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In this paper, we develop an error estimator that enables to control effectively the quality
of numerical solutions obtained using proper generalised decomposition. The method is
based on the Constitutive Relation Error and the construction of associated admissible
fields. It takes all error sources (discretisations, truncation of the modal representation, etc.)
into account and can be used, introducing adjoint-based techniques, for goal-oriented error
estimation. Furthermore, specific indicators can be derived to split error contributions and
thus drive adaptive procedures in an optimal manner.

Dans ce travail, nous développons une méthode d’estimation d’erreur qui permet de
contrôler efficacement la qualité des solutions numériques obtenues par la PGD. L’estima-
teur associé est basé sur la notion d’Erreur en Relation de Comportement et s’appuie donc
sur une solution admissible. Il prend en compte toutes les sources d’erreur (discrétisations
en espace et en temps, troncature de la représentation modale, …) et peut être utilisé,
conjointement aux techniques de l’adjoint, pour le contrôle d’erreur sur des quantités
d’intérêt. De plus, des indicateurs spécifiques permettent de séparer les contributions des
différentes sources afin de pouvoir conduire de façon optimale des procédures adaptatives.
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1. Introduction

Among all model reduction methods which are available nowadays, the proper generalised
decomposition (PGD) is very promising and is the object of numerous research works (Chin-
esta, Ammar, & Cueto, 2010; Chinesta, Ladevèze, Ammar, Cueto, & Nouy, 2009; Ladevèze,
Passieux, & Néron, 2009; Nouy, 2010). This method is based on a representation of the
solution using separated variables functions (or modes); this kind of representation, initially
derived from Proper Orthogonal Decomposition (POD), enables a linear increase of the num-
ber of unknowns with respect to the number of parameters in the problem. However, contrary
to POD, the originality of PGD is that it does not lean upon a projection basis that would be
a priori given (the construction of such a basis requiring a knowledge, at least partial, of the
solution of the problem); in the PGD, an iterative strategy is set up and modes are computed
on the fly along iterations by solving simple one variable problems.
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Despite numerous advantages of PGD, a major limitation resides in the fact that there is
currently no robust verification tool in order to measure the quality of the obtained approxi-
mate PGD solution. Basic results on a priori error estimation for representations by means of
separated variables functions can be found in Ladevèze (1998), whereas a first attempt for a
posteriori error estimation in the PGD framework was proposed in Ammar, Chinesta, Diez, &
Huerta (2010). Nevertheless, those works do not provide guaranteed and accurate error esti-
mates, which is a serious drawback for relevant design using PGD.

In this work, we introduce a robust error estimation method for numerical simulations
based on PGD (Ladevèze & Chamoin, 2011). The estimator is based on the concept of con-
stitutive relation error (CRE) and associated admissible fields (Ladevèze & Leguillon, 1983;
Ladevèze & Rougeot, 1997; Ladevèze & Pelle, 2004). Considering transient thermics prob-
lems, we show that the construction of admissible fields can be performed by means of a
double PGD approach: (i) a classical kinematic approach in order to construct a temperature
field which is kinematically admissible (KA) and (ii) a (non-classical) dual approach in
order to build a flux field which is statically admissible (SA). Nevertheless, both approaches
lead to problems that can be easily solved with standard tools available in commercial
codes; this makes the proposed error estimation method practical and relevant for industrial
applications.

The estimate takes all error sources into account – that are, in our case, space and time
discretisations – as well as the truncation of the series in the modal representation. Further-
more, specific indicators are introduced in order to split error contributions among all sources
and drive adaptive algorithms effectively. Eventually, adjoint-based techniques are introduced
in order to use the estimate based on CRE for goal-oriented error estimation, i.e. control of
the error on outputs of interest which may be relevant for design purposes.

The paper is organised as follows: after this introduction, the reference transient thermics
problem as well as its PGD approximation are presented in Section 2; Section 3 is devoted to
the construction of admissible fields in the PGD framework; global and goal-oriented error
estimators based on CRE, as well as the construction of error indicators, are then introduced
in Section 4 and numerical results on 2D applications are shown in Section 5, before drawing
concluding remarks in Section 6.

