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We propose a new elastoplastic damage coupled model for the modelling of trabecular bone
behaviour. The damage is carried out thanks to the limit analysis based on the MCK criterion.
We first present the methodology allowing the estimation of elastic anisotropic properties of
porous media by means of Mori–Tanaka homogenisation scheme. Then, we present the
formulation of the integrated yield criterion derived by considering trial velocity field inspired
from the Eshelby inhomogeneous inclusion solution. The obtained micromechanical model is
implemented via a UMAT routine within the explicit dynamic code LS-DYNA. The proposed
micromechanical model has been applied successfully for the modelling of some bio-
mechanics applications to estimate the mechanical properties of the bovine trabecular bone.

Nous proposons un nouveau modèle élastoplastique couplé à l’endommagement pour la
modélisation du comportement mécanique de l’os trabéculaire. L’endommagement est
prisen compte gràce à l’analyse limite basée sur le critére MCK. Nous présentons d’abord
la méthodologie permettant l’estimation des propriétés élastiques anisotropes des milieux
poreux parle schéma d’homogénéisation de Mori–Tanaka. Ensuite, nous présentons la for-
mulation du critére d’écoulement intégré obtenu par un champ de vitesse test, inspiré de la
solution d’inclusion Eshelby. Le modèle micromécanique est implémenté via une routine
utilisateur UMAT dans le code dynamique explicite LS-DYNA. Le modèle microméca-
nique proposé est appliqué avec succès dans la modélisation de quelques applications en
biomécanique pour estimer les propriétés mécaniques de l’os trabéculaire bovin.
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1. Introduction

The investigation of bone tissue as a material is an important topic in biomechanics. Motivated
by clinical practice, a large amount of mechanical data has been collected for bovine and human
bone with testing method conventionally used for engineering materials. After the introduction
of artificial orthopaedic devices, the complex problem of bone implant interaction emerged and
recalled the importance of the interrelations between biological and mechanical properties.

The mechanical behaviour of trabecular bone has been extensively studied in the literature
as it is one of the main constituents of the bone tissue. Enclosed in compact bone at the end
of epiphyses or in the core of flat and small bones, trabecular bone is subjected to multi-axial
strains and stresses during physiological loading. Compressive mechanical testing represents
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an established method for evaluating the mechanical competence of trabecular bone, due to
its simplicity and its resemblance to the natural deformation (Fyhrie & Schaffler, 1994). In
compression, the mechanical behaviour of cortical and trabecular bone presents distinct char-
acteristics. Cortical bone is quasi-brittle, while the mechanical behaviour of trabecular bone is
typical of an elastoplastic cellular material (Gibson & Ashby, 1997; Hayes & Carter, 1976).
For both types of bone under compressive monotonic loading, the tangent stiffness decreases
already before the maximum force is reached. For trabecular bone, a smooth and gradual
reduction of the stress (softening) then occurs until a local minimum, followed by rehardening
(Gibson & Ashby, 1997). In studying this mechanical response, uniaxial mechanical
compression tests were widely used to assess stiffness, strength, creep and fatigue properties
of trabecular bone (Keaveny, Morgan, Niebur, & Yeh, 2001; Keaveny, Pinilla, Crawford,
Kopperdahl, & Lou, 1997; Kosmopoulos, Schizas, & Keller, 2008; Rincón-Kohli, 2003).
Especially, Kefalas and Eftaxiopoulos (2012) investigated experimentally the mechanical
response of bovine trabecular bone subjected to uniaxial compression or tension under large
strains was established. It has been revealed the three stages of the constitutive response,
namely the initial increasing and softening branches at moderate strains, the plateau region at
large strains and the hardening part at very large strains under compaction.

