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This method defines a loading basis for plate structures which is identified from strain mea-
surements in order to reconstruct the mechanical fields. This loading basis is given by the
decomposition of a global structure into simple substructures associated with the loaded
boundaries only. Some elementary bases are defined for each substructure depending on its
local edge effect. A global basis is then obtained by the equilibrium of the complete struc-
ture. The main advantage of this approach is to classify the basis vectors depending on
their influence on the overall response of the structure.

Nous proposons la construction d’une base de chargement pour des structures plaques afin
de reconstruire les champs mécaniques à partir de mesures de déformation. Cette base de
chargement est obtenue par une décomposition de la structure complexe en sous-structures
simples associées aux seuls bords chargés. Une méthode de type Trefftz définit des bases
de chargement élémentaires en fonction de la localisation des effets de bords induits. La
base de chargement globale est ensuite donnée par l’équilibre de la structure complète.
L’intérêt est de définir une base de chargement en fonction de son influence sur la réponse
globale de la structure.
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1. Introduction

Improving structural performances requires monitoring the mechanical fields present inside
the structures and the boundary conditions. Full-field identification methods have been there-
fore widely studied for the last 10 years in order to improve the control and the performances
of stand-alone structures. Various methods have been implemented in the context of both
dynamic and static field reconstructions. The dynamic approaches consisted of identifying
modal shapes from strain measurements (Bogert, Haugse, & Gehrki, 2003; Enzmann, Linz, &
Theis, 1998). The static approaches consisted of identifying finite element fields from strain
and displacement measurements (Salzmann, Pilet, Ilic, & Fua, 2007; Tessler and Spangler,
2005). The main limitation of these methods is the mismatch between the degrees of freedom
(DOFs) used to approximate mechanical fields and the less number of measurements available
in practical applications. Hundreds of thousands of parameters are required to accurately
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approximate mechanical fields, whereas only a few sensors are available, which results in an
ill-posed inverse problem (Tikhonov and Arsenin, 1977). Since the boundary conditions are
used to regularise parameter identification problems on the basis of full-field measurements
(Avril et al., 2008), we now propose to first identify the boundary conditions and then to
reconstruct the mechanical fields for structural monitoring. In addition, only internal fields are
studied, and the corresponding boundary conditions are therefore approximated with just a
few parameters based on Saint-Venant’s principle. These parameters can therefore be identi-
fied with a limited quantity of measurements, which regularises the inverse problem associ-
ated with the full-field reconstruction problem. At this point, the main issue is to find a
proper loading basis which accurately approximates the real loading conditions with the
smallest number of parameters. This basis is obtained by the projection of Trefftz-like analyti-
cal solutions of the plate problem onto the boundaries of the structures. In this method, the
loading basis is composed of loading functions that are associated with increasing edge
effects. The global boundary conditions of the structures are then described with just a few
parameters and some functions are simply added when a more precise description of these
boundary conditions is required.

This method was first introduced in Martini, Hochard, and Charles (2012) and was applied
to the single plates with stress concentration zones. Nevertheless, this application was limited to
simple domains only. In this paper, we propose an extension of this method to multi-plate struc-
tures under tension loads. This extension is based on a substructuring method. A multi-plate
structure consists of an assembly of plates which allows to study complex structures. A global
loading basis is then defined from the loading basis defined on each plate substructure using the
equilibrium of the whole structure. In the following, we firstly present the inverse problem
related to the full-field reconstruction issue. We then illustrate the definition of the loading basis
and the resolution of the inverse problem for single plates. Lastly, we show the definition of the
loading basis for the multi-plate structures under tension loads and the main results.

2. Inverse problem formulation

2.1. General framework

The aim here is to determine mechanical fields and boundary conditions based on strain mea-
surements. Let us take a structure X subjected to unknown loading conditions, Fb onto the
boundary @X. At this point, we take the boundary conditions to be loads only and so Fb is
necessarily balanced. This assumption, which is required because no displacement measure-
ments are available, makes it possible to avoid the uncertainties about the joints between the
structure and the environment. Because of the performance issue, we assume that the structure
has an elastic behaviour. Although we illustrate this method with an isotropic elastic behav-
iour, anistropic behaviour can also be considered. Strain measurements, �m, are performed on
@Xm � @X and the effects of the body force and the inertia are neglected.