2. Reference problem and PGD approximation

2.1. Reference problem

We consider a transient thermics problem on a given structure represented by an open
bounded domain X, with boundary @X, and over the time interval I ¼ ½0; T �. Structure X is
subjected to a given temperature (supposed zero here) on boundary @uX � @X (@uX – ;),
and to a time-dependent given thermal loading: (i) a thermal flux qdðx; tÞ on @qX � @X, with

@uX \ @qX ¼ ; and @uX [ @qX ¼ @X and (ii) a source term fdðx; tÞ in X. The material is
assumed to be isotropic, with diffusion coefficients l, density q and thermal capacity c. Initial
conditions are considered equal to zero. The associated problem consists of finding the tem-
perature–flux pair ðuðx; tÞ; qðx; tÞÞ, with ðx; tÞ 2 X� I , verifying:

• thermal constraints:

u ¼ 0 on @uX� I ð1Þ

196 L. Chamoin and P. Ladevèze



• equilibrium equations:

qc
@u

@t
¼ �r � qþ fd in X� I ; q � n ¼ qd on @qX� I ð2Þ

• constitutive relation:

q ¼ �lru in X� I ð3Þ

• initial conditions:

uðx; 0þÞ ¼ 0 8x 2 X ð4Þ

n denotes the outgoing normal to X. In the following, the change of variable q ! �q is done
so that the constitutive relation reads q ¼ lru.

Introducing functional spaces V and T that ensure the regularity required in space and
time, respectively, the weak formulation of the problem reads: find solution u 2 V � T such
that:

Bðu; vÞ ¼ LðvÞ 8v 2 V � T ð5Þ

where Bð�; �Þ and Lð�Þ are bilinear and linear forms defined as:

Bðu; vÞ ¼
Z T

0

bðu; vÞdt þ
Z
X
uðx; 0þÞvðx; 0þÞdX;

LðvÞ ¼
Z T

0

lðvÞdt with bðu; vÞ ¼
Z
X

qc
@u

@t
vþ lru � rv

� �
dX and

lðvÞ ¼
Z
X
fdvdX�

Z
@qX

qdvdS: ð6Þ

The exact solution of (5), which is generally unreachable, is denoted ðuex; qexÞ. Eventu-
ally, we introduce the following inner products and norms, for functions u and v in V � T :

hu; viX ¼
R
X uvdX; hu; viI¼

R T

0 uvdt; hhu; vii ¼
R T

0

R
X uvdXdt

jjvjjX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hv; viX

p
; jjvjjI¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hv; viI

p
; jjjvjjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hhv; vii

p ð7Þ

2.2. Approximation using PGD

In model reduction methods based on separated variables representation (variables being x
and t here), the idea is to construct an approximation of u(x, t) as a series of m modes, i.e.
products of space and time functions:

uðx; tÞ � umðx; tÞ ¼
Xm
i

wiðxÞkiðtÞ ¼ WmðxÞ � KmðtÞ ð8Þ
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where WmðxÞ ¼ ½w1ðxÞ;w2ðxÞ; . . . ;wmðxÞ�
T (resp. KmðtÞ ¼ ½k1ðtÞ; k2ðtÞ; . . . ; kmðtÞ�T ) is a

reduced basis of space (resp. time) functions and m 2 N is the representation order. In the
PGD approach (Chinesta et al., 2009, 2010; Ladevèze et al., 2009; Nouy, 2010), neither func-
tions kiðtÞ nor functions wiðxÞ are given initially, and both families are computed on the fly.

We describe here a classical procedure for PGD, called progressive Galerkin. We assume
that a separated variables representation um�1 ¼ Wm�1 � Km�1 of order m� 1 is known. A
new couple ðw; kÞ 2 V � T is defined for the order m representation as the one that verifies
the following double Galerkin orthogonality criterion:

Bðum�1 þ wk;wk	 þ w	kÞ ¼ Lðwk	 þ w	kÞ 8k	 2 T ; 8w	 2 V ð9Þ

We can thus define the two following applications:

• Sm : T ! V is the application that maps a time function k into a space function
w ¼ SmðkÞ defined as:

Bðum�1 þ wk;w	kÞ ¼ Lðw	kÞ 8w	 2 V ð10Þ

It is associated to a (time-dependent) space problem.

