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In this study, we propose a numerical technique which combines a perturbation approach
(asymptotic numerical method) and a multilevel finite element analysis. This procedure
allows dealing with instability phenomena in the context of heterogeneous materials where
buckling may occur at both macroscopic and/or microscopic scales. Different constitutive
relations are applied and geometrical non-linearity is taken into account at both scales.
Numerical examples involving instabilities at both micro and macro levels are presented.

Dans cette étude, nous proposons une technique numérique qui combine une technique de
perturbation (Méthode Asymptotique Numérique) et une analyse par éléments finis multi
échelles. Cette procédure permet de traiter les problèmes d’instabilités dans le cadre des
matériaux hétérogènes où ces instabilités peuvent survenir à la fois au niveau micro et au
niveau macro. Différentes relations de comportement sont utilisées et la non linéarité
géométrique est prise en compte à deux échelles. Des exemples numériques impliquant des
instabilités au niveau micro et macro sont présentés.

Keywords: asymptotic numerical method; nonlinear homogenisation; multiscale finite
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1. Introduction

The instability phenomena in heterogeneous materials containing dispersions of multiple phases
in the microstructure are of structural and/or material types. These phenomena can occur at both
the macro and micro scales and may influence each other. Prior work in this domain has been
carried out by Abeyaratne and Triantafyllidis (1984). They showed that unit elastomers with
periodic holes lose rank-one ellipticity even though the elastomer possessed rank-one ellipticity.
Afterwards, many authors have studied these phenomena in the heterogeneous materials; e.g.
(deBotton, Hariton, & Socolsky, 2006; Geymonat, Müller, & Triantafyllidis, 1993;
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Lopez-Pamies & Ponte Castañeda, 2005; Michel, Lopez-Pamies, Ponte Castanñeda, & Trian-
tafyllidis, 2007; Miehe, Schröder, & Becker, 2002).

In our previous works (Nezamabadi, Yvonnet, Zahrouni, & Potier-Ferry, 2009, 2010a), we
have proposed a numerical method, called “the Multiscale-ANM technique”, to solve non-linear
problems in the framework of heterogeneous materials. This technique combines two numerical
tools. The first one is the multiscale finite element method (FE2) (Feyel, 2003) which is based
on multiscale computational procedures. In this method, the macroscopic behaviour at every
material point of the macrostructure is found by solving a non-linear finite element problem on
the representative volume element (RVE) associated with the micro scale. The second tool
concerns the numerical procedure to solve the resulting non-linear multiscale problem. It is
based on the asymptotic numerical method (ANM) (Cochelin, 1994; Cochelin, Damil,
& Potier-Ferry, 2007). It consists of expanding the main variables of the problem into power
series with respect to a path parameter. By comparison with Newton–Raphson procedure, ANM
can be considered as a high-order predictor without the need of any iteration. Many applications
of ANM to structural and fluid mechanics show the performance of this technique.

In the framework of the multiscale-ANM, since the microscopic and macroscopic non-lin-
ear problems to be solved are transformed into a sequence of linear problems, localisation and
homogenisation tensors can be constructed for each linear local problem in the homogenisation
context. We then compute the tangent stiffness matrix which is the same for all the linear local
problems allowing a significant reduction of computation time since only one decomposition
of this matrix is needed for the asymptotic steps. The length of each step is a posteriori esti-
mated using the previously computed terms of the series. An algorithm which naturally adapts
the step length can then be obtained. Hence, instability phenomena can be analysed with high
accuracy and efficiency. In this paper, we revisit the multiscale-ANM technique, especially by
applications to bending strength of beams. The capability of this method to deal with the local
and global instabilities has been shown again through an application.

The layout of this paper is as follows: in Section 2, the formulation of micro–macro prob-
lem and the perturbation procedure applied to the multiscale problem are described briefly. In
Section 3, accuracy and efficiency of the approach are evaluated through a numerical example
involving instability phenomena.