However, for many years, the differences in mechanical properties of trabecular bone were
explained by volume fraction (Carter & Hayes, 1977; Rice, Cowin, & Bowman, 1988) and
most of the relevant studies have been confined to one or few skeletal sites. It has been
shown that the mechanical properties of trabecular bone are influenced by architectural anisot-
ropy (Goulet et al., 1994; Hodgskinson & Currey, 1990). In order to describe the extent of
anisotropy, the method of mean intercept length (MIL) has been introduced on planar sections
(Whitehouse, 1974) and extended to 3D where its distribution was characterised by a second
rank fabric tensor (Harrigan & Mann, 1984). In the pioneering work of Cowin (1985), a
general relationship between volume fraction, fabric, which is a second-order tensor
approximation of architectural anisotropy, and elastic properties was established.

From a modelling point of view, the relationship between morphology of spongy bones to the
mechanical properties and failure mechanism can be assessed through computational means. The
constitutive law, which defines the relation between stresses and strains, is incorporated in the FE
method to model global behaviour. Most studies have used simple constitutive relations, for exam-
ple linear elasticity with isotropic or transverse isotropic symmetry and the one-
dimensional model of Fondrk, Bahniuk, and Davy (1999a) unsuitable for three-dimensional finite
element simulations. So far, only little effort has been devoted to the development of inelastic con-
titutive models specific to bone (Fondrk, Bahniuk, and Davy, 1999b; Zysset & Curnier, 1996). In
a consequent work, Gupta, Bayraktar, Fox, Keaveny, and Papadopoulos (2007) developed an
infinitesimal plasticity-like model with isotropic kinematic hardening to describe yielding of
trabecular bone at the continuum level. Based on the porous structure of the trabecular tissue, Gib-
son and Ashby (1997) have presented a multilinear parametric model up to compaction. In addi-
tion, Zysset and Curnier (1996) have proposed a three-dimensional constitutive law which
describes anisotropic elasticity and the rate-independent degradation in mechanical properties
from the growth of cracks or voids in the trabecular tissue. In Thurner et al. (2006), the authors
have investigated the failure mechanism in trabecular bone specimens under compression. They
have reported that trabecular bone often fails due to delamination, caused by microcracking and
cracking, providing a mechanism for energy dissipation while conserving trabecular bone archi-
tecture. Recently, Charlebois, Jirásek, Philippe, and Zysset (2010) have proposed a constitutive
law which captures the hardening–softening response of trabecular bone in compression and cou-
ples damage and plasticity with a non-local formulation (Grassl & Jirásek, 2006; Hansen
& Schreyer, 1994; Lubarda & Krajcinovic, 1995; Maugin, 1992; Zysset & Curnier, 1996).
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In this paper, we propose a micromechanical elastoplastic model of the bone behaviour in
view of an integration of bone damage for the simulation of necking and rupture initiation. The
determination of elastic properties has been made by using the Mori–Tanaka scheme and exper-
imental measurements of anisotropy by microtomography techniques. The non-linear behaviour
is performed by a coupling between plasticity and damage on a microscopic scale. The damage
has been carried out by using a limit analysis approach based on the MCK criterion (Monchiet,
Charkaluk Kondo, & Kondo, 2007, 2011). The derived yield function is performed by the con-
sideration of new trial velocity fields inspired from the Eshelby (1957, 1959) exterior point
solution to inclusions problem in which the eigen-strains are unknown. The obtained elastoplas-
tic damage behaviour law is implemented via a user material routine UMAT within the explicit
dynamic commercial code LS-DYNA (Hallquist, 2001) for the prediction of the global
response of porous media. Finally, we present some applications in structural mechanics to
study a cylindrical tensile specimen and in biological tissues to estimate the mechanical proper-
ties of the bovine trabecular bone. The adaptation of this model to biological tissues is made by
considering a basic cell in conformity with the trabecular bone microstructure.

