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In this article a Newton–Krylov method is discussed, which is part of the inexact Newton’s
methods family. They combine iterative solution methods, especially Krylov methods
(conjugate gradient, GMRES, etc.) with the Newton’s method, whereas, in solid mechanics,
direct solvers are often preferred for the solution of linearised systems. After having intro-
duced a versatile and robust preconditioner, we discuss the efficiency of this approach on a
highly non-linear industrial problem.

Dans cet article est présentée une méthode de Newton-Krylov qui appartient à la famille
des méthodes de Newton inexactes. Celles-ci associent des méthodes itératives de résolu-
tion de systèmes linéaires, que sont les méthodes de Krylov (gradient conjugué,
GMRES,...), à la méthode de Newton, là où, de manière traditionnelle en mécanique des
solides, on utilise des méthodes directes. Après avoir décrit le préconditionneur versatile et
robuste développé à cet effet, l’efficacité de l’approche est illustrée sur un problème indust-
riel hautement non-linéaire.
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1. Introduction

The solution of non-linear systems of equations is at the heart of computational physics. From
electromagnetism to fluid dynamics passing by solid mechanics, the numerical solution of dis-
cretised non-linear systems of equations is an unavoidable task. The method which is often
preferred is the Newton’s method, due to its very interesting local convergence properties.

The Newton’s method is at the root of a large family of methods which can be seen as
variants that mainly try to preserve the essential quadratic convergence property and to avoid
the cost by some way. Indeed, in its vanilla version, the Newton’s method requires the con-
struction of a linearised system and its resolution that is often performed in the field of solid
mechanics by direct solvers. Though the latter have done tremendous progress thanks to the
development of parallel multi-frontal approaches, they are often a bottleneck to the solution
of very large non-linear systems. In the past decades, the main successful variant of the New-
ton’s method in the field of solid mechanics has been the BFGS method, due to its capability
to build iteratively an approximation of the inverse of the Hessian matrix. More recently, a
new class of methods has appeared known as the Newton–Krylov method. It is based on the
use of iterative Krylov solvers (Saad, 2005), whose adjustable resolution precision is a key
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point that will be presented thereafter. This feature makes this approach part of the large class
of inexact Newton’s method.

When dealing with iterative methods, the question of choosing a good preconditioner
must be answered. In the field of solid mechanics, there are several optimal algorithms that
provide highly efficient preconditioners. In the domain decomposition framework, let us cite
the dual sub-structuring method FETI (Farhat & Roux, 1991) with several variants (Dostal,
Horak, & Kucera, 2006; Farhat, Lesoinne, LeTallec, Pierson, & Rixen, 2001) and the primal
sub-structuring method BDD (Mandel, 1993). In the multi-grid framework, let us highlight a
geometric approach (Adams, 1999) and an algebraic one (Vanek, Mandel, & Brezina, 1996).
However, they often need to be specially adapted for some given physical equations and finite
elements (plates, shells and incompressible displacement–pressure element). In other words,
finding a “catch-all” optimal preconditioner is a hard task. In this paper, we propose a broad-
spectrum tool which, though far from optimal, proves to be fast and robust; thanks to an
updating adaptive strategy.

The paper is organised as follows. In Section 1, the basics of the Newton’s method are
recalled. In Section 2, the inexact Newton’s method characteristics are described with special
emphasis on the Newton–Krylov approach. The importance of the preconditioning phase is
stressed leading to the proposition of a robust and versatile mixed precision preconditioner.
The last section is devoted to the illustration of the performance of the method on a non-
linear industrial problem.

2. The Newton’s method

In this section are recalled the essential requirements and properties of the Newton’s method.

2.1. Overall presentation

The Newton’s method is a method for solving non-linear systems of equations written as:

f ð�xÞ ¼ 0 ð1Þ
Let us define U an open subset of Rn, f 2 C1ðU ;RnÞ and �x 2 U such that f ð�xÞ ¼ 0.