2. Multiscale formulation of the mechanical problem

2.1. Macroscopic and microscopic variational formulations

Let X a domain in Rd, d being the space dimension, associated with a macroscopic structure
and @X its external boundary, both in their reference configuration. The structure is subjected
to prescribed displacements and forces on the disjoint complementary parts of the boundary
@Xu (the Dirichlet boundaries) and @Xt (the Neumann boundaries), respectively. In the
framework of a total Lagrangian formulation, the weak form of the macroscopic equilibrium
equation can be written in the absence of body forces as follows:

Find �u 2 SðXÞ satisfying the essential boundary conditions, i.e. �u ¼ ~u on @Xu, with ~u
being the prescribed displacements, and SðXÞ the space of sufficiently smooth functions, such
that:

Z t

X

�P : d�F dX ¼ k
Z
@Xt

�f � d�u dC in X; ð1Þ

where �P is the first macroscopic Piola–Kirchhoff stress tensor, �F (�F ¼ r�uþ I) denotes the
macroscopic deformation gradient tensor and hence, d�F ¼ rd�u. �f represents the prescribed
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load on the external boundary @Xt, k is a loading parameter and d�u 2 S0ðXÞ, S0ðXÞ being
the space of all displacement fields vanishing on @Xu and sufficiently smooth on X. Note that
A : B ¼ Aij Bji.

For the microscopic scale, the material is assumed to be heterogeneous with a periodic
microstructure, characterised by a RVE that occupies a domain x 2 Rd in its reference con-
figuration. The weak form associated with the microscopic problem is:

Find u 2 SðxÞ satisfying the microscopic boundary conditions, i.e. Equation (6), such that:

Z t

x
P : dF dx ¼ 0 in x; ð2Þ

where du 2 S0ðxÞ, and SðxÞ and S0ðxÞ being defined as previously and u is the microscopic
displacement.

At the microscopic scale, we assume that the constitutive relations are known in each phase
of the RVE. Generally, the material behaviour of each microstructural constituent (r) (e.g.
matrix, inclusion, etc.) can be described by a relationship between the second Piola–Kirchhoff
stress tensor, S and the Green–Lagrange strain tensor, c (c ¼ 1

2ðtFFþ IÞ):

S ¼ F ðrÞðcÞ; ð3Þ

where S is related to P through P ¼ FS. By this definition, we emphasise that the present
framework is not specifically designed for any particular constitutive law; the microstructural
material behaviour may be very complex and includes a physical and/or geometrical evolution
of the microstructure, when modelled on the microstructural level. Moreover, in the context
of the ANM, other constitutive laws (including inelastic behaviours) have been developed
(see examples in hyperelasticity, viscoplasticity and plasticity in previous ANM papers;
(Assidi, Zahrouni, Damil, & Potier-Ferry, 2009; Descamps, Cao, & Potier-Ferry, 1997;
Nezamabadi, Zahrouni, & Yvonnet, 2011; Zahrouni, Aggoune, Brunelot, & Potier-Ferry,
2004)).

The macroscopic and microscopic problems are coupled through two main relations. First,
as the constitutive relation is not explicitly given at the macroscopic level, the effective stress
tensor �P is obtained by considering an average value of the microscopic stress field over the
RVE. This relation is expressed as follows:

�P ¼ hPi ¼ 1

jxj
Z
x
Pdx; ð4Þ

where jxj represents the volume of the considered RVE. The second relation concerns the
mean value of the microscopic deformation gradient assumed in the form:

�F ¼ hFi ¼ 1

jxj
Z
x
Fdx: ð5Þ

This relation is deduced from the boundary conditions (BC) imposed on the RVE (Miehe,
2003). Generally, three main BC can be considered for the RVE as linear deformations, uni-
form tractions or periodic constraints. Here, we consider periodic conditions on the boundary
of the RVE which can be recasted into the following form:

uþ � �u ¼ ð�F� IÞ � ðXþ � �XÞ on @x; ð6Þ
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where the exponents þ and � are associated with node indices on opposite sides of the
RVE. Note that the BC depend on the macroscopic deformation tensor �F.

