular frequency, respectively, denoted by POD-t and POD-ω. From the
numerical tests implemented in this study, it appears that NLB and the POD-ω give similar
results. Both methods are able to find the response curves, whereas, the POD-t technique is
not as efficient as the two previous ones. The accuracy of the solution obtained with the
POD-ω and NLB is relatively good compared to those of the full size model and this with a
gain of computing times around 90%.

Nevertheless, NLB requires less computing time to construct the basis and seems to
give results which are a little more accurate than those obtained with the POD-ω. More-
over, the NLB technique is now applied to study the stability of fluid flows, more spe-
cifically for the determination of Hopf bifurcation points (Brezillon, Girault, & Cadou,
2010) where the computing times considerably increase with the required number of
unknowns.

Table 1. Computational time to get result around the first eigenmode x 2 ½0; 2xl�. (2610 DOF).

H ANM POD-ω (nd = 10) NLB (nd = 20)

2 Basis constructing time 17� 50 = 850 s 17 s
6 One step time 575 s 50 s 58 s

CPU time (step number) 75,325sffi 20 h55′
(131)

6950sffi 1 h56′ (122) 7267 sffi 2 h1′ (125)

14 One step time 7647 sffi 2 h8′ 315 s 376 s
CPU time (step number) – 41,485 sffi 11 h32′

(129)
50,401 sffi 14 h (134)
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