Based on the descriptions of inverse problems in Nashed (1987), we decided to define an
approximate inverse problem with only a few parameters. Improving the structural perfor-
mances involves monitoring the internal fields, which mostly depend on the overall effects of
the loading conditions, as shown by Saint-Venant’s principle. The internal fields can, there-
fore, be properly reconstructed using some approximate loading conditions such that the over-
all effects of these approximate and real loading conditions are similar. The structural
monitoring problem is, therefore, addressed by identifying the approximate loading condi-
tions, �Fb, and reconstructing the corresponding fields ð�u; ��; �rÞ in X. These fields are proper
approximations of the real fields ðu; �; rÞ occurring in a zone of interest Xi � X, which
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corresponds to the internal part of the structure in which the mechanical fields are monitored.
This inverse problem is expressed mathematically as follows:

To find ð�u; ��; �r; �FbÞ

Mechanical equations :
div½�r� ¼ 0 in X
�r � n ¼ �Fbon @X
�r ¼ C�� in X

8<
: ð1Þ

Observation equation :
�Fb ¼ argmin½k ��ð�FbÞ � �m k2�

in @Xm � @X

2.2. Finite element approximation

This problem is solved with the finite element method. Displacement field u is approximated
by �uðX Þ ¼ P

UiðX Þ �Ui. The strain field is determined from the strain–displacement relation
and the stress field is calculated using the constitutive laws. The loading conditions, Fb, are
approximated by a q-dimension basis, giving �Fb ¼

Pq
i¼0 fiF

i
b where, fi are the unknown

loading parameters and Fi
b are some loading functions defined onto the boundary @X. Discre-

tising the mechanical and observation equations gives the following structural monitoring
problem:To find ð �U ; ��; �r; �FÞ such that:

Observation equation
:

�F ¼ arg min
F2Rq

k BpmUðFÞ � �m k2
, �F ¼ arg min

F2Rq
k BpmK

�1AF � �m k2 ð2Þ

Mechanical equations :
�� ¼ B �U
�r ¼ C��
K �U ¼ A�F , �U ¼ K�1A�F

8<
:

where, K is the stiffness matrix of the structure, �U ¼T ½u1; u2; � � � ; un� is the nodal displace-
ment vector and �F ¼T ½f1; f2; � � � ; fq�1; fq� is the loading parameter vector. Some nodal dis-
placements are fixed in order to avoid the rigid body motion (RBM) and to inverse K. These
displacements are chosen not to add reaction forces. The A matrix is such that:

T �UA�F ¼
Z
@X

�u � �FbdS ¼T �U �
X
i;k

Z
@X

UkðX ÞFi
bðX ÞdS

" #
� �F ð3Þ

Bpm is the projection Pm of the gradient operator B onto @Xm that gives the relation between
�U and �m such that:

PmB �U ¼ �m , Bpm
�U ¼ �m ð4Þ

Lastly, the structural behaviour is assumed to be linear, and the observation equation can
therefore be directly solved with the least-squares method. The mechanical fields �U , ��, and �r
are then calculated with the mechanical equations.
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This procedure depends on two necessary and sufficient conditions: the number of strain
measurements must be greater than the number of loading parameters and G ¼ BpmK

�1A

must be a full-rank matrix. The first condition is assumed because the loading conditions are
approximated with only a few parameters. The second condition requires that none of the
vectors in the loading condition basis is dual with the rigid body motion (RBM). This condi-
tion is satisfied because the RBM is only associated with nodal displacements when the load-
ing conditions �Fb are distributed along @X. These two conditions being satisfied, �F is
calculated in the least-squares sense with:

�F ¼ ðTG�GÞ�1 �T G � �m ð5Þ

The main advantage of this method is that it avoids the instability occurring when increas-
ing the FE DoFs. The identification procedure depends only on the number of loading param-
eters. The DoFs can therefore be as large as required to ensure the accuracy of the FE model.
In addition, as the boundary conditions are all known, the FE mechanical fields can be
directly computed using a linear combination of precomputed solutions associated with each
of the vectors in the loading basis that is multiplied by the corresponding identified loading
parameter. Although FE fields have very large DoFs, these solutions are therefore computed
in real time.