• Tm : V ! T is the application that maps a space function w into a time function
k ¼ TmðwÞ defined as:

Bðum�1 þ wk;wk	Þ ¼ Lðwk	Þ 8k	 2 T ð11Þ

It is associated to a time problem (scalar ODE).
A couple ðw; kÞ verfiies (9) if and only if w ¼ SmðkÞ and k ¼ TmðwÞ, which is a non-

linear problem. This version of PGD can then be interpreted as a pseudo eigenvalue prob-
lem, functions w and k, respectively, being dominating eigenfunctions of applications

Gm :¼ Sm 
 Tm and ~Gm :¼ Tm 
 Sm (Nouy, 2010). This interpretation is useful as it enables
to propose dedicated algorithms, inspired from those used in eigenvalue problems, to build
the PGD representation. One of these algorithms, denoted power iterations algorithm, is
described below:

→ for m ¼ 1 to mmax

→ define kð0Þ (initialisation)
→ for k ¼ 1 to kmax
→ compute wðkÞ ¼ Smðkðk�1ÞÞ
→ normalise wðkÞ (jjwðkÞjjX ¼ 1)

→ compute kðkÞ ¼ TmðwðkÞÞ
→ cheque convergence of ðwðkÞkðkÞÞ
→ end for
→ define wm ¼ wðkÞ and km ¼ kðkÞ

→ define um ¼ um�1 þ wmkm and check convergence
→ end for

We therefore remark that um is obtained from the solution of a few space or time problems,
without any knowledge on u; the first step wðkÞ ¼ Smðkðk�1ÞÞ of the iterative strategy, which is

the most costly, consists of solving a space problem with fixed time function kðk�1Þ; the sec-
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ond step kðkÞ ¼ TmðwðkÞÞ consists of solving a time problem over the whole domain I , with
fixed space function wðkÞ. In practice, both problems are solved with classical numerical meth-
ods, i.e. the finite element method (FEM) and a given time integration scheme.

At a given order m, space function wm can be orthogonalised with respect to the existing
space basis fw1;w2; . . . ;wm�1g; this procedure generally gives better results. Another simple
modification in the power iterations algorithm was proposed to construct a better PGD repre-
sentation with reasonable computational cost (Ladevèze et al., 2009; Nouy, 2010). It consists
of introducing application T in order to update the whole set of time functions Km after each
construction of a new couple ðwm; kmÞ. This leads to the following algorithm:

→ for m=1 to mmax

→ do steps 2 to 8 of the classical power iterations algorithm

→ define wm ¼ wðkmaxÞ

→ compute Km ¼ TðWmÞ
→ define um ¼ Wm � Km and check convergence
→ end for

3. Construction of admissible fields in the PGD framework

Considering the diffusion problem introduced in Section 2.1, we present two PGD approaches
(kinematic and static) that are the basis to derive admissible fields.

3.1. Kinematic approach

We consider the weak form (5). In order to compute an approximation of u, we use the pro-
gressive PGD approach defined in Section 2.2. Knowing um–1, this approach first consists of
finding the pair ðw; kÞ such that:

Bðwk;wk	 þ w	kÞ ¼ Rm�1ðwk	 þ w	kÞ 8k	 2 T ; 8w	 2 V ð12Þ

where Rm�1ð�Þ ¼ Lð�Þ � Bðum�1; �Þ is the order m� 1 residual; this problem is solved using

the power iterations algorithm. After convergence of ðwðkÞ; kðkÞÞ, we take wm ¼ wðkÞ and we
update all time functions by means of the application Km ¼ TðWmÞ. We then obtain the order
m PGD approximation um of u:

um ¼ Wm � Km ð13Þ

In practice, the power iterations algorithm requires the solution of two kinds of problems:

• the application w ¼ SmðkÞ leads to a space problem of the type: find w 2 V such that

Z
X
faSqcww	 þ bSlrw � rw	gdX ¼ lðw	Þ �

Xm�1

i¼1

Z
X
faS;iqcwiw

	 þ bS;ilrwi � rw	gdX ð14Þ

with

aS¼ h _k; kiI ; bS ¼ jjkjj2I ; lð�Þ ¼ hlð�Þ; kiI
aS;i¼ h _ki; kiI ; bS;i ¼ hki; kiI