From a given starting point x0 2 U , the method builds a sequence ðxðkÞÞk2N � U of approxi-
mations of the solution �x. Given two close enough approximations, the first-order Taylor
expansion of f at xðkþ1Þ is written as:

f ðxðkþ1ÞÞ ¼ f ðxðkÞÞ þ rf ðxðkÞÞðxðkþ1Þ � xðkÞÞ þ oðxðkþ1Þ � xðkÞÞ ð2Þ
Let us set f ðxðkþ1ÞÞ ’ 0, so that the sequence ðxðkÞÞk2N is defined as follows:

xð0Þ ¼ x0
f ðxðkÞÞ þ rf ðxðkÞÞðxðkþ1Þ � xðkÞÞ ¼ 0

�
ð3Þ

where

rf ðxÞ ¼
@f1
@x1
ðxÞ � � � @f1

@xn
ðxÞ

..

. ..
.

@fn
@x1
ðxÞ � � � @fn

@xn
ðxÞ

0
BB@

1
CCA

European Journal of Computational Mechanics 375



The process stops at iteration p when the convergence criterion is reached, i.e. for a given
e precision:

k f ðxðpÞÞ k� e k f ðxð0ÞÞ k ð4Þ

For each iteration k, the algorithm consists of the following steps:

(1) compute the matrix A ¼ rf ðxðkÞÞ,
(2) solve the linear system and

A sðkÞ ¼ �f ðxðkÞÞ; xðkþ1Þ ¼ xðkÞ þ sðkÞ ð5Þ

(3) evaluate f ðxðkþ1ÞÞ.

Note that there is no guarantee that the matrix rf ðxðkÞÞ is invertible or that the sequence
xðkÞ converges to �x. But, in a neighbourhood of �x and under some regularity assumptions, the
Newton’s method converges quadratically (Kelley, 2003).

2.2. Line search

From a practical point of view, having a local convergence property does not suffice
since there is no guarantee that the starting point x0 is close enough to �x. In order to
recover a global convergence property, globalisation methods such as the line search must
be used.

The line search aims at making the Newton’s method more robust in the case where the
starting point is not close enough to the solution. Once the linear system has been solved, the
solution increment direction sðkÞ is known. The line search consists of finding the next iterate
xðkþ1Þ ¼ xðkÞ þ hsðkÞ with h 2 Rþ

� such that h minimises k f k. From a practical point of view,
in order to perform this minimisation, one writes:

/kðhÞ ¼k f ðxðkÞ þ hsðkÞÞ k :

and one searches for a value of h[0 providing a sufficient decrease of /k . We insist on
the fact that this phase can be very expensive in the case where lots of evaluations of f are
necessary.

3. Inexact Newton’s methods

The goal of the inexact Newton’s methods is to reduce the computation time by limiting the
number of total operations. To this end, one can seek to lessen the cost of the construction of
the Jacobian matrix and/or the solution cost of the linear system. The latter is at the root of
Newton–Krylov methods.

3.1. Sketch of the method

The base idea of the inexact Newton’s methods is to replace the solution of (5) by a weaker
requirement:
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k rf ðxðkÞÞsðkÞ þ f ðxðkÞÞ k� gk k f ðxðkÞÞ k ð6Þ

The general algorithm is exactly the same as the regular Newton’s method; the unique dif-
ference being that the linearised system is not solved exactly. The iterate sðkÞ is only an
approximation of the solution of (5). The parameter gk, called the forcing term plays a crucial
role. Notice that the closer gk is to zero, the closer the solution of (6) is to the solution of
(5). One can intuitively feel that computing a crude approximate solution (e.g. for a large
value of gk) can be fast but it can lead to convergence issues at the non-linear stage. The key-
point of inexact Newton’s method is therefore to find the best compromise between the faster
solution of the linear system and the fewest number of non-linear iterations.

3.2. Convergence property

Theorem 1 (Local convergence of the inexact Newton’s method).
Given f : U � Rn#Rn such that:

(1) the equation (1) has a solution �x,
(2) rf : U#Rn�n is Lipschitzian in a neighbourhood of �x,
(3) rf ð�xÞ is invertible,

then there exist two positive scalar d et �g, with �g\1, such that 8x0 2 Bð�x; dÞ and
fgkg � ½0; �g�, the sequence ðxðkÞÞk2N defined by:

xðkþ1Þ ¼ xðkÞ þ sðkÞ

and by the condition (6) converges linearly.
Furthermore, if gk ! 0, the convergence is superlinear.
The proof can be found in Kelley (1995, pp. 96–97).

