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A meshless method is presented and analysed. In this approach, one discretises only the
boundary, the partial differential equation being solved in the domain by using Taylor ser-
ies expansion. A least square method is used to apply boundary conditions. In this paper,
the method is applied to Navier equations for linear elasticity. Various tests are presented
to discuss the efficiency and robustness of the method. The convergence is exponential
with respect to the degree but it depends on the radius of convergence of the series. That
is why an algorithm has been associated with the Domb–Sykes plot that is a classical
method to detect singularities and evaluate the radius of convergence.

Dans ce travail nous présentons et analysons une nouvelle méthode sans maillage. Dans
cette nouvelle méthode l’EDP est résolue de manière exacte dans le domaine en utilisant
des séries de Taylor. Les conditions aux limites sont prises en compte par une technique
des moindres carrés couplée à la technique de collocation. Cette méthode est appliquée à
un problème d’élasticité linéaire. Plusieurs études de convergence ont été faites afin de
s’assurer de l’efficacité de la méthode proposée. Ensuite en se basant sur le critère de
Domb Sykes, une technique a été proposée pour estimer le rayon de convergence des séries
solutions à partir des coefficients de Taylor calculés.
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1. Introduction

In the last decades, there have been many advances about meshless methods. They are con-
sidered as a promising alternative to overcome the difficulties due to mesh generation. Indeed,
the meshless methods do not require any mesh grid generation. The meshless methods are
usually divided into two main categories: the boundary type meshless methods and the
domain type meshless methods. Recently, Zézé, Potier-Ferry, and Damil (2010) have pro-
posed a new meshless method belonging to the boundary type meshless method, only bound-
ary discretisation is needed. In this technique, the governing differential equation is satisfied
exactly in the domain by using a Taylor series expansion. This leads to a smaller system,
which is solved by applying boundary conditions. The boundary conditions are taken into
account by using a least square method as proposed by Zhang, Liu, Song, and Lu (2001).
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This method has several advantages. First, the number of shape functions is much smaller
than with the p-version of finite elements (Babuska, Szabo, & Katz, 1981; Campion & Jarvis,
1996). Second, the partial differential equation (PDE) is solved quasi-exactly inside the
domain so that only the discretisation of the boundary is needed. Lastly, it can converge very
rapidly with the degree (p-convergence).

In the Taylor series approximation, the domain of validity of the approximated solution is
given by a circle centred at the development point of the series. The circle of convergence of
the Taylor series is limited by the closest singularity to the domain. Hence, the development
point must be chosen in a zone from which the total boundary must be visible. This can
always be achieved by subdividing the total domain in subdomains. Hence, the following
questions arise: how to choose the development point of the series? When the subdividing of
the domain is needed? It is clear that the answer to these questions depends on the available
information on the function to be approximated. Those informations are not directly accessi-
ble because the function to be approximated is the unknown solution of the PDE studied.
Then, it becomes necessary to extract these informations from the calculated Taylor coeffi-
cients. Generally, the radius of convergence of a series is determined by the behaviour of its
coefficients at infinity. But in the proposed method, one computes only a finite number of
coefficients. However, in the literature, there exist several techniques to find the nearest singu-
larity from a finite number of coefficients: Domb–Sykes plot, Darboux criterion, Pade approx-
imant (Baker & Graves-Morris, 1996; Domb & Sykes, 1961; Garajeu, Cochelin, & Medale,
2010; Hunter & Guerrieri, 1980; Van Dyke, 1974).

In this paper, the proposed method is addressed and applied to a linear elastic problem.
The second section presents a brief description of the technique. In Section 3, an application
is made on the Navier equation of linear elasticity. Several tests of convergence have been
made on two different types of solutions: a polynomial solution and a rational solution with a
singularity. In the last section, the Domb–Sykes plot is applied on the series solution, which
leads to a criterion which allows to estimate a possible singularity of a given problem from
the calculated coefficients.