ð15Þ
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An approximate solution wh of w is computed using the FEM with finite element space
Vh � V, leading to a discrete system of the form:

ðaSMþ bsKÞX ¼ F ð16Þ

• the application k ¼ TmðwÞ leads to a time problem of the type: find k 2 T such that

kð0Þ ¼ 0; aT _kþ bTk ¼ dT ð17Þ

with

aT ¼
Z
X
qcw2dX; bT ¼

Z
X
lrw � rwdX; dT ¼ lðwÞ � bðum�1;wÞ ð18Þ

An approximate solution kDt of k is computed using a given time integration scheme.
We finally obtain an order m PGD approximation uh;Dtm ¼

Pm
i¼1 w

h
i ðxÞk

Dt
i ðtÞ. It is KA in

the sense that it verifies Equations (1) and (4) of the reference problem. However, the associ-
ated couple ðuh;Dtm ;qðuh;Dtm ÞÞ, with qðuh;Dtm Þ ¼ lruh;Dtm , is usually not SA as it does not verify
the equilibrium (2), even in the following finite element weak sense:

Z
X
qðuh;Dtm Þ � rv	dX ¼ lðv	Þ �

Z
X
qc
@uh;Dtm

@t
v	dX 8v	 2 Vh; 8t 2 I ð19Þ

In the next section, we introduce a static PGD approach that provides for a flux that veri-
fies this last equilibrium.

3.2. Static approach

We define an order m PGD approximation of the flux as:

qmðx; tÞ ¼ qh
0ðx; tÞ þ

Xm
i¼1

/iðxÞniðtÞ ¼ qh
0ðx; tÞ þ UmðxÞ � NmðtÞ ð20Þ

where UmðxÞ ¼ ½/1ðxÞ;/2ðxÞ; . . . ;/mðxÞ�T and NmðtÞ ¼ ½n1ðtÞ; n2ðtÞ; . . . ; nmðtÞ�T are reduced
bases of space and time functions, respectively. qh0ðx; tÞ is a particular flux in equilibrium with
the thermal loading in a finite element sense, and space functions /iðxÞ are SA to zero (SA0)
in a finite element sense, i.e. they verify:

Z
X
/i � rv	dX ¼ 0 8v	 2 Vh ð21Þ

The associated space is denoted as Qh
0.

On the one hand, assuming that the external loading ðfd; qdÞ can be written using the
radial approximation,

fdðx; tÞ ¼ FdðxÞjf ðtÞ; qdðx; tÞ ¼ QdðxÞjqðtÞ ð22Þ

the computation of qh0ðx; tÞ can be easily performed using a classical finite element procedure.
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On the other hand, noticing that the dual Galerkin formulation of the diffusion problem
consists of finding q 2 Q� T such that:

Z T

0

Z
X

1

l
q � q	dXdt ¼ 0 8q	 2 Q0 ð23Þ

and assuming that qm�1 ¼ qh0 þ
Pm�1

i¼1 /ini is known, the progressive PGD at order m (with
updating of time functions) first consists of searching a couple ð/; nÞ that verifies:

Z T

0

Z
X
ðqm�1 þ /nÞ � 1

l
ð/	nþ /n	ÞdXdt ¼ 0 8/	 2 Qh

0; 8n	 2 T ð24Þ

As for the kinematic approach, the power iterations algorithm requires solving two kinds
of problems:

• a space problem of the form / ¼ ~SmðnÞ such that:

Z
X

1

l
fa/þ bg � /	dX ¼ 0 8/	 2 Qh

0 ð25Þ

with a ¼ jjnjj2I and b ¼ hn; qm�1iI . Using duality arguments, one shows that there is a func-
tion whðxÞ 2 Vh such that:

a/þ b ¼ lrwh ð26Þ

Therefore, wh should verify:

Z
X

1

a
flrwh � bg � rw	dX ¼ 0 8w	 2 Vh ð27Þ

and this last problem can be solved with the standard FEM.