3.3. The Newton–Krylov methods

As their name implies, the Newton–Krylov methods are methods making simultaneous use of
Krylov methods within a Newton algorithm. We shall briefly recall the essential aspects of
the Krylov methods.

3.3.1. The Krylov methods

Let us consider the solution of a well-posed linear system Ax= b. There are two classes of
iterative methods to solve this system: the stationary methods and the Krylov methods. The
stationary methods are defined by the following iteration:

xðkþ1Þ ¼ MxðkÞ þ c ð7Þ
where M is called the iteration matrix. The expression of this iteration matrix fully defines the
method. Given the splitting A=D + L +U when D is the diagonal of A, L and U are the strict
lower and upper parts of A. If M ¼ �D�1ðLþ UÞ, this is the Jacobi method, if

M ¼ �ðDþ LÞ�1U , this is the Gauss–Seidel method. The stationary terminology comes from
the fact that the iteration matrix is fully independant of the path to convergence. This is not
the case for the Krylov methods.
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The Krylov methods iteratively build a sequence xðkÞ that minimises the error e ¼ �x� xðkÞ
in some given measure over the affine space xð0Þ þ Kk where Kk is the vector space:

Kk ¼ spanðrð0Þ;Arð0Þ;A2rð0Þ; � � � ;Ak�1rð0ÞÞ ð8Þ

where rð0Þ ¼ b� Axð0Þ. Kk is called the Krylov subspace. It can be easily shown that these
vectors are linearly independant so that when k= n, they form a base of Rn. This argument is
essential in order to prove the convergence of Krylov methods within n iterations. Unfortu-
nately, round-off errors and bad conditioning make this situation almost impossible for rea-
sonable large n. Despite this, Krylov methods are methods of choice for solving linear
systems and they have often replaced the stationary methods.

As the Krylov methods are iterative methods, they need a convergence criterion to stop
the process. Usually, it is based on the relative decrease of the linear residual to a fixed value,
typically 10�6, which is written as:

k rðkÞ k¼k AxðkÞ � b k\10�6 k rð0Þ k ð9Þ

3.3.2. Choice of the “forcing term”

It must be noticed that the latter equation is equivalent to the inexact Newton condition (6).
Thus one understands that the previous condition can be used as the stopping criterion of the
linear Krylov solver, which is completely determined by the choice of the “forcing term”. A
good choice is essential for the performance of the global non-linear process.

Different schemes exist in order to compute the sequence of forcing terms gk starting
from an initial g0. The basic idea is the following: when far from the solution, it is not neces-
sary to compute a precise linear solution; when getting closer to the solution, in order to
recover the quadratic convergence of the Newton’s method, the linear solution must be pre-
cise. Kelley (2003) and Eisenstat and Walker (1996) proposed the following sequence:

gReskþ1 ¼ c
k f ðxðkÞÞ k2

k f ðxðk�1ÞÞÞ k2 ð10Þ

where c 2 ð0; 1� is a user-defined parameter. But in order to avoid a too fast decrease of the
sequence gk causing unnecessarily accurate resolutions or to get unacceptable values of gk[1,
Equation (10) must be reinforced by the following condition (Kelley, 2003):

gkþ1 ¼ min gmax;max gSafekþ1; 0:5e
k f ðxðkÞÞ k2

k f ðxðk�1ÞÞÞ k2
� �� �

ð11Þ

where e is the precision of Equation (4) and gSafek is given by:

gSafekþ1 ¼
gmax k ¼ 0
minðgmax; gReskþ1Þ k[0; cg2k � 0:1
minðgmax;maxðgReskþ1; cg

2
kÞÞ k[0; cg2k[0:1

8<
:

3.3.3. Oversolving

In the context of Newton–Krylov methods, to oversolve is to solve the linear system with an
unnecessary precision, that is to say without decreasing the non-linear residual k f ðxðkÞÞ k in
the same proportion. Indeed, the same decrease of the non-linear residual can often be
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obtained with a coarse linear solve as well as with a precise one. In that case, lots of Krylov
iterations may have been useless.

The goal of the Newton–Krylov methods is to always adapt the value of the forcing term
gk in order, on the one hand, to lessen the number of Krylov iterations and, on the other
hand, not to increase the number of Newton iterations.