2. Formulation of the micromechanical model

2.1. Homogenisation scheme for elastic anisotropic properties

Micromechanical analysis provides links between macroscopic properties of material and its
microstructure. In common homogenisation methods, the material properties are assumed to
be homogeneous but unknown at macroscopic scale, whereas heterogeneous but known at
microscopic scale. The main task is to find the homogeneous material properties at macro-
scopic scale based on the available information at microscopic scale. For this purpose, and as
classically, a representative elementary volume (REV) is generally adopted to represent the
idealised microstructure of material. In the present study, the REV is composed of an
isotropic linear elastic solid matrix with elastic stiffness tensor CðmÞ weakened by a random
distribution of ellipsoidal shaped pores made up of phases r (r ¼ 1; . . . ;N ) with the elasticity

tensor CðrÞ. The inclusions of phase r are taken to be identical in shape and orientation with
the normal n, radius a and the average half-opening c.

Based on the matrix–inclusion problems (Eshelby, 1957; Laws & McLaughlin, 1979) and
the Mori–Tanaka scheme (Mori & Tanaka, 1973), an estimate for the homogenised elastic
stiffness tensor of the bone material reads as (Rahmoun, Chaari, Markiewicz, & Drazetic, 2009):

Chom ¼ CðmÞ þ
XN
r¼1

f ðrÞ CðrÞ � CðmÞ� �
: AðrÞ

w : f ðmÞIþ
XN
s¼1

f ðsÞAðsÞ
w

 !�1

ð1Þ

where f ðmÞ and f ðrÞ are, respectively, the volume fraction of matrix and inclusions and where

the two sums are taken over all phases of the heterogeneous material in the REV. AðrÞ
w

denotes the strain concentration tensor associated with the rth phase family of inclusions of
aspect ratio w ¼ c

a, which writes:

AðrÞ
w ¼ Iþ PðrÞ

w : ðCðrÞ � CðmÞÞ� ��1 ð2Þ

and PðrÞ
w is the Hill tensor (Hill, 1965). This tensor depends on the shape and orientation of

the r-th family of inclusions CðrÞ (considered here as spheroid) and the elastic stiffness of the

reference medium CðmÞ.

256 A. Jaziri et al.



Finally, as in the previous work (Rahmoun et al., 2009), the formalism of stiffness tensor
(1) is coupled with experimental measurements of architectural anisotropy obtained from
X-ray micro tomography and the MIL method (Harrigan & Mann, 1984; Whitehouse, 1974),
which will, in turn, be used to calculate the porosity.

The necessary detail can be found in Rahmoun et al. (2009), and only a summary of the
main results of the model will be presented here.

2.2. The constitutive plastic-damage model based on the MCK criterion

In this section, we present an extension of the micromechanical linear model for the case of
non-linear behaviour. The new model is based on a coupling between plasticity and damage
on a microscopic scale. The damage has been carried out by using the framework of limit
analysis of Gurson (1977) and its evolutions, in particular, the recent work of Monchiet et al.
(2007, 2011), called MCK criterion. In this approach, the considered domain is composed of
a spherical cavity with the radius a subjected to a uniform eigen-strain rate d� and embedded
in a spherical cell with the radius b. The spherical frame (coordinates r;u; h) is considered to
describe the studied cell. The trial velocity field in the matrix, v, required for the limit
analysis of the hollow sphere (Gurson, 1977), classically takes the following general form:

v ¼ A:xþ vE ð3Þ
in which A:x is associated to a uniform strain rate A and vE is a heterogeneous field which
corresponds to the expansion of the cavity. The matrix incompressibility implies that
trðAÞ ¼ 0 and divðvEÞ.