• a time problem of the form n ¼ ~Tmð/Þ such that:

Z
X

1

l
ðqm�1 þ /nÞ � /dX ¼ 0 8t 2 I ð28Þ

This provides for the explicit expression of nðtÞ (after normalisation of /);

nðtÞ ¼ �hqm�1ð�; tÞ;/iX ð29Þ

In a second stage, vector NmðtÞ of time functions is updated using global application
Nm ¼ ~TðUmÞ. The power iterations algorithm that is employed to compute the static PGD ver-
sion of q is the same as the one previously described for u.

Of course, space or time problems associated to applications ~Sm and ~Tm are again solved

approximately, and the computed PGD representation is denoted qh;Dtm ¼ qh0 þ
Pm

i¼1 /
h
i n

Dt
i .

Consequently, couple ðuh;Dtm ; qh;Dtm Þ verifies (19) i.e. it is SA in the finite element sense.
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3.3. Computation of admissible fields

The error estimator that we set up is based on the CRE (Ladevèze & Pelle, 2004). The use of
CRE requires the calculation of an admissible temperature–flux couple, denoted (ûh;Dt; q̂h;Dt)

in the following, associated to the computed PGD solution. Couple (ûh;Dt; q̂h;Dt) is admissible
in the sense that it verifies (1), (2) and (4). Its construction is performed from the approximate
solution ðuh;Dtm ; qh;Dtm Þ at hand:

• a temperature field ûh;Dt verifying (1) and (4) is said KA; a simple choice consists of
taking the temperature field uh;Dtm coming the kinematic PGD approach;

• a couple (ûh;Dt; q̂h;Dt) verifying (2) is said SA; the construction of q̂h;Dt is the major
technical point. It consists of using an energy relation, named prolongation condition,
implying field qh;Dtm coming from the static PGD approach and using its properties; this
leads to the solution of local problems defined over each element of the mesh. Full

details on some techniques usable to construct q̂h;Dt at each time point can be found in
Ladevèze and Pelle (2004).

Remark. In practice, q̂h;Dtm is constructed as:

q̂h;Dt
m ¼ q̂h

0 þ
Xm
i¼1

/̂
h

i n
Dt
i ; q̂h

0 ¼ q̂ðzhf Þjf ðtÞ þ q̂ðzhqÞjqðtÞ þ
Xm
i¼1

q̂ðshi Þ _k
Dt
i ðtÞ ð30Þ

where /̂
h

0 and f̂
h
i are SA and SA0 fields, verifying the prolongation condition with qh0 and

/h
i , respectively.
The computational cost associated to the construction of q̂h;Dtm is ðmþ 2Þ � ðCvNvþ

CeNeÞ, where Nv (resp. Ne) is the number of vertices (resp. elements) in the mesh and Cv

(resp. Ce) is the computational cost associated to a problem on a patch of elements (resp. to a
problem at the element level).

4. Global and goal-oriented error estimation

4.1. Global error estimation

From any admissible solution ðû; q̂Þ (previous calculations lead to take ðû; q̂Þ ¼ ðûh;Dtm ; q̂h;Dtm Þ),
the CRE is defined as a measure ECRE of the non-verification of (3) by the admissible couple.
It reads:

E2
CREðû; q̂Þ �

Z T

0

Z
X
ðq̂� lrûÞ � 1

l
ðq̂� lrûÞdXdt ¼ jjjq̂� lrûjjj2l�1 ð31Þ

A fundamental property of CRE is its link with the exact solution ðuex; qexÞ:

jjjuex � ûjjj2l þ jjjqex � q̂jjj2l�1 þ Gðuex � ûÞ ¼ E2
CREðû; q̂Þ ð32Þ

with jjj � jjj2l ¼
R T
0

R
X lrð�Þ � rð�ÞdXdt and Gðuex � ûÞ ¼

R
X qcðuex � ûÞ2jt¼TdX � 0.

