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Large solid propellant rocket motors may be subjected to aero-acoustic instabilities arising
from a coupling between the burnt gas flow and the acoustic eigenmodes of the
combustion chamber. Given the size and cost of any single firing test or launch, it is of
first importance to predict and avoid these instabilities at the design level. The main
purpose of this paper is to build a numerical tool in order to evaluate how the coupling of
the fluid flow and the whole structure of the motor influences the amplitude of the aero-
acoustic oscillations living inside of the rocket. A particular attention was paid to the
coupling algorithm between the fluid and the solid solvers in order to ensure the best
energy conservation through the interface. A computation of a subscaled version of the
Ariane 5 solid propellant engine is presented as illustration.

Les moteurs à propergol solide sont parfois le siège d’instabilités aéro-acoustiques résultant
d’un couplage entre l’hydrodynamique des gaz brûlés et les modes acoustiques de la cham-
bre de combustion. Au vu du coût d’un essai, il est important de pouvoir prédire l’apparition
de ces instabilités au moment de la conception. L’ objectif de cette étude est la mise au point
d’une chaîne de couplage permettant d’évaluer l’impact des interactions fluide-structure sur
l’amplitude des oscillations aéroacoustique présentes au sein du propulseur. Une attention
particulière a été portée à l’algorithme de couplage entre les solveurs fluide et solide afin
d’assurer une bonne conservation de l’énergie à l’interface fluide-structure. Une simulation
d’une échelle réduite du moteur d’Ariane 5 est présentée comme illustration.

Keywords: large eddy simulation; Arbitrary Lagrangian Eulerian method; fluid–structure
interaction
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1. Introduction

The Ariane 5 solid rocket motor (SRM), named P230, is one of the most impressive solid
rocket motors ever constructed in Europe. It is about 37m high for a radius of 1.5m, with an
initial mass of about 280 tonnes. The two SRMs represent 90% of the thrust at take-off, burn-
ing out during 130 s and consuming approximately 2 tonnes of propellant each second. They
are finally ejected when the rocket has reached an altitude of approximately 70 km and a
speed of 2000m/s. Their corresponding thrust is unfortunately not stationary during the firing,
and some oscillations may occur. This might jeopardise the integrity of the payload due to
vibrations. The phenomenon has been investigated extensively over the last decades (Culick,
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1966; Fabignon et al., 2003; Flandro, 1986; Kourta, 1996a, 1996b; Lupoglazoff & Vuillot,
1996; Vuillot, 1995). This mechanism is a coupling between the acoustic mode and the
hydrodynamic perturbation, as represented in Figure 1. An unstable shear layer in the mean
flow produces vortices which are convected until they impact the head of the nozzle. The
acoustic wave generated by this impact can move back upstream since the flow is subsonic.
It perturbs the unstable shear layer, intensifying the generation of vortices. Such an
aero-acoustic mechanism can lead to high-amplitude fluctuations when the underlying
frequency is close to the frequency of an acoustic mode of the whole geometry. Note that
another instability mechanism relying on the intrinsic hydrodynamic instability of the
boundary layer which develops over the propellant burning surface can also lead to significant
pressure oscillations (Lupoglazoff & Vuillot, 1996). As far as the P230 SRM is concerned,
the experiment shows that mainly the first and second acoustic modes are excited during three
outbursts, the first being the stronger one.

2. Presentation of the numerical software

Classically, the fluid–structure interaction (FSI) problem consists of solving simultaneously
both the fluid and the structural equations where some variables of one act as a boundary
condition for the other. Formally, the coupled fluid–structure problem may be written as:

d

dt
ðAW Þ þ FcðW ; x; _xÞ ¼ RðW ; xÞ ð1Þ

M
d2

dt
ðUÞ þ D

d

dt
ðUÞ þ KU ¼ f extðW ðx; tÞ; xÞ ð2Þ

In this semi-discrete formulation already presented by Lesoinne (Lesoinne & Farhat, 1993),
dots stand for time derivatives, x is the displacement or position vector of the fluid grid points,
W is the fluid state vector, A results from the discretisation of the flow motions equations,
Fc ¼ F � _xW is the vector of Arbitrary Lagrangian Eulerian (ALE) convective fluxes, F is the
vector of convective fluxes, R is the vector of diffusive fluxes, U is the structural displacement
vector and finally M, D and K are, respectively, the mass, damping and stiffness matrices of the
structural system. In order to solve the problem of FSIs, we have chosen to use a Conventional
Serial Staggered (CSS) method with subcycling (Farhat & Lesoinne, 1996; Piperno & Farhat,
2001; Piperno, Farhat, & Larrouturou, 1995). Softwares we used are shortly presented in this
section, then the CSS method is reminded and the mesh movement technique is explained.