From the exterior-point Eshelby solution (Eshelby, 1959; Kachanov, Shafiro, Tsukrov,
& Hanbook, 2003; Mura, 1987), a more refined velocity field vE, in the particular case of a
spherical inclusion, can be given by:

vE ¼
Xr¼6

r¼1

vrd�
r ð4Þ

where d�r is related to the eigen-strain in the inhomogeneity d�. The microscopic plastic strain
rate d derived from the velocity field (3) is defined by:

d ¼ Aþ dE ð5Þ

with dE ¼ rsvE, the symmetric part of the velocity gradient associated to vE (Monchiet et al.,

2007, 2011). The microscopic dissipation pðdÞ ¼ d0deq, where deq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3d

0 : d0
q

is the

equivalent plastic strain rate defined by (see Monchiet et al., 2007, 2011):

d2
eq ¼ A2

eq þ 2
Xr¼6

r¼1

d�
r A : dr þ

Xr¼6

r¼1

Xs¼6

s¼1

d�
r d

�
s d

r : ds ð6Þ

and d0 is the deviatoric part of strain tensor d. Then, in agreement with Hill–Mandel lemma,
the macroscopic strain rate D is related to the local strain rate, d, by the average rule:

1

jXj
Z
X
ddV ð7Þ

where jXj is the volume of the studied cell (matrix + void).
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The macroscopic plastic dissipation will be obtained after a minimisation procedure on
the remaining unknown parameters d0�:

PðDÞ ¼ min
ðd�Þ0

½ ~PðD; ðd�Þ0Þ� with min
ðd�Þ0

½ ~PðD; ðd�Þ0Þ� ¼ r0

jXj
Z
X�w

ddV ð8Þ

The yield surface, related the macroscopic dissipation, is performed by:

R ¼ @�

@D
ð9Þ

Finally, following the limit analysis method of Gurson (1977), the approximate expression
of the macroscopic yield function is obtained as (Monchiet et al., 2007, 2011):

UðR; f Þ ¼ R2
eq

r2
0

þ 2f cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4

R2
h

r2
0

þ 2

3

R2
eq

r2
0

s8<
:

9=
;� 1� f 2 ¼ 0 ð10Þ

where Rh denotes the hydrostatic stress and f the material porosity. Req is the macroscopic
von-Mises equivalent stress.

3. Numerical integration of the plastic-damage model

As stated before, we aim at formulating and implementing the MCK criterion. The implemen-
tation has been carried out within the explicit dynamic code LS-DYNA via the user-routine
UMAT. For comparison purpose, the GTN model (which is a standard modification of the
Gurson model) is also considered.

We introduce a hardening variable in the macroscopic yield function given by (10) by
following a classical approach through the yield stress in the matrix �r:

UðR; �r; f Þ ¼ R2
eq

�r2
þ 2f cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4

R2
h

�r2
þ 2

3

R2
eq

�r2

s8<
:

9=
;� 1� f 2 ¼ 0 ð11Þ

The macroscopic plastic flow rule obtained by upscaling, according to normality rule, is
given by:

_Ep ¼ _k
@U
@R

ð12Þ

in which _k is the plastic multiplier. Taking into account the incompressibility of the matrix,
the porosity evolution law which characterises the damage growth, reads:

_f ¼ 3ð1� f Þ _Ep
m þ A _�epm ð13Þ

where Ep
m is the volumetric plastic strain and where �epm is the average volumetric plastic strain

in the matrix. The therm A reads:

A ¼ fN
sN

ffiffiffiffiffiffi
2p

p exp �1

2

�epm � eN
sN

� �	 

ð14Þ
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in which eN is the mean normal distribution of the nucleation strain, sN is a standard
deviation and fN is the nucleates voids volume fraction. Therefore, the evolution of the yield
stress in the matrix is given by (see for instance Gurson, 1977):

ð1� f Þ�r _�e ¼ R : _Ep ð15Þ

Finally, we adopt this simple coalescence model described by Tvergaard and Needleman
(1984) in order to consider the effect of void coalescence in the numerical implementation:

f � ¼
f if f � fc

fc þ dðf � fcÞ if f[fc

8<
: ð16Þ

where fc represents the porosity at the onset of coalescence and d ¼ ðfU � fcÞðfF � fcÞ is a
factor describing the acceleration of the material degradation during coalescence. fF and fU
represent the porosity and the value of f � at failure, respectively.