In order to illustrate this issue, one time step of the simulation shown in Section 5.1 has
been run in two different ways: in a first time, using the Newton’s method with a precondi-
tioned conjugate gradient (CG), the relative precision of the linear solution being constant
and set to 10�6; in a second time, using the same preconditioned CG but with the relative
precision varying according to (12).

In order to understand the following results, it is necessary to establish precisely the dif-
ference between the Newton’s iterations and the Krylov iterations. The Newton’s method
builds a sequence ðxðkÞÞk	0 of approximations of �x. At each iteration k, the Krylov method

builds the sequence ðsðkÞi Þi	0 of approximations of s, solution of rf ðxðkÞÞs ¼ �f ðxðkÞÞ. We

denote then xðkÞi ¼ xðkÞ þ sðkÞi . The Krylov iterations stop when the convergence criterion (6)
is reached. If one defines p, the number of iterations when the convergence criterion is satis-

fied, we have xðkÞp ¼ xðkþ1Þ.
In Figure 1, the stars represent the successive values of the non-linear residual f ðxðkÞÞ.

The solid lines represent the values of the linear residual rf ðxðkÞÞsðkÞi þ f ðxðkÞÞ and dotted

lines represent a rough estimate of f ðxðkÞi Þ. It is clearly seen that the precise resolution of the
linear system is unnecessary because the non-linear residual does not decrease more on the
left figure (CG with fixed convergence criteria) than on the right figure (CG with adaptive
convergence criteria). The following table summarises the number of iterations in each case.

CG CG+ forcing term

No. of Newton’s iterations 6 7
No. of CG iterations 83 11

This shows clearly the efficiency of the proposed expression of the forcing term in order to
avoid oversolving. The number of Krylov iterations has been considerably reduced while
conceding a single extra Newton iteration.

Figure 1. Illustration of the oversolving phenomenon.

European Journal of Computational Mechanics 379



4. Solution strategy

4.1. Preconditioning

In order to use a Newton–Krylov method, one must begin by choosing a preconditioner and
an iterative method. Depending on the symmetry of the matrix of the system, our choice of
iterative method was set to the CG or to the generalised minimum residual (GMRES). But
the main issue is in fact the choice of an efficient preconditioner. In the field of solid mechan-
ics, there are several optimal algorithms that provide highly efficient preconditioners. In the
domain decomposition framework, let us cite the dual substructuring method FETI (Farhat &
Roux, 1991) with several variants (Dostal et al., 2006; Farhat et al., 2001) and the primal
substructuring method BDD (Mandel, 1993). In the multi-grid framework, let us highlight a
geometric approach (Adams, 1999) and an algebraic one (Vanek et al., 1996).

However, in the case of industrial studies in solid mechanics, the models are often com-
posed of different kinds of finite elements. It is common to deal with a mix of solid and
structural elements (shells and beams for instance). Furthermore, in order to correctly transfer
the displacements and the forces between these elements with different degrees of freedom
(shells and beams are equipped with rotational degrees of freedom), multi-points constraints
must be used. A common tool to enforce such relationships is the use of Lagrange multipliers
that can deeply change the nature of the linear system: in the case of linear elasticity, it
causes the loss of the positive definiteness. In short, the linear systems in solid mechanics are
often non-positive definite and generally very ill-conditioned. Finding a robust preconditioner
is a hard task. The classical algorithms such as Jacobi, Gauss–Seidel, incomplete factorisation
and also the more modern previously cited algorithms generally fail or perform very poorly.

For these reasons, we have developed a preconditioner for the open-source finite element
software Code_Aster (2011a) called LDLT_SP (2011b). This preconditioner is based on the
parallel single-precision factorisation of the tangent (stiffness) matrix, while the iterative
method is performed in double precision. During the preconditioning phase, the effect of the
inverse of the matrix A is very accurately approximated, since the factorisation is exact up to
single precision. Then, just 2 or 3 iterations of the Krylov method are needed in order to
reach convergence.

It is noteworthy that the use of single precision reduces the memory consumption by 50%
compared to a double precision factorisation. But it also reduces the CPU time by 30% –
more data can be stored on the cache of the processor leading to fewer cache misses and bet-
ter performance. Nevertheless, computing this preconditioner at each Newton iteration is
expensive both in memory and CPU time compared to classical preconditioning methods. But
there is no need of reforming it so often – this preconditioner is so efficient that it can be
kept constant for several solution phases even if the tangent matrix changes. This strategy is
the key of the performance of the method:

• The quadratic convergence of the Newton’s method is kept since the tangent matrix is
updated at each iteration.