Figure 1. Instabilities mechanism.
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2.1. Fluid solver

Two different modelling tools are used for this work. First of all, aero-acoustics calculations are
performed with the large eddy simulation (LES) solver AVBP (Schoenfeld & Rudgyardt, 1999)
developed at CERFACS and IFP Energies nouvelles and widely validated for aero-acoustic
applications (Schmitt, Poinsot, Schuermans, & Geigle, 2007). AVBP is designed to solve the
Navier–Stokes equations for three-dimensional compressible flows over unstructured meshes.
The numerical results presented in this paper correspond to a Lax–Wendroff scheme which is
2nd order in both space and time. Note however that the methodology developed is compatible
with any of the more accurate schemes available in AVBP (3rd order, 4th order). The
Lax–Wendroff scheme was used in this preliminary study to reduce the CPU time.

2.2. Structure solver

The structural deformations are computed with the structural analysis software MARC, using
a finite element method (FEM) and developed by MSC-Software. It is well suited for the
treatment of non-linear materials, commonly encountered in solid propulsion. It allows static,
dynamic and modal computations. The numerical scheme used in our computations is the
trapezoidal Newmark method (see Equation (3)) (Hughes, 1987), which has already been
advocated for coupling applications (Giordano et al., 2005; Piperno & Farhat, 2001). It
consists of writing the structure’s equilibrium at the time tnþ1, knowing its state at tn and the
external force f nþ1 at tnþ1:

4

Dt2s
M þ 2

Dts
Dþ K

� �
Unþ1 ¼ f nþ1 þ 4

Dt2s
M þ 2

Dts
D

� �
Un þ 4

Dts
M þ D

� �
_Un þM €Un ð3Þ

2.3. Coupling algorithm

In most cases, the time step Dtf for the fluid is much smaller than the structural one Dts.
Then, we consider that the coupling time step Dtc is equal to Dts. In the CSS method (Farhat
& Lesoinne, 1996; Piperno et al., 1995; Piperno & Farhat, 2001), each coupling iteration
which allows to advance the solution from tn to tnþ1 ¼ tn þ Dts consists of four steps:

(1) Predict the structural displacement unþ1p at time tnþ1. A common predictor is:

unþ1p ¼ un þ a0Dts _u
n þ a1Dtsð _un � _un�1Þ ð4Þ

It is worth noticing that the choice of a0 ¼ 1 and a1 ¼ 0 corresponds to a first-order
predictor, while a0 ¼ 1 and a1 ¼ 1=2 defines a second-order one.

(2) Advance the fluid system to tnþ1 ¼ tn þ Dts while updating the position of the fluid
grid in order to match the position unþ1p at the end of the coupling steps. Because
Dtf\Dts this step is achieved by subcycling the fluid solver (typically in our computa-
tions, one structural iteration is performed every 100 fluid iterations).

(3) Transfer the fluid pressure Pnþ1
S to the structure. Note that Pnþ1

S is not necessarily the
fluid pressure at the interface at time tnþ1. Many choices for Pnþ1

S can be found in the
literature. The instantaneous pressure field of the fluid at the interface or its integral
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over the subcycled time are common examples. The impact of this choice is discussed
in a later section.

(4) Finally integrate the structure to tnþ1 with the external force f nþ1 of Equation (2)
being deduced from Pnþ1

S .

The OpenPALM coupler co-developed by CERFACS and ONERA is used to synchronise
the fluid and structure solvers (Buis, Piacentini, & Déclat, 2006). It also provides data
transmission between the different tools at the fluid–structure interface without large intrusion
in the different solvers. As a first step, the interpolation between the non-conformal meshes is
achieved with a first-order method.

2.4. Mesh deformation

A classical issue in fluid computation with deformable domain is the mesh deformation when
the displacement of the boundary is unknown by advance, which is typically the case in
fluid–structure computations. Many methods designed to transmit the movement of the bound-
ary to the internal nodes can be found in the literature. The most popular are the linear spring
analogy (Batina, 1990), the torsional spring method (Farhat, Degand, Koobus, & Lesoinne,
1998) or the pseudo-solid approach (Nielsen & Anderson, 2002). The method we choose to
implement in AVBP consists of requiring that the displacement dxi of every node i is the
weighted average of the displacement of its surrounding vertices j.

dxi ¼ 1P
j aj

X
j

ajdxj ð5Þ

Classical weight aj is the inverse of the distance between the nodes i and j. This set of
equations can be formulated as a linear problem Sdx ¼ b, where b contains the contribution
of the boundary nodes, which have an imposed displacement. This is solved with a standard
conjugate gradient approach. The conjugate gradient method is never fully converged, but
instead is run until the residuals have decreased to the limit defined by the user. The mesh
deformation is taking into account in AVBP with the classical ALE equations. In order to
ensure the Geometric Conservation Law (GCL) (Lesoinne & Farhat, 1996), the velocity of

the fluid/structure interface is kept constant during the subcycling and is defined as unþ1p�unp

Dts
.