The stress increment calculation is based on the return mapping algorithm, which includes
two steps.
First an elastic prediction of stress is done:

Rnþ1 ¼ Chom : Ee
nþ1 ¼ Chom : ðEnþ1 � Ep

nþ1Þ ¼ Rpred � C : DEp ð17Þ

where Chom was determined by (1) and where Rpred is the elastic predictor expressed as:

Rpred ¼ Chom : DE:
Then a plastic correction is used, we compute @U

@Rpred by using Equation (12) and we obtain
the following expressions for the deviatoric part ðDEpÞ0 and the hydrostatic part DRp

m:

ðDEpÞ0 ¼ Dkð 3
�r2 þ 2f

�r2
sinhðR0Þ

R0
ÞðDRpredÞ0

DRp
m ¼ Dk 3

2
f Rpred

m
�r2

sinhðR0Þ
R0

(
ð18Þ

where R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9
4
ðRpred

m Þ2
�r2 þ 2

3
ðRpred

eq Þ2
�r2

q
.

Then, we have:

Dk ¼ �r2DEp
eq

Rpred
eq

1

2þ 4f
3

sinhðR0Þ
R0

ð19Þ

Finally, the consistency condition _U ¼ 0 implies to the expression of DEp
eq and then to the

plastic correction:

DEp ¼ Dk
@U

Rpred ð20Þ
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4. Finite element formulation

4.1. Kinematics

Now we will recall the formulation of the eight-node solid-shell element. With respect to
nodal designation (Figure 1), the coordinate vector x and the displacement vector u of the
element are (Hannachi, Naceur, & Batoz, 2007):

x ¼ ~xðn; gÞ þ f
2
Vðn; gÞ ¼

X4
i¼1

Niðn; gÞ 1� f
2

x�i þ 1þ f
2

xþi

� �
ð21Þ

u ¼
X4
i¼1

Niðn; gÞ 1� f
2

u�
i þ 1þ f

2
uþ
i

� �
ð22Þ

where ~x is the position vector at the mid-surface, ĥ and n̂ are the average thickness and the
normal of the sheet, respectively, Niðn; gÞ are the two-dimensional eight-node Lagrangian
interpolation functions, x�i , u

�
i and xþi , u

þ
i are, respectively, the coordinate and displacement

vectors of the ithnode on the bottom and top shell surfaces (Figure 1).
In this work, linear, isoparametric solid-shell elements are used with bilinear interpolation

in membrane and linear interpolation in thickness direction. More details regarding the
kinematics of solid-shell elements may be found in Hannachi et al. (2007).

4.2. Variational formulation

In order to deal with the several lockings separately, one needs to separate the expression of
virtual internal work by uncoupling the membrane/bending, transverse/thickness and shearing
(Hannachi et al., 2007).

Wint ¼
Xnelt
e¼1

W e
int; W e

int ¼ Wmb
int þ W tr

int þ W sh
int ð23Þ

Wmb
int ¼

Z
V 0

dEmb Smb dV ¼ duT fmb
int ; fmb

int ¼
Z
V 0

BT
mb Smb dV ð24Þ

Figure 1. Eight-node solid-shell element.
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W tr
int ¼

Z
V 0

dEtr Str dV ¼ duT f trint; f trint ¼
Z
V 0

BT
tr Str dV ð25Þ

W sh
int ¼

Z
V 0

dEsh Ssh dV ¼ duT f shint; f shint ¼
Z
V 0

BT
sh Ssh dV ð26Þ

with E the Green–Lagrange strain tensor split into three components Emb ¼ hE11 E22 2E12i,
Etr ¼ hE11 E22 E33i and Esh ¼ h2E13 2E23i. The second Piola–Kirchhoff stress tensor S is also
decomposed into three parts Smb ¼ hS11 S22 S12i, Str ¼ hS11 S22 S33i and Ssh ¼ hS13 S23i. The
internal force vector at the element level is then given by:

fuint ¼ fmb
int þ f trint þ f shint ð27Þ

A solid-shell element formulated using Equations (24–26) with standard integration based
on a 2� 2 Gauss schema in the in-plane of the shell element will fail because of numerous
locking phenomena.