Equation (32), that can be seen as an extension of Prager–Synge equality for time-depen-
dent problems, directly shows that jjjuex � ûjjjl  ECRE so that measure ECRE is a guaranteed
upper bound of the error (given in the energy norm). It takes all error sources into account,
i.e. time and space discretisations as well as truncation of the series in the PGD representation
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when choosing ðû; q̂Þ ¼ ðûh;Dtm ; q̂h;Dtm Þ. The computational cost required to compute ECRE is
proportional to Ng � ðNp þ 1Þ where Ng (resp. Np) is the number of Gauss points in the mesh
(resp. number of time steps).

4.2. Error indicators

In order to optimise the adaptive process that would aim at decreasing error jjjuex � ûh;Dtm jjjl,
one must be able to assess contributions of various error sources; this can be done defining
appropriate error indicators. The procedure to define such indicators is very simple: we first
define solution uh;Dt of the discrete problem obtained after discretising the initial thermics
problem in space and time (with the same discretisations as those used to compute uh;Dtm ).
Using for instance the FEM and a forward Euler time scheme, uh;Dt is obtained solving a sys-
tem of the form (P being the number of time steps):

U1
h ¼ 0; M

Upþ1
h � Up

h

Dt
þKUp

h ¼ /p
h 8p 2 ½1;P � 1� ð33Þ

We can then write:

jjjuex � uh;Dtm jjj2l ¼ jjjuex � uh;Dtjjj2l þ jjjuh;Dt � uh;Dtm jjj2l ð34Þ

where jjjuex � uh;Dtjjjl is the contribution to the error coming from time and space discretisa-
tions alone and jjjuh;Dt � uh;Dtm jjjl is the contribution to the error coming from the PGD

representation alone. The second contribution can be directly assessed in the post-process,
without any additional computation, defining problem (33) as a new reference problem and

using the CRE. In this framework, an associated admissible couple ðûh;Dt; q̂h;DtÞ (in the sense
of (33)) can be defined; it is directly obtained at each time point as a post-processing of solu-
tion ðuh;Dtm ; qh;Dtm Þ at hand. One can thus compute the estimate:

ECRE;PGD ¼ jjjq̂h;Dt � lrûh;Dtjjjl�1 ð35Þ

of error jjjuh;Dt � uh;Dtm jjjl coming from the PGD representation.
In a second stage, (34) enables to define the estimate ECRE;dis of error jjjuex � uh;Dtjjjl

coming from time and space discretisations; it reads:

ECRE;dis ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
CRE � E2

CRE;PGD

q
ð36Þ

Comparison between values of ECRE;dis and ECRE;PGD enables to choose the critical error
source and lead the adaptive process effectively.

4.3. Goal-oriented error estimation

We now deal with estimation of the error on specific outputs of interest. Such local quantities,
denoted I in the following, can be written under a global form:

I ¼
Z T

0

Z
X
ðq� � ruþ f�uÞdXdt ð37Þ
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where q� and f� are extraction functions (possibly defined as Dirac distributions). A gen-
eral procedure consists then of introducing the associated adjoint problem that reads: find the
temperature–flux pair ð~u; ~qÞ that verifies:

• thermal constraints:

~u ¼ 0 on @uX� I ð38Þ

• equilibrium equations:

qc
@~u

@t
�r � ð~q� q�Þ þ f� ¼ 0 in X� I ; ~q � n ¼ 0 on @qX� I ð39Þ

• constitutive relation:

~q ¼ �lr~u in X� I ð40Þ

• final conditions:

~uðx; TÞ ¼ 0 8x 2 X ð41Þ

This problem, which is similar to the reference problem when performing the change of
variable t0 ¼ T � t, is solved using the PGD approach (with M modes) providing for the

approximate solution ð~uh;DtM ; ~qh;DtM Þ. Furthermore, admissible fields ð~̂uh;DtM ; q̂h;DtM Þ can be com-

puted using the procedure of Section 3, which provides for the global error estimate ~ECRE for
the adjoint problem.

Error estimation on I is then obtained from the following fundamental result, valid for lin-
ear elliptic and parabolic problems (see (Ladevèze, 2008)):

jIex � Ih;Dtm � Icorrj  ECRE
~ECRE ð42Þ

where Iex (resp. Ih;Dtm ) is the exact (resp. approximated by PGD) value of the output of interest
and Icorr is a correction term computed from approximate solutions of both reference and
adjoint problems. In order to optimise the quality of error bounds obtained from (42), the
PGD adjoint solution is derived introducing locally and enrichment term computed offline
(see (Ladevèze & Chamoin, 2010) for full details).