3. 1D acoustic configuration for code verification

Aero-acoustic instabilities are known to be extremely sensitive to energy loss and gain. When
considering the impact of FSI on such instabilities, it is thus mandatory to make sure that the
coupling algorithm does not add/remove energy to the system. To this respect, a specific test
case was designed in order to demonstrate the capability of the numerical chain to couple the
fluid and solid domains in a virtually conservative way.

3.1. Set-up description

The set-up is composed of an adiabatic chamber filled with gas, closed at the left-hand side by
a fixed wall and at the right-hand side by a deformable block of rubber which is fixed on its
right side, see Figure 2. The fluid chamber has a section S0 and length l0 when the block of
rubber is at rest at x ¼ l0. The rubber of density qS has a Young modulus E and a Poisson ratio
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m, and is fixed at x ¼ L0. Displacement (or position, depending on the context), velocity and
acceleration in the solid at time t are, respectively, UðtÞ, _UðtÞ and €UðtÞ. Starting from rest, the
fluid part is then disturbed with a pressure Dirac impulsion. After some iterations, coupled
eigenfrequencies appear while looking at time evolution of the pressure signal in the chamber.

The following assumptions are first made for the system:

• The gas is perfect.
• Dissipation is neglected in both fluid and solid.
• The deformations of the solid are small, which allow to approximate the interface

location by l0.

3.2. Acoustic modelling

The following expressions can be obtained for the speed of propagation in the fluid (CF) and
solid (CS), respectively:

CF ¼
ffiffiffiffiffiffiffiffiffi
cRT

p
CS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� mÞE

qSð1þ mÞð1� 2mÞ

s

Then, P being the oscillating pressure and _U being the oscillating velocity, the following
wave decomposition holds for both fluid and solid:

PF;S ¼ Aþ
F;Se

jkF;Sx þ A�
F;Se

�jkF;Sx ð6Þ

_UF;S ¼ 1

qF;SCF;S
ðAþ

F;Se
jkF;Sx � A�

F;Se
�jkF;SxÞ ð7Þ

where KF;S ¼ x=C is the wave number. Using (6) and (7) along with the appropriate bound-
ary and jump conditions:

• _UFð0Þ ¼ _USð0Þ ¼ 0 (impermeable wall condition for the fluid and embedding for the
solid).

• _UFðl0Þ ¼ _USðl0Þ (velocity continuity at the fluid–structure interface located at l0).

Figure 2. Acoustic coupling system.
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• PFðl0Þ ¼ PSðl0Þ (stress continuity at the fluid–structure interface located at l0).

It follows that any eigen angular frequency xc is solution of the following dispersion rela-
tion (8):

tanðxc
CS
ðl0 � L0ÞÞ

tanðxc
CF
ðl0ÞÞ ¼ qSCS

qFCF
ð8Þ

This relation allows to find the coupled eigenmodes of the system which, depending from the
sub-systems properties, may differ from the eigenfrequency of the fluid and solid taken alone.

3.3. Energy consideration

Following Piperno and Fahrat (Piperno & Farhat, 2001), it is possible to calculate the numerical
amount of energy imbalance created at the fluid–structure interface DE in one oscillation.
According to their results DE � pðdEF þ dESÞ, where dEF can be interpreted as an energy trans-
ferred from the fluid to the structure as viewed from the fluid and dES is the same energy but as
viewed from the solid. In our particular case with subcycling, we have (after some algebra):

dEF ¼ ke ða0 � 1Þfþ 1

4
� 7a0

12
þ 3a1

2

� �
f3

� �
þ Oðf4Þ ð9Þ

where ke ¼ �4Aþ2
G

qGCGxc
sinðkGl0Þ cosðkGl0Þ, f ¼ xDtc and a0;1 are the coefficients used by the pre-

dictor given in Equation (4). Besides, dES depends on the choice of the pressure transmitted
to the structure Pnþ1

S (see Section 2.3). Specifically one shows that:

• For the choice Pnþ1
S ¼ Pnþ1 (transmission of the updated pressure):

dES ¼ Oðf4Þ ð10Þ

• For the choice Pnþ1
S ¼ 1

Dtc

Z tnþ1

tn
PðtÞdt (transmission of the averaged pressure):

dES ¼ ke �f
2
þ f3

8

� �
þ Oðf4Þ ð11Þ

Using a first-order predictor (which means a0 ¼ 1 and a1 ¼ 0), the choice of Equation
(10) for Pnþ1

S produces energy at third order, which is not an issue with regard to the second-
order accuracy of the fluid and structural solvers. On the other hand, if ke\0, the choice of
Equation (11) for Pnþ1

S will create energy at the first order. In this case, the coupling of the
fluid and structure solvers induces an error as demonstrated in the following section.