2.2. Numerical algorithm

The micro and macro formulations are described by the non-linear system of Equations
(1)–(6). Solution of this non-linear multiscale problem is sought using the ANM. In the
context of ANM, both variables of macroscale and microscale of the considered multiscale
problem are expanded into power series. We propose to represent these variables in a mixed
vector U ¼ ð�u; �P; u;P; . . .Þ. The perturbation technique is applied to U and to the load param-
eter k, leading to the following expression:

UðaÞ
kðaÞ

� �
¼ U0

k0

� �
þ
XN
p¼1

ap
Up

kp

� �
: ð7Þ

where ð:ÞðaÞ refers to quantities defined continuously with respect to a scalar path parameter
a to be defined, ð:Þ0 denotes a known initial solution such that ð:Þð0Þ ¼ ð:Þ0, N is the trunca-
tion order of the series, and ð:Þp indicates a term at order “p” that has to be determined.

By using Equation (7), the problem (1) is transformed to a sequence of problems:

Z t

X

�Pp : d�FdX ¼ kp

Z
@XF

f � d�udC 8p ¼ 1; . . . ;N : ð8Þ

Since the macroscopic constitutive relation is unknown, it is needed to carry out a compu-
tation on the microscopic problem to extract it.

The microscopic problem is defined as follows:

R
x

tP : dF dx ¼ 0
S ¼ F ðrÞðcÞ
P ¼ F � S

c ¼ 1
2ðtF � Fþ IÞ

F ¼ ruþ I

8>>>><
>>>>:

in x;

þBC : uþ � u� ¼ ð�F� IÞðXþ � X�Þ on @x:

ð9Þ

The ANM expansion of Equations (9) leads also to a sequence of linear problems which can
be solved partly at each order by considering the coupling relations between macroscopic and
microscopic problems. In this context, the obtained solution permits one to construct numeri-
cally a localisation tensor. Hence, one can obtain the following relation between microscopic
and macroscopic deformation gradient at any order “p” (see Nezamabadi et al., 2009, 2010a):

Fp ¼ A;X : �Fp þ unl
p;X; ð10Þ

where A; X is a fourth-order tensor identified as a localisation tensor and unlp;X is a second-
order tensor. This latter is a residual term depending on the solutions of the computed orders
before the order “p”.

To obtain the homogenised constitutive relation, we consider the microscopic constitutive
relation at order “p”:
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Pp ¼ HðrÞ : Fp þ Pnl
p : ð11Þ

where HðrÞ represents the constitutive tensor associated with phase (r) and Pnl
p is a residual

term which depends on the solutions at the previous “p – 1” orders. By replacing the relation
(10) in (11):

Pp ¼ HðrÞ : A;X : �Fp þHðrÞ : unl
p;X þ Pnl

p : ð12Þ

and by setting P�nl
p ¼ HðrÞ : unlp;X þ Pnl

p and L ¼ HðrÞ : A;X, we obtain:

Pp ¼ L : �Fp þ P�nl
p : ð13Þ

The effective stresses can be obtained at each order “p” by averaging the Equation (13):

�Pp ¼ L : �Fp þ Pnl
p ; ð14Þ

where �L ¼ 1
jxj

R
x Ldx and �Pnl

p ¼ 1
jxj

R
x P�nl

p dx.
By introducing (14) in Equation (8), we obtain the final linear form of the macroscopic

problem at order “p”:

Z
X

t �Fp : �L : d�FdX ¼ kp

Z
@Xt

f � d�ud� �
Z
X

t �P
nl
p : d�FdX: ð15Þ

The tangent modulus, �L, is computed numerically from constructed problems at the micro-
scopic level. The procedure is to solve the problem (15) which gives the displacements at the
macrostructure �u. Then, at each integration point, the tensor �F can be calculated which allows
one to finish the computations of different variables at the microscopic level.

Details of the solving procedure of multiscale problems using ANM are given in our pre-
vious papers; (Nezamabadi et al., 2009, 2010a).