• The application of the previously computed preconditioner is fast since it consists only
in a forward–backward substitution.

• The preconditioner is only updated when its efficiency decreases. The number of
Krylov iterations is an excellent indicator since it is closely related to the conditioning
of the preconditioned system (Shewchuk, 1994): as soon as more than, say 100,
iterations are needed to solve the linear system, the preconditioner must be reformed.

Within this adaptive framework, it provides an extremely robust fully-algebraic preconditioner.
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4.2. Forcing term

Each iteration of the Newton–Krylov method implies the integration of the constitutive law,
the computation of the tangent matrix and the solution of the linearised system. From our
experience, the expression of the forcing term (11) can cause a quite slow convergence of the
non-linear process and thus be computationally costly.

Following this observation, we propose another expression of the forcing term. According
to our experience, it ensures a safer convergence, at the cost of a little oversolving. So we
define the following expression:

gSafekþ1 ¼
g0 k ¼ 0
maxðminðgk=2; gReskþ1Þ; gminÞ k[0; cg2k � 0:1
minðgk=2;maxðgReskþ1; cg

2
kÞÞ k[0; cg2k[0:1

8<
: ð12Þ

Finally, the following parameters c ¼ 0:9 and g0 ¼ 0:9 were chosen, as in Eisenstat and
Walker (1996) and Kelley (2003), and gmin ¼ 10�4.

5. Results

This section presents the application of the proposed Newton–Krylov method in order to eval-
uate its performance and its robustness.

5.1. Moisture separator reheater

This calculation is a problem of solid mechanics; it models an equipment of nuclear power
plants called the moisture separator reheater, whose function is to improve the quality of the
water vapour in the secondary circuit before re-injection. The material of the reheater obeys

Table 1. Comparison of the three solution approaches.

Resolution time

Linear solver MUMPS PETSc+LDLT_SP PETSc+LDLT_SP+ Forcing term

Resolution time 9176 s 8530 s 5554 s
CPU time gain/MUMPS / 7% 39%

Figure 2. Mesh of the moisture separator reheater.
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an elasto–plastic constitutive law with isotropic non-linear hardening; a large deformation
kinematics is used. The tetrahedral mesh is of order 2 and generates a problem of 1,084,773
unknowns (Figure 2). The tangent matrix of this problem is symmetric.

In order to perform some comparisons, we first started the calculation with the classical
Newton’s method, using the direct solver MUMPS (Amestoy, Guermouche, L’Excellent, & Pra-
let, 2006) as a linear solver, then the CG of the library PETSc (Balay et al., 2011) precondi-
tioned by LDLT_SP and finally with the Newton–Krylov method using the CG of PETSc
with LDLT_SP. The simulations were done on a parallel cluster using eight processors.
Table 1 shows the different computation times and the gains compared to the calculation with
MUMPS. Figures 3 and 4, respectively, indicate the number of Newton’s iterations made by
the three calculations and the number of CG iterations for each time step by the last two cal-
culations.

Figure 3. Comparision of the number of Newton’s iterations.

Figure 4. Comparision of the number of Krylov iterations.
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In Table 1, we observe the very low gain provided by the use of the iterative solver
PETSc +LDLT_SP compared to the use of the MUMPS direct solver. This is quite surprising
given the non-linear problem is quite large. Some explanations are given below.

On the contrary, the gain of the inexact approach PETSc +LDLT_SP +Forcing term is
quite significant. In Figure 3, we note that the inexact method needs more Newton’s iterations
on the first time step than the exact one, but, from the fifth time step, the number of iterations
is equal to that of the other two methods and it becomes even lower from step 7. This situa-
tion is described in the literature (Eisenstat & Walker, 1996); it is due to the fact that an accu-
rate resolution of the linearised system far from equilibrium can be counterproductive. The
number of Krylov iterations is thereby decreased (see Figure 4).

Let us give some more insight on the CPU time of each solution phase:

We first consider the statistics of the use of the direct and the iterative method within the
Newton’s method. From that, the respective merits of each solvers are obvious:

• The cost of the direct methods is related to the factorisation of the matrix, the resolu-
tion itself (backward forward substitution) is very fast.