2. Implementation of the technique

In this section, a brief description of the technique is given. A detailed description can be
seen in Zézé (2009) and Zézé et al. (2010). Beyond having the advantages of mesh-free
methods, the method proposed here can handle more effectively the boundary conditions,
which is usually a challenge for mesh-free methods. In order to build a high degree boundary
meshless method, the main idea of the technique is to make a Taylor series approximation.
Thus, in 2D, one can write the unknown of a PDE in the form:

uhðx; yÞ ¼
XN
k¼0

Xk

i¼0

ui;k�ix
iyk�i ¼

XN
k¼0

hX kifukg; ð1Þ

where

hX ki ¼ hxk; xk�1y; . . . ; yki; huki ¼ t fukg ¼ huk;0; uk�1;1; . . . ; u0;ki:

For each degree k, the unknown is the vector fukg 2 Rkþ1. Then, for the complete polynom
(1), there are ðN þ 1ÞðN þ 2Þ=2 coefficients to be found. The technique is split in two steps.
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In a first time, one makes a direct resolution of the PDE by using approximation (1).
Then, the polynomial form (1) is introduced directly in the PDE and one makes an identifica-
tion according to the order of the variables \X k[ for all k, 0 � k � N � 2. This identifica-
tion leads to a family of linear equations with fewer equations than unknowns. The resolution
of these equations can then be made by determining a part of unknowns like a function of
the other ones. Then, one can rewrite the approximate form (1):

uhðx; yÞ ¼
XN
k¼0

\Pk[fvkg ¼ hPðx; yÞifvg: ð2Þ

In (2), < Pk > are polynomial functions that are quasi-exact solutions of the PDE. The
vectors {vk} are composed of coefficients remaining after resolution of the previous linear
equations. These vectors are the new unknowns of the problem. Then, one reduces the num-
ber of unknows. For example, for a second order PDE, one goes from (N + 1) (N + 2)/2
unknown coefficients in (1) to 2N + 1 unknown coefficients in (2). The determination of these
last coefficients will be the goal of the second step.

To achieve the resolution of the problem, one will apply the boundary conditions in order
to find vectors {vk}. In the literature, there are several techniques to take into account the
boundary conditions. To reduce the computational cost, we prefer to use techniques avoiding
numerical integration. At first, a technique of collocation has been used. It was shown in
(Zézé, 2009) that this technique can become unstable. Then, the collocation technique has
been replaced by a least square method as proposed by Zhang et al. (2001). One chooses a
set of nodes on the boundary and one minimises the error between the approximate solution
and the boundary data on these nodes. It comes to minimise the function:

JðvÞ ¼ 1

2

XM
j¼1

juhðxjÞ � udj ðxjÞj2: ð3Þ

This minimisation leads to a linear system K{v} =F where K is a symetric invertible matrix.
Solving this system gives the vector {v} and therefore the approximate solution of the problem.

Remark that various boundary conditions can be accounted in a similar way, see Tampan-
go, Potier-Ferry, Koutsawa, and Belouettar (2012) where Neumann and Robin conditions
were considered. Because the boundary conditions are satisfied in a mean square sense, they
are not exactly verified in the same way as the PDE that is satisfied in the sense of Taylor
series. The accuracy of these approximations will be discussed in Section 3.

3. Validation of the technique

3.1. Problem

Let us consider a linear elastic material in a plane domain X with boundary C, subjected to
Neumann and Dirichlet boundary conditions. The relations governing the plane strain linear
elasticity problem are given by Navier equations as follows:

ðkþ lÞgradðdivðuÞÞ þ lDu ¼ 0 in X
Boundary conditions on C

�
ð4Þ

where k and l are elastic constant and u is the displacement vector.
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From the Muskhelishvili’s (1958) complex variable formalism for plane isotropic elastic
problems, the solutions of this problem are given by:

2lu ¼ j/ðzÞ � z/0ðzÞ � wðzÞ; ð5Þ

where /ðzÞ and wðzÞ are two holomorphic functions called complex potential functions of the
complex variable z ¼ xþ iy.

In this paper, the considered domain is a disc with Dirichlet boundary conditions. In the
numerical tests, we shall try to find analytical solutions in the form (5) with /ðzÞ ¼ 0.