3. Application to a plate under tension loads

3.1. Construction of the loading basis

A basis focusing on the overall response of the structure was constructed to approximate the
loading conditions. This construction was based on the Trefftz-like solutions developed in
Hochard, Ladevèze, and Proslier (1993) and Hochard (2003) by approximating the displace-
ment field with polynomial functions satisfying the equilibrium equation. The basis of the
loading conditions was obtained from the projections of these Trefftz-like solutions onto the
boundaries of the structure. The main advantage of this method is that the approximate dis-
placement fields are a complete set of solutions for a given polynomial degree. The projec-
tions of these solutions are, therefore, a complete set of loading conditions whose polynomial
degrees are associated with increasing edge effects. Consequently, this approach allows to
define loading functions that are organised by their influence over the whole structure. Low
polynomial degrees that are associated with reduced edge effects are, therefore, used to focus
on the overall response of the structure. The corresponding q� degree set of loading condi-
tions is defined as follows:

F q ¼ fFr ¼ rð�urÞ � n@X ; �ur 2 Uqg
with Uq ¼ �ur ¼ Pr

j¼0
ajrxjyr�j ; 0\r � q& div½C�ð�urÞ� ¼ 0 in X

( )

and X is a star � shaped domain

ð6Þ

The vectors of this loading basis are then orthonormalised using the Gramme-Schmidt
algorithm in the sense of strain energy. The orthonormalised basis F q

? is obtained by:

F q
? ¼ Fr

? 2 F q ; 8 k\r
R
X Tr½rðFr

?Þ�ðFk
?Þ�dX ¼ 0 &

�R
X Tr½rðFr

?Þ�ðFr
?Þ�dX ¼ 1

� ð7Þ
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In the following, the real loading conditions are approximated by a linear combination of
these Trefftz-like loading functions. The loading parameters to be identified are the coeffi-
cients that best fit this approximation.

3.2. Sensitivity of the reconstruction method to the measurement errors

3.2.1. Studied case

Let us take a square plate X, showing linear isotropic behaviour, which is subjected to in-
plane loads, as illustrated in Figure 1. The left boundary is fully clamped and the bottom
boundary is linearly loaded. This case cannot be exactly described with the approximate load-
ing conditions because of the clamp.

The sensors are located at the observation distance, Robs, of the centre of the plate and we
study the influence of this distance on the measurement error sensitivity. This distance is a
convenient way to study the error sensitivity because:

• Since the loading basis is related to the inside fields of the structure, the quality of the
approximate inverse problem depends on the distance to the centre of the plate.

• The angular positions of the sensor that minimise the conditioning number of G are
quite the same for every value of Robs.

The measurement errors are of two kinds: modelling errors, dmod, corresponding to model-
ling uncertainties; and random errors, d�rand corresponding to the data acquisition noise such
that: �m ¼ �0m þ d�mod þ d�rand. �m are the measured strains and �0m are the real strains. Mea-
surements are simulated with a direct finite element computation associated with the exact
boundary conditions. The mechanical fields that correspond to these simulations are called
the exact ones. Based on Hochard (2003), a three-degree basis was chosen in order to reduce
the quantity of unknowns and sensors. This basis is composed of 15 independent vectors
denoted as ðFr

?Þ1�r�15. The real loading conditions are supposed to be approximated by these
15 functions such that:

�Fb ¼
X15
k¼1

akF
k
? ð8Þ

ðakÞ have then to be identified to obtain the loading vector that is used to compute the nodal
displacement in the FEM.

Figure 1. Description of the reference loading case and of the sensor locations.
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Lastly, we consider that each sensor gives three strain values: �xx, �yy and �xy. Five sensors
are therefore required to identify at least the 15 loading parameters. Only the 5� sensor con-
figuration is presented here, because additional measurements reduce the sensitivity of the
reconstruction method to errors. Lastly, we compare the strain fields of the identified solutions
with the exact field using the following expression:

errðX Þ ¼ Tr½ð�idðX Þ � �exðX ÞÞ � ðridðX Þ � rexðX ÞÞ�
1
4 � 1

X

R
X Tr½�exðX ÞrexðX Þ�dX ð9Þ

This error is normalised with a reference value of the energy density that corresponds to a
threshold such that the energy density of 80% of the plate is superior to this threshold. In that
studied case, this threshold corresponds to a quarter of the mean value of the energy density
of the exact case. The main interest of this threshold is to permit the comparison between dif-
ferent loading cases, for example, with or without stress concentration zones.