Furthermore, in the finite element procedure, the discretisation of the RVE (microscopic
level) and of the macrostructure induces p and P integration points, respectively. The compu-
tational cost in terms of local and global variables is then of order Oðp� PÞ. This cost
increases quickly according to the structure size (number of elements) which is studied. Here,
the parallelisation procedure is employed to reduce computational costs. For that purpose,
computations associated with groups of integration points are distributed on several
processors. As a result, computational costs are drastically reduced without developing
specific algorithm.

3. Numerical application to the plastic microbuckling of long fibre composites

In our previous works cited above, the multiscale-ANM technique has shown its efficiency in
dealing with the microscopic and/or macroscopic instabilities. In this work, we show once
more the robustness of this method through a main example: the microbuckling of long fibre
composites. As is well known (Grandidier, Casari, & Jochum, 2012), the failure of these
materials yields from a local fibre microbuckling and this instability is mainly governed by
fibre waviness and matrix plastic behaviour. Nevertheless, the failure level is not a pure mate-
rial property and it depends also on macroscopic structural quantities like specimen thickness
or stacking sequence and it is not the same in bending and in pure compression(Wisnom,

284 S. Nezamabadi et al.



1991; Wisnom, Atkinson, & Jones, 1997; Drapier, Grandidier, & Potier-Ferry, 1999, 2001;
Grandidier et al., 2012). In this paper, we only focus on plate thickness. To our knowledge,
this thickness effect has not yet been described by a multiscale concurrent modelling.

The proposed problem has been discretised using two-dimensional finite elements in the
plane stress framework. The macrostructure has been meshed with eight-node quadrangular
elements whereas the microstructure has been meshed with nine-node quadrangular elements.

In the context of ANM, the truncation order N of the series and the accuracy parameter d
which allows limiting the length of each asymptotic step in a continuation procedure, have to
be determined. In all the tests presented here, we have solved the non-linear problems using
ANM with N = 15 and d ¼ 10�8. For all the examples, Poisson’s ratio is equal to .3.

The influence of microbuckling of the fibre with the initial imperfection on the
macrostructure is assessed here by studying the bending of a beam made of a fibre-reinforced
composite material. We consider a bidimensional representation of a laminate (see Figure 1),
where e2 is the 90° direction corresponding to the loading direction. The imperfection magni-
tude (v0) is constant through the thickness. One fibre is chosen as the microstructure and the
periodic BC at microscopic scale as described in Equation (6) are used. For the applications
that we target in the present work, we consider a linear Saint–Venant Kirchhoff constitutive
relation for the fibre and an elastoplastic constitutive law based on the Ramberg–Osgood
relation (see, e.g. Zahrouni, Potier-Ferry, Elasmar, & Damil, 1998) for the matrix. The latter
relation is written in the 3D case in the following form:

Ec ¼ ð1þ mÞ Sd � ð1� 2mÞP Iþ 3

2
a

Seq

ry

� �n�1

Sd; ð16Þ

where E, m, a, n and ry denote, respectively, the Young’s modulus, Poisson’s ratio, yield off-
set, hardening component and the yield stress. P ¼ �1

3 S : I is the equivalent hydrostatic

stress, Sd is the stress deviator defined by Sd ¼ Sþ P I. Seq is the von-Mises equivalent stress
defined as follows:

Seq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
Sd : Sd

r
: ð17Þ

1e

e2

v0

Figure 1. The microstructure of long fibre composite with the imperfection magnitude.
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The mechanical properties employed are shown in Table 1 which corresponds to a T300/
914 composite. The parameters of the non-linear behaviour of the matrix are deduced from
the work presented in Wisnom (1991). Figure 2 shows the responses under compression
mode for different imperfection magnitudes (Drapier et al., 2001).

To show the influence of plastic microbuckling on the macrostructure response, we use a
microstructure in which the imperfection magnitude of fibre is 3 lm. As the macrostructure,
we consider a simply supported beam submitted to the force distribution kP on the top edge
(see Figure 3); but, in order to evaluate the influence of the thickness on the failure of
composites, two thicknesses of beam are studied: 1.5 and 3mm.