3.2. Resolution of the PDE in the domain

In the proposed method, one solves problem (4) by making the following polynomial approx-
imation:

uhðx; yÞ ¼ uhxðx; yÞ
uhyðx; yÞ

� �
¼

PN
k¼0

\X k[fukxg
PN
k¼0

\X k[fukyg

8>><
>>:

9>>=
>>;

¼
XN
k¼0

½X k
2 �fukg ð6Þ

with

fukg ¼ fukxg
fukyg

� �
and ½X k

2 � ¼ \X k[ 0
0 \X k[

� �
ð7Þ

The unknowns are the vectors fukg. This approximate form is introduced in Equation (4)
and an identification will be made related to the order of the monom ½X k

2 �. For that, one must
calculate the action of the differential operators appearing in (4) on the approximate form (6).
In Zézé (2009), this action was already calculated and it has been shown that every mathe-
matical operator is identified by matrices such that:

Luhðx; yÞ ¼
XN�l

k¼0

½X k
2 �½Lk �fukþlg ð8Þ

where l is the order of the differential operator L. Let [Gk], [Divk] and ½Dk � being the matrices
which define, respectively, the differential operators gradient, divergence and Laplacian (a
detailed calculation of these matrices can be seen in Zézé (2009)). The problem (4) leads to:

ðkþ lÞ½Gk �½Divkþ1�fukþ2g þ l½Dk �fukþ2g ¼ 0 8k; 0 � k � N � 2 ð9Þ

For each k, this last relation is a family of 2� (k – 1) equations for 2� (k+ 1) unknowns.
Then, it permits to find a part of the vector {uk} as a function of the complementary compo-
nents. This then leads to:

uhðx; yÞ ¼
XN
k¼0

½Pkðx; yÞ�fvkg ð10Þ
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The vectors {vk} are a part of vectors {uk} and will be found by applying boundary con-
ditions. To apply the boundary conditions, one chooses a set of nodes on the boundary as
shown in Figure 1 and then one verifies the relation (3) on these nodes in a least square sense
as explained in Section 2.

3.3. Results

In this section, the comparison between the approximate solution and the exact solution is
addressed and analysed. We will be interested by the x-component of the displacement u.
Then, the solution of the problem studied will be 2lux ¼ �ReðwðzÞÞ. We present the results
for two types of solution: a polynomial form with wðzÞ ¼ z5 þ z and a rational form
wðzÞ ¼ 1=ðz� z0Þ, with a singularity at z0.

Figure 2 shows the maximum error on an inner circle of radius r= .9. One notes that
the convergence depends on the nature of the analytical solution. Indeed, for the polyno-
mial solution, the best convergence is reached for degree 5 (degree of the analytical solu-
tion). This confirms that with the Taylor series approximation one can get quasi-exactly
polynoms. Figure 2, (right) presents the error for the rational solution for two points of sin-
gularity. It is clear that the position of the singularity influences the convergence. Indeed,
for a point of singularity far from the domain, one has a very fast convergence. Thus, one
reaches error 10–15 at order 30. The convergence is worse if the singular point is close to
the domain, nevertheless we have a sufficient convergence of 10–3 at order 20. One can
improve this error by increasing the degree of approximation. Therefore, a high degree
approximation can be made.

Figure 3 presents the distribution of the error across the domain. The approximation is
very good inside the domain. This is due to the exact resolution made in the domain. The
error increases when approaching the boundary. This error is introduced by the application of
boundary conditions. The figure also shows that the error is bigger in the direction of the sin-
gularity. The error in the application of boundary conditions is represented by the last loop of
Figure 3 and in this case the error on boundary conditions is lower than .5%. It can be much
smaller for large degrees, as shown by Figures 2 and 4.

Figure 4 presents the influence of the development point on the convergence for the
rational problem with singularity at z0 = 1 + i. For small degree, a variation of the point of
development does not affect strongly the convergence of the method. Then, the proposed
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Figure 1. Discretisation of the domain for boundary conditions application.
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method is stable regardless of the point of development. Therefore, when increasing the
degree the convergence is not the same for any development point. The best convergence is
obtained for the development point in the centre of the domain. This is due to the fact that
the convergence domain of series is a circle. Therefore, one must choose the point of devel-
opment in such a way that the entire domain be covered by the convergence domain. In the
literature, the radius of convergence is often approached by the nearest singularly. This con-
firms the finding that the best choice of development point is the centre.
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Figure 2. P-convergence. Left: polynomial solution wðzÞ ¼ z5 þ z. Right: rational solutions
wðzÞ ¼ 1=ðz� z0Þ.