3.4. Numerical results

Both fluid and structure are modelled in two dimensions for this test case. Since only longitu-
dinal 1D solution are sought for, symmetric conditions have been used for the fixed bottom
and top walls. The solid is modelled in MARC by a bloc of material of Young’s Modulus
E ¼ 4:274� 105Pa and Poisson’s coefficient m ¼ 0 such that its first longitudinal acoustic
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mode is of the same order than the first acoustic mode of the cavity (cf. Figure 3). It has a
section SM0 ¼ S0 and an unstretched length LM0. The calculations based on the first and sec-
ond choices of Pnþ1

S have been achieved using coupling time step 10 times bigger than the
fluid one (i.e. Dtc ¼ Dts ¼ 10Dtf ). It is worth noticing in Figure 3 that the choice of Equation
(10) for Pnþ1

S presents a good capacity to retrieve the coupling eigenfrequency of the system
and that the calculation appears to be stable. Looking at Figure 4 at the pressure signal fil-
tered around 400Hz, one can notice that the coupled mode at 400Hz appears to be energised
with the choice of Equation (11). This result is coherent with the energy consideration of Sec-
tion 3.3. Writing pressure and displacement at the fluid–structure interface for one of the cou-
pled eigenmodes shows that the pressure and the structure are vibrating at the same angular
frequency xc but with a phase depending on kG and l0. It can be checked the scalar ke (see

Equation (9)) from the previous section is negative when sinð2xcl0
CG

Þ[0. It comes out from this

analysis that the second choice of Pnþ1
S feeds in energy some modes and damp the others, as

illustrated in Figure 4 ðsinð2xcl0
CG

Þ � 1 for fc ¼ 400 Hz).

4. Application to the subscaled P230 configuration with FSI

4.1. Computations global description

The numerical chain described previously is now applied to a case representative of the indus-
trial complexity which has already been a subject of interest for fluid–structure interaction

Figure 3. Fourier Transform (on the left-hand side) of the pressure signal at the middle of the chamber
and its filtered version around 400Hz (on the right-hand side) for the choice of Equation (10) for Pnþ1

S .

Figure 4. Pressure signal at the middle of the chamber filtered at 400Hz for the choice of Equation
(10) (black line) and Equation (11) (grey line) for Pnþ1

S .
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research (Dotson & Sako, 2004; Wasistho, Fiedler, Namazifard, & Mclay, 2006). The computa-
tional domain (fluid and structure) correspond to the P230 SRM at scale 1/15, thus considering a
system in which size is comparable to the subscaled set-up used for past studies carried out by
ONERA (Hijlkema, Prévost, & Casalis, 2011). Note also that the 2D axisymmetric approxima-
tion is made to save CPU time and because it allows to illustrate the operability of the numerical
chain. The geometry retained corresponds to 86 s combustion time of the full-scale P230; this
corresponds to the second out of three outbursts. The chamber geometry was provided by Hera-
kles. The material characteristics (such as the density or the Young modulus) of the structure
were adjusted to reproduce the same crossover of eigenmodes between the fluid and solid
domains as at full scale. Different materials, such as propellant, steel and thermal inhibitors, are
considered in the computation, each with its own mechanical properties, as provided by Hera-
kles. The structure is fixed at the front-end in this preliminary study. The global mechanical
computational domain is displayed in Figure 5. Frontal thermal inhibitors were considered rigid
in the presented fluid–structure computations. Still, the shape of the thermal inhibitor between
the second and the third blocs of propellant was estimated in a pre-computation in order to
account for its mean deflection due to the mean flow rate. This was done by performing a FSI
computation with the same numerical chain as described above. Note that the dissipation of the
inhibitor was artificially increased in this pre-computation in order to speed up the convergence
to a steady position. Left-hand side of Figure 6 displays the initial shape and the final deflection
of the frontal thermal inhibitor, while the displacement convergence of its end-point is displayed
on the right-hand side. The acoustic mode of the combustion chamber has been determined
thanks to the AVSP Helmholtz solver (Nicoud, Benoit, Sensiau, & Poinsot, 2007). Results for
the first and second longitudinal acoustic modes are displayed in Figures 7 and 8. Frequencies
are, respectively, 308 and 611Hz.