• The cost of iterative methods is related to the resolution of the linear system, the pre-
conditioning is quite fast.

Now we consider the statistics of the iterative method within the Newton–Krylov method;
it can be noted that:

• The low cost of the preconditioning phase is kept as in the case of an iterative method
within the Newton’s method.

• The low cost of the solution phase is kept as in the case of an direct method within the
Newton’s method.
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That is, the Newton–Krylov method is a synthesis of the strengths of the previous
approaches. Thanks to this property, the Newton–-Krylov method exhibits good performances
on large problems.

6. Conclusions

This paper presents an application of an inexact Newton method on an industrial problem of
non-linear solid mechanics. To carry out this study, we have proposed a specific expression
of the forcing term and a robust fully-algebraic preconditioner. Thus equipped, our Newton–
Krylov method proved to be both efficient and robust on the studied very non-linear problem.
Other non-linear calculations, including thermo-hydro-mechanics, have been successfully
completed using this method.

When solving a non-linear problem, there are three different CPU time consuming phases:
the integration of the constitutive law, the preconditioning/factorisation phase and the solution
phase. It has been shown in this paper that the proposed method saves computation time both
on the preconditioning/factorisation phases (compared to a conventional Newton’s method
with a direct solver) and the solution phase (compared to a conventional Newton’s method
with an iterative solver). Thus, if most of the time of a simulation is spent in the integration
of the constitutive law, large time savings cannot be expected. Therefore, this Newton–Krylov
method is suitable for large problems, where most of the time is spent in the preconditioning
and solution phases.

References
Adams, M. (January 1999). Parallel multigrid algorithms for unstructured 3d large deformation elastic-

ity and plasticity finite element problems. Technical Report UCB/CSD-99–1036, EECS Department,
University of California, Berkeley.

Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., & Pralet, S. (2006). Hybrid scheduling for the paral-
lel solution of linear systems. Parallel Computing, 32(2), 136–156.

Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, … Zhang, H. (2011). PETSc
Web page. Retrieved from http://www.mcs.anl.gov/petsc

Code_Aster. (2011a). Code_Aster web page. Retrieved from http://www.code-aster.org
Code_Aster. (2011b). Overview of the conjugate gradient: GCPC and use of PETSc. Retrieved from

http://www.code aster.org/V2/doc/default/en/man r/r6/r6.01.02.pdf
Dostal, Z., Horak, D., & Kucera, R. (2006). Total FETI – an easier implementable variant of the FETI

method for numerical solution of elliptic PDE. Communications in Numerical Methods in Engineer-
ing, 22(12), 1155–1162.

Eisenstat, S.C., & Walker, H.F. (1996). Choosing the forcing terms in an inexact Newton method. SIAM
Journal on Scientific Computing, 17(1), 16–32.

Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., & Rixen, D. (2001). FETI-DP: A dual-primal unified
FETI method. I. A faster alternative to the two-level FETI method. International Journal for Numer-
ical Methods in Engineering, 50(7), 1523–1544.

Farhat, C., & Roux, F.-X. (1991). A method of finite element tearing and interconnecting and its parallel
solution algorithm. International Journal for Numerical Methods in Engineering, 32(6), 1205–1227.

Kelley, C.T. (1995). Iterative methods for solving linear and nonlinear equations. In: Frontiers in applied
mathematics, Vol. 16. Philadelphia, PA: SIAM.

Kelley, C.T. (2003). Solving nonlinear equations with Newton’s method. Philadelphia, PA: SIAM.
Mandel, Jan. (1993). Balancing domain decomposition. Communications in Numerical Methods in Engi-

neering, 9, 233–241.
Saad, Y. (2005). Iterative methods for sparse linear systems. Philadelphia, PA: SIAM.
Shewchuk, J.R. (1994). An introduction to the conjugate gradient method without the agonizing pain.

Technical Report, University of California at Berkeley.
Vanek, P., Mandel, J., & Brezina, M. (1996). Algebraic multigrid by smoothed aggregation for second

and fourth order elliptic problems. Computing, 3, 179–196.

384 N. Tardieu and E. Cheignon

http://www.mcs.anl.gov/petsc
http://www.code-aster.org
http://www.code%20aster.org/V2/doc/default/en/man%20r/r6/r6.01.02.pdf