3.2.2. Sensitivity to the modelling errors

The error distributions of the reconstructed fields using the exact measurements are given in
Figure 2, using various observation distances. These errors are maximum at the boundaries
and minimum at the inside of the structure. This result corresponds to the loading basis defi-
nition which is associated with the inside effects of the structure. We also observe that
increasing Robs decreases the errors close to the boundaries and increases the errors at the
inside of the structure. Looking then for the largest zone such that the error is less than a cho-
sen threshold, we obtain some optimal observation distances as illustrated in Figure 3. This
zone, AZU, is defined as a percentage of the total area of the structure.

For example, Robs ¼ 0:65b gives a 30% maximum value of AZU such that the error is less
than 10%. Supplementary loading cases show that the clamp condition is a very severe case
and that the optimal observation distances remain the same depending on the error threshold.
Only the AZU value is changed with these other loading cases. This result shows that the load-
ing basis is relevant to approximate the global effects of the real loads applied to the structure.

3.2.3. Sensitivity to the random errors

The random errors are associated with the measurement noise resulting in the measurement
acquisition. The sensitivity of the reconstruction method to these errors is estimated using the
standard deviation ratio, sSTD which is defined by:

Figure 2. Distributions of the error of the reconstructed solutions with different observation distances
using unnoisy measurements. From left to right, Robs is equal to 0:3b, 0:5b and 0:7b.
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sSTD ¼ hherrðX ÞiiN
hh�miiN

ð10Þ

hh�iiN is the standard deviation computed with N samples. This ratio shows the variation of
the solution due to the measurement noise. Figure 4 illustrates the distributions of this ratio
with different values of the observation distance. This ratio is less than 1 inside the observa-
tion zone, which means that the variation of the solution is equivalent to the variation of the
measurement due to the noise. This ratio then increases at the outside of the observation zone
within the limit of sSTD � Cond½G� at the boundaries of the structure. This result shows that
the mechanical fields are reliably reconstructed in the observation zone.

3.2.4. Optimal sensor location

These previous results help to address the optimal sensor location issue. We define the opti-
mal sensor locations, such that the sensitivity to the errors is minimised in the largest interest
zone. Consequently, the optimal sensor locations are a compromise between the sensitivity to
the modelling errors and the sensitivity to the measurement errors. The first one tends to
decrease Robs when the second one tends to increase it, as shown in Figures 3 and 4. Conse-
quently, the optimal sensor locations are defined depending on the most restrictive errors. For
example, if the modelling error is the most influent error, then Robs is decreased in order to
maximise the size of the interest zone and the sensitivity to the measurement errors increases.

Figure 3. Evolution of the area of the interest zone, AZU, as a function of Robs with different values of
the error threshold.

Figure 4. Distributions of the standard deviation ratio sSTD of the reconstructed solutions with different
observation distances in the case of noisy measurements. From left to right, Robs is equal to 0:3b, 0:5b
and 0:7b.
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At the opposite, if the measurement error is the most influent error, then Robs is increased and
the precision of the solution decreases. Lastly, when the modelling and the measurement
errors are similar, Robs is approximatively equal to half of the distance between the centre of
the plate and the boundaries.

4. Extension to plate structures under tension loads

4.1. General approach

At this point, the main limitation of the proposed method is the restriction of the loading
basis to simple domain only. We now propose an extension of the loading basis, which con-
sists of defining elementary substructures of the complete structure depending on the bound-
aries having unknown loads only. This extension allows to generalise our method to any kind
of plate structures under complex loads. Trefftz-like loading bases are then defined for each
of these elementary substructures and the global loading basis is obtained from the equilib-
rium of the complete structure. In the following, we limit our study to tension loads but a
similar procedure can be used for complex loads. Figure 5 illustrates the definition of these
substructures in the case of three boundaries with unknown loads, @X1 \ @X, @X2 \ @X and
@X3 \ @X of the structure X. The remaining part of @X is free from loading. Noting Fi, the
unknown loading condition of the boundary @Xi, and ðFk

biÞ1�k�pi
, the loading basis of the

substructure Xi, the global equilibrium of the complete structure is expressed by:

Pr
i¼1

Ppi
k¼1

R
@X\@Xi

aikF
k
bi ¼ 0

Pr
i¼1

Ppi
k¼1

R
@X\@Xi

aik OP ^ Fk
bi ¼ 0

8>><
>>: , H � F ¼ 0 ð11Þ

^ is the vectorial product that is used to obtain the moment equation. The loading basis F T
?

of the complete structure is then defined by the kernel of H and orthonormalised with respect
to the strain energy:

F T
? ¼ Fr

? 2 KerH ; 8 k\r
R
X Tr½rðFr

?Þ�ðFk
?Þ�dX ¼ 0 &

� R
X Tr½rðFr

?Þ�ðFr
?Þ�dX ¼ 1

� ð12Þ

4.2. Application to an L- structure

Let us consider the L-structure X. The top edge is fully clamped and two edges on the left
are linearly loaded, as illustrated in Figure 6. These displacement and loading conditions are
supposed to be unknown and associated with the unknown loads F1 and F2, and the two

Figure 5. Illustration of the complete plate structure X and of the substructures X1, X2 and X3, respec-
tively associated with the boundaries @X1, @X2 and @X3 having unknown loads.
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substructures X1 and X2 are defined by the corresponding boundaries, as shown in Figure 6.
The loading basis of the complete structure is obtained by the two Trefftz-like bases of each
substructure.

The sensitivity of the reconstructed fields to error measurements is then studied depending
on the sensor locations. The dimension of the global loading basis is 14 and only five sensors
are needed to identify the loading parameters. We observe that a necessary condition in order
to minimise the conditioning number of G and the sensitivity to the modelling errors is that
the sensors are located in the elementary structures with the unknown loading boundaries.
Moreover, these substructures can be individually considered for the sensor location. The
optimal sensor location is obtained with the same approach as for the plate inverse problem.

Figure 7 shows the distribution of the error of the reconstructed solutions without noise.
We observe that the error is minimal in the structure and also at the unloaded boundaries.

Figure 6. Illustration of the L� structure X with its loading conditions and illustration of the elemen-
tary substructures associated with the boundaries @X1 and @X2 having unknown loads F1 and F2.

Figure 7. Distributions of the error of the reconstructed solutions with different observation distances
and using unnoisy measurements. The green circles show the sensor locations in each substructure X1

and X2.

Figure 8. Distributions of the standard deviation ratio sSTD of the reconstructed solutions with different
observation distances and using noisy measurements. The green circles show the sensor locations in
each substructure X1 and X2.
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These results show the interest of the proposed loading basis that localises the uncertainties
of the model at the boundaries with the unknown loads only. At the opposite, the inside
mechanical fields are accurately reconstructed. These results also give an optimal observation
distance depending on the error threshold that is similar to the one-plate case.

Figure 8 shows the distribution of the standard deviation ratio sSTD with different observa-
tion distances. The proposed loading basis is therefore a proper approximating basis for the
loading conditions: the errors of the reconstructed fields are similar to the measurement errors
at the inside of the structure and the maximum errors are localised at the loaded boundaries.

5. Conclusion and prospects

In this paper, we showed that the full-field reconstruction can be reduced to a load identifica-
tion problem. The unknown loads are described with just a few parameters in comparison
with the unknown mechanical fields because overall information about the structure is
required for structural monitoring purposes such as command and performances. We then pro-
posed a method for defining a loading basis for single-plate and multi-plate structures in order
to reconstruct the mechanical fields from the loading parameters identification. This loading
basis is associated with the overall response of the structure based on analytical Trefftz-like
solution. Overall information is accurately recovered at the inside of the structure because the
effects of the modelling and the measurement errors are localised at the boundaries with the
unknown loads. Lastly, further work is required in order to precisely estimate the absolute
errors of the solutions. This definition will help to optimise the sensor locations, which is also
a major issue when the available measurement information is limited.
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