Figure 3. Distribution of the error across the domain.
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4. Convergence analysis

For the problem studied here, the right choice for the point of development was expected
because the geometry of the domain is simple and the analytical solution is known. On the
contrary, for a problem with complex geometry which we do not know the analytical solu-
tion, it would be difficult to determine that point of development without a prior study. For
some problems, we note that the proposed method cannot be applied to the whole domain
and this will require to subdivide the domain in several subdomains. Generally, for series
approximations, the radius of convergence is given by the nearest singularity. The purpose of
this section is finding a technique of determination of the nearest singularity.

In approximation methods by series, the problem often encountered is related to the
domain of convergence. The domain of validity of the approximation series is limited by the
nearest singularity. Thus, in the resolution of PDE by series approximation, one must choose
the development point in such a way that the domain of convergence covers the whole
domain. However, the choice of the development point is not obvious. It is not always possi-
ble to have a development point in the domain such that the domain of validity covers the
whole domain. In these cases, the domain is subdivided into several subdomains. Thus, in
every subdomain, the development point can be chosen such that the domain of convergence
covers the entire sub domains. This operation is only possible if one knows the position of
the nearest singularity. So, the big problem is the determination of the nearest singularity
without the knowledge of the analytical solution.

In the literature, there are several techniques to find the nearest singularity. Among others
we can cite the Domb–Sykes plot, the criterion of Darboux, the Pade approximants, etc. All
these methods analyse univariate functions, while the solution of the PDE is a function of
two variables u(x,y). These techniques will be applied on some lines of the plane, for instance
lines parallel to ox by considering the function x ! uðx; yÞ or radial lines in the h direction
by considering r ! uðr cos h; r sin hÞ.

Here, one introduces only the Domb–Sykes plot. One obtains the same conclusions for
the Darboux criterion, as established in Tampango et al. (2012).

The Domb–Sykes plot technique allows to estimate the nearest real singularity by looking
at the behaviour of the series coefficients for large orders. The Domb–Sykes plot is prompted
by the convergence criterion of D’Alembert. From this criterion, the radius of convergence of
a series is the upper limit of the ratio cn�1=cn. This calculation seems impossible when one

Figure 4. Influence of the development point.
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knows only a limited number of coefficients. Therefore, one must estimate this ratio. Domb
and Sykes (1961) shows that the inverse ratio cn=cn�1 is often a linear function of 1=n for n
sufficiently large.

Indeed, for a singular function of type (singularity at �x0):

f ðxÞ � const� ðx0 � xÞm; m–0; 1; 2; . . .
ðx0 � xÞm logðx0 � xÞ; m ¼ 0; 1; 2; . . .

�

the coefficients of its power series satisfy:

DsðiÞ ¼ ci
ci�1

¼ � 1

x0
1� 1þ m

i

� �
: ð11Þ

In Figure 5, the Domb–Sykes plot is presented along two radial lines h ¼ p=4 and
h ¼ arctanðy0=x0Þ. The estimate (11) is not valid in the direction h ¼ p=4 and in most of the
directions that we have considered because the ratio cn=cn�1 oscillates for large n. On the
contrary, in the direction of the exact singularity, the ratio cn=cn�1 is nearly constant and this
constant is exactly the inverse of kz0k that is the exact radius of convergence. This plot pre-
dicts an order a ¼ �1, which is consistent with the exact solution Reð1=ðz� z0ÞÞ.

The tests performed with the criterion of Darboux have given the same result. The crite-
rion is only satisfied by considering the series in the direction of the singularity. In this direc-
tion, the ratio DsðNÞ converges to the inverse of the radius of convergence and the predicted
order of singularity is about –1.