5. Numerical results

In the following numerical experiment, the power iterations algorithm is initialised with

kð0ÞðtÞ ¼ t ðnð0ÞðtÞ ¼ tÞ: We use the FEM with linear elements to solve space problems, and a
forward Euler scheme to solve time problems. The number of iterations performed in the
power iterations algorithm is fixed to kmax ¼ 4.

We consider the 2D structure of Figure 1, which contains two rectangular holes in which
a fluid circulates; using symmetries, we study one quarter (denoted by X) of the full 2D
domain. It is subjected over ½0; T � to a given flux qd ¼ �1 applied on the hole boundary; a
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source term of the form fdðx; yÞ ¼ 200xy is also applied in X. For the numerical study, we
choose T ¼ 10, l ¼ 1 and qc ¼ 1.

The space mesh used to discretise X consists of Ne ¼ 50 quadrangular elements, and time
domain ½0; T � is divided into Np ¼ 1000 time steps.

We represent in Figure 2 first modes ðwm; kmÞ obtained for mmax ¼ 5.
In Figure 3, the value of the relative error estimate �ECRE ¼ ECRE=jjjq̂jjjl�1 is given with

respect to the PGD order m which is used (m 2 ½1; 10�). We observe that the error estimate
reaches convergence for m ¼ 4. Let us note that for this value of m, the CPU time required
to obtain the error estimate (normalised by the time necessary to solve the reference problem
using PGD) is 2.8.

We now introduce the new reference problem obtained after time and space discretisations
of the initial reference problem. Computing associated admissible fields, we obtain indicator
ECRE;PGD and then deduce indicator ECRE;dis. The values of three estimates ECRE, ECRE;PGD

and ECRE;dis are plotted in Figure 3 with respect to order m.
We observe that indicator E2

CRE;dis provides for a relevant assessment of the discretisation
error, even for small values of m. Furthermore, we can see that indicator ECRE;dis becomes

Figure 1. 2D domain considered (left), and associated finite element mesh (right).
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Figure 2. Space functions wm (top) and time functions km (bottom) for m= 1,2,3 (from left to right).
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larger than ECRE;PGD for m � 3; this could be used in an optimised adaptive process in which
the number of computed modes would be first increased, up to m ¼ 3, before refining time
and space discretisations in order to improve the quality of the PGD solution.

Now dealing with goal-oriented error estimation, we consider as an output of interest the
mean value of u inside a local zone x � X (black zone in Figure 1) at final time T:

I ¼ 1

jxj

Z
x
ujTdX ð43Þ

Consequently, the extraction functions read:

q�ðx; tÞ ¼ 0; f�ðx; tÞ ¼
1

jxjIxðxÞdðt � TÞ ð44Þ

where Ix is the indicatrix function of x and dðtÞ is the Dirac function in time.
The normalised upper bound ECRE~ECRE=jIh;Dtm j of the error, as well as specific error indica-

tors, are given in Figure 4 with respect to the number M of computed PGD modes for the
adjoint solution (m is fixed to (2) here).
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Figure 3. Evolution of estimates E2
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CRE;dis with respect to PGD order m.
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We observe that due to the correction term Icorr, which has a PGD representation, the
quantity Ih;Dtm þ Icorr tends to an asymptotic value when M increases. This value is different
from Iex only due to the discretisation error; therefore, a refinement of space and time discreti-
sations would be necessary to improve the quality of the approximate output of interest in
that case.

6. Conclusions

We presented a method that provides for a guaranteed and robust error estimator in the frame-
work of numerical simulations performed by means of PGD. This estimator, based on the
CRE, uses a double PGD approach of the problem which enables to compute admissible
fields with classical tools available in finite element softwares. Indicators on various error
sources were also introduced in order to help driving adaptive strategies in an optimal man-
ner, and performances of the CRE estimate to deal with goal-oriented error estimation were
analysed.

The error estimation method which is employed here is quite general; it could be used for
other multi-parameterised problems such as stochastic problems. This topic is being addressed
in ongoing works.
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