4.2. Numerical results

Three calculations are presented here. The first one is done without FSI in order to produce a
reference case. The second and the third calculations account for the structural response of

Figure 5. Unscaled figure of the P230 configuration.
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the P230. When accounting for the interaction with the structure two situations can be consid-
ered. On the one hand, the first acoustic mode and the first longitudinal mode of the structure
can be different (handled in the second calculation). On the other hand, they can be identical
(handled in the third calculation). In both cases, the material dissipation was arbitrary fixed to
be D ¼ 10�5K (recall K is the stiffness matrix, see Equation (2)). A snapshot of the flow
obtained by solving the full Navier–Stokes equations is displayed in Figure 9. It shows the
presence of vortices generated near the propellant and at the extremity of the thermal inhibitor

Figure 6. Initial and deformed shape of the thermal inhibitor between the second and the third blocs of
propellant (left) and its end-point displacement during the simulation (right).

Figure 7. First longitudinal acoustic mode at 308Hz.

Figure 8. Second longitudinal acoustic mode at 611Hz.
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during the calculation. The comparison of the aft-end vibration speed is presented in
Figure 10. As suggested by the intuition, the vibrations are stronger when the structural mode
happened to be at the same frequency as the acoustic mode.

The pressure at front-end is a classical measurement for aero-acoustic instabilities in
SRMs. Comparisons between the case without fluid–structure interaction and the two cases
taking into account the structural response are displayed in Figures 11–13. Pressure spectra at
front-end (not shown) display coherent results between the LES and the acoustic solver, the
first and second acoustic modes at 308 and 611Hz being present in the LES results. Their

Figure 9. Unscaled figure of the vorticity generated near the propellant and at the thermal inhibitor.

Figure 10. Velocity of the aft-end for the case with (grey line) and without (black line) crossing of the
acoustic and structural modes.

Figure 11. Pressure fluctuations at front-end for the case without FSI.
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corresponding amplitudes are displayed in Figure 14. Amplitudes are evaluated through the
integration of a power spectral density of the signal over frequency ranges which are:

• 250–350Hz for the first acoustic mode.
• 550–650Hz for the second acoustic mode.

Surprisingly, results show that the acoustic mode is damped when the structural and
acoustic modes happened to cross. Explanation is that the displacement amplitude being
greater when the structural and acoustic modes are identical, the dissipation in the material
plays a greater role due to larger deformation speed within the structure. The structure in this
computation finally appears to act as a band-stop filter for the fluid, the rejected frequency
being the first structural eigenmode. This interpretation is confirmed by a fourth simulation
where the first acoustic mode and the first longitudinal mode of the structure are also identical
but the dissipation of the materials is fixed to a lower value (D = 10�7K instead of 10�5K).
The corresponding front-end pressure signal is displayed in Figure 15. Although, the
vibrations of the structure are stronger for the calculation with less-dissipative materials

Figure 12. Pressure fluctuations at front-end for the case without crossing of the acoustic and structural
modes.

Figure 13. Pressure fluctuations at front-end for the case with modes crossing of the acoustic and
structural modes.
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Figure 14. Amplitude of the acoustic mode for the case without FSI (white), without (grey) and with
(black) modes crossing and dissipative materials such as D ¼ 10�5K, with modes crossing and less-dis-
sipative materials D ¼ 10�7K (hatched).

Figure 15. Pressure fluctuations at front-end for the case with modes crossing of the acoustic and
structural modes and less-dissipative materials.

Figure 16. Velocity of the aft-end for the case of crossing between the acoustic and the structural
modes for D ¼ 10�7K (grey line) and D ¼ 10�5K (black line).
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(cf. Figure 16), the amplitude of the acoustic modes are of the same order as in the reference
case (cf. Figure 14). All other things being equal, these results highlight the impact of the dis-
sipative nature of materials on the acoustics inside the combustion chamber.

5. Conclusion

A computational chain was developed that couples a fluid and a structure solver. Special care
was taken to design the interface condition and the retained methodology showed good con-
servativity. The results obtained when considering an academic configuration for the coupling
scheme were in full agreement with the theoretical developments. At last, the computational
chain is applied to a subscaled version of the P230 SRM. Results on this configuration suggest
that the structure may have an impact on the aero-acoustics instabilities, since it is able to
dissipate acoustic energy when mode crossing between the structure and the acoustics occurs.
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