A reliable criterion for finding the location of singularity will be to determine first the direc-
tion and subsequently its position. Hence, it seems that an efficient algorithm to detect the near-
est singularity in the plane would be defined by analysing the ratio DsðNÞ corresponding to the
Domb–Sykes plot in many radial lines. The direction of the singularity is the one such that the
ratio DsðNÞ converges for large N and it can be defined by a numerical criterion:

k DsðNÞ � DsðN � 1Þ k� � ð12Þ
where � is a chosen very small number.
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Figure 5. Domb–Sykes plot for the linear elasticity problem with rational solution. Left: direction p=4.
Right: direction of the singularity.
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5. Conclusion

In this paper, we have presented a new meshless method with application to a linear elastic prob-
lem. This method is characterised by the fact that the PDE is solved quasi-exactly in the domain,
requiring only the discretisation of the boundary. The boundary conditions are taken into
account by using a least square method hence no need for numerical integration. These aspects
combine to give an efficient high-degree boundary meshless method. However, the convergence
depends on the problem studied. The study of the linear elastic problem has shown a good con-
vergence depending on degree and location of the nearest singularity. This is due to the fact that
we are using Taylor series approximation. Consequently, in the second part of the paper, we pro-
posed a criterion for a numerical determination of the radius of convergence from the Taylor
coefficients implemented. The criterion proposed in this paper is based on the technique of the
Domb–Sykes plot but other techniques exist that can lead to a similar result.

In this paper, we limited ourselves to compressible linear elasticity, but of course it can
be extended to many differential equations. For instance, in Tampango (2009), a similar
procedure has been used for the incompressible case and in Taro (2012), it has been applied
to a second non-linear PDE. In the case of non-linear equations, a Newton algorithm is intro-
duced to define a sequence of linearised equations that are further solved by the procedure
described in the present paper. For an application to a more complex geometry, see Figure 6
of Zézé et al. (2010).

References
Babuska, I., Szabo, B.A., & Katz, I.N. (1981). The p-version of the finite element method. SIAM Jour-

nal on Numerical Analysis, 18, 515–545.
Baker, G.A., & Graves-Morris, P. (1996). Padé approximants. Cambridge: Cambridge University Press.
Campion, S.D., & Jarvis, J.L. (1996). An investigation of the implementation of the p-version finite ele-

ment method. Finite Elements in Analysis and Design, 23(1), 1–21.
Domb, C., & Sykes, M.F. (1961). Use of series expansions for the Ising model susceptibility and

excluded volume problem. Journal of Mathematical Physics, 2(1), 63–67.
Garajeu, D., Cochelin, B., & Medale, M. (2010). Analyse et amélioration des séries (Analysis and

improvement of series), Technical report, Laboratoire de Mécanique et d’ Acoustique.
Hunter, C., & Guerrieri, B. (1980). Deducing the properties of singularities of functions from their Tay-

lor series coefficients. SIAM Journal on Applied Mathematics, 39(2), 248–263.
Muskhelishvili, M. (1958). Some basic problems of the mathematical theory of elasticity (pp. 113–115).

Groningenp: Noordhoff.
Tampango, Y. (2009). Résolution des problèmes incompressibles de Stockes par la méthode de perturba-

tion (Solving incompressible Stokes problems by a perturbation method) (Master’s thesis, Université
de Metz).

Tampango, Y., Potier-Ferry, M., Koutsawa, Y., & Belouettar, S. (2012). Convergence analysis and detection
of singularities within a boundary meshless method based on Taylor series. Engineering Analysis with
Boundary Elements, 36(10), 1465–1472.

Taro, M. (2012). Elaboration d’ un algorithme numérique permettant de résoudre un problème d’ élasticité
non linéaire à l’ aide d’ une méthode developpée au LEM3 (A numerical algorithm to solve a nonlinear
elasticity problem by a method developed in LEM3)(Master’s thesis, Université de Lorraine).

Van Dyke, M. (1974). Analysis and improvement of perturbation series. Quarterly Journal of Mechanics
and Applied Mathematics, 27, 423–450.

Zézé, D. (2009). Calcul de fonctions de forme de haut degré par une technique de perturbation (Computat-
ing high degree shape functions by a perturbation technique) (PhD thesis, Université Paul Verlaine
Metz).

Zézé, D.S., Potier-Ferry, M., & Damil, N. (2010). A boundary meshless method with shape functions
computed from the PDE. Engineering Analysis with Boundary Elements, 34(8), 747–754.

Zhang, X., Liu, X.H., Song, K.Z., & Lu, M.W. (2001). Least-squares collocation meshless method.
International Journal for Numerical Methods in Engineering, 51(9), 1089–1100.

European Journal of Computational Mechanics 373