λ P

40 mm

80 mm80 mm

Figure 3. Geometries and BC of the rectangular beams made of the fibre reinforced composites; two
considered beam thicknesses: 1.5 and 3mm, and p= 1N/mm.
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Figure 2. The macroscopic stress–strain diagrams for the different imperfection magnitudes.

Table 1. Characteristics of T300/914 material and data used for the plastic microbuckling study.

Fibre T300 (isotropic) Matrix 914 (isotropic) Imperfection

Ef= 230GPa Em= 4500MPa k0 = 200p μm
mf = .3 Gm= 1600MPa v0 = 3 μm
rf= 5 μm mm = .4 /0=3
f= .6 n= 3

rmy = 60MPa
emy = 2%
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The load-displacement responses for two beam thicknesses are presented in Figure 4(a),
which shows the vertical displacement of the point located on the top middle of beam. This
figure demonstrates the influence of microscopic instability on the macroscopic one: we can
observe a slight change after the points B and B’, the loss of ellipticity points. This is mainly
caused by the occurrence of microscopic instabilities at this point. The deformed shapes of the
microstructure at the integration point located in the top middle (in a 3� 3 integration point
scheme) of the top middle element at points A, B and C of the load-displacement curve for the
beam with thickness of 3mm (see Figure 4(a)) are presented in Figure 4(c). There is a signifi-
cant difference between these deformed microstructural shapes despite the small variation of
macroscopic load, which illustrates the relationship between local and global instabilities.

Figure 4(b) shows the macroscopic stress–strain diagrams at the considered integration
point for the two beam thicknesses. In this figure, it can be observed that the thinner beam
has the greater failure stress in comparison with the thicker beam (see points B and B’ in
Figure 4(b)). This phenomenon coincides with the fact shown in Drapier et al. (1999, 2001)
that a decrease in thickness yields an increase in failure stress of fibre-reinforced composite.
In the present case, the influence of beam thickness is moderate, but it can be larger for very
thin plates (Grandidier et al., 2012). It is also worth noting that the points B and B’, the
maximum stress, correspond the points of the loss of ellipticity (see Figure 4(a) and (b)).

4. Conclusion

The multiscale-ANM technique that seems an efficient numerical technique in the context of
heterogeneous materials to deal with instabilities which may occur on both the macro and
micro levels, was revisited in this paper. This technique is the combination of the multiscale
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Figure 4. (a) The load-displacement diagrams of the plastic microbuckling problem for beam
thicknesses of 3 and of 1.5mm; (b) The macroscopic stress–strain diagrams at the integration point
located in the top middle (in a 3� 3 integration point scheme) of the top middle element for beam
thicknesses of 3mm and of 1.5mm; and (c) Deformed shapes of microstructure at the considered
integration point at points A, B and C for beam thickness of 3mm, deformation scale = 10.
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FE2 and the ANM. In this model, large displacements are taken into account in both macro
and micro levels, and linear and non-linear constitutive relations can be implemented. The
accuracy and the efficiency of the proposed procedure have also been shown in our previous
papers; (Nezamabadi et al., 2009, 2010a).

The studied numerical example concerns the compression of a fibre-reinforced composite
material with a microstructure in which we have considered only one fibre with initial imper-
fection. This example presents elastoplastic behaviour of the matrix and an elastic buckling of
the fibre. The obtained results illustrate another time the capability of the proposed algorithm
to deal with instabilities in the context of heterogeneous materials. Moreover, by considering
two different values of the beam thickness at macroscopic scale, we show that the thinner the
beam, the larger its strength for a beam under bending loads.

However, in this example, we have observed an accumulation of asymptotic steps and the
loss of ellipticity close to the maximum load. These reasons reinforce the idea of extending
our algorithms to a formulation based on the second-order homogenisation. Indeed, this formu-
lation allows improving the conditioning of the problems that exhibit a loss of ellipticity and,
also, dealing with the multiscale problems for which the microstructure size is of the same
order as the characteristic structure size; (Nezamabadi, Zahrouni, Yvonnet, & Potier-Ferry,
2010b). Ongoing work concerns applications of this technique to the modelling of local
instabilities with loss of ellipticity.
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