4.2.1. Remedies for shear locking

An effective method of resolving shear locking is the assumed natural strain (ANS) method
in which the natural transverse shear strains are sampled and then interpolated at some dis-
crete element points with a specific order.

The transverse shear strains Enf and Egf are calculated according to the average surface
plan (f= 0), assuming that they vary linearly, and are function of En and Eg at the mid-side
points (Figure 2):

EANS
nf ¼ 1� g

2
EA1
n þ 1þ g

2
EA2
n ; EANS

gf ¼ 1� n
2

EB1
g þ 1þ n

2
EB2
g ð28Þ

4.2.2. Remedies for trapezoidal locking

Similar to shear locking, trapezoidal locking occurs when lower order elements such as eight-
node hexahedral elements are used to model curved shells, so that their cross sections assume
the trapezoidal shape, these excessive number of sampled thickness strains can be reduced by

Figure 2. Shear locking treatment using ANS method.
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using a bilinear interpolation of the transverse normal strains sampled at the four corners of
the element mid-surface, namely (Figure 3)

EANS
ff ¼

X4
i¼1

Niðn; gÞ Effðni; giÞ ð29Þ

4.2.3. Remedies for volumetric locking

Material locking is controlled by a material parameter, the Poisson ratio m .
Poisson’s ratio coupling requires the thickness strain to be a linear function of f. Because

our solid-shell element has only two layers, as a consequence, the thickness strain does not
vary with f; thus, the element fail in reproducing the plane-stress condition.

~EEAS
ff ¼ EANS

ff þ a f t33 ð30Þ

where a represents the seventh independent internal parameter which will be eliminated by
special condensation technique at the element level, t33 is required for transformation to the
local element coordinates. An additional condition has now to be satisfied locally, leading to
the increment of the additional degrees of freedom.

@Wint

@u
Duþ @Wint

@a
Da ¼ �Wintðu; aÞ ð31Þ

On an element level, the internal virtual work can now be computed with the compatible and
the enhanced strains as in Equation (30).

Wint ¼
Xnl
i¼1

Z
n

Z
g

Z fiþ1

fi

ðdEmb Smb þ dEEAS
tr Str þ dEANS

sh SshÞ Jdndgdf

¼ duT f eint ð32Þ

nl is the number of layers and fi is the transverse reference coordinate of the ith layer along
the cross section of the element. The internal force vector f eint can be obtained explicitly using
compatible and enhanced strains:

Figure 3. Trapezoidal locking treatment using ANS method.
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f eint ¼ fuint �
fa
kaa

kau ð33Þ

where fa is given by:

fa ¼
Z
V 0

~Ba S dV ð34Þ

where ~Ba ¼ T0 Ba, Ba ¼\0 0 f 0 0 0[T and T0 are the curvilinear transformation
matrix.

The global internal force vector F is then obtained by assembling element internal forces
f eint

F ¼
Xnelt
e¼1

f eint ð35Þ

The use of a full integration in the in-plane of the shell element, through the use of 2� 2
Gauss points, allows the obtention of a stiffness matrix that has a correct rank, this reveals that
the element has no hourglass modes; therefore, stabilisation is not required in the present model.

5. Numerical applications

5.1. Validation of the model on necking prediction of a cylindrical tensile bar

For validation purpose only, we first present numerical predictions of the proposed MCK
model on the necking of a cylindrical tensile bar. This example is considered as a standard
benchmark since it has been studied extensively by several authors (Needleman, 1972;
Tvergaard & Needleman, 1984) by using either Gurson or GTN models.

The cylindrical tensile bar of 8 cm length and 2 cm diameter is given in Figure 4. It is made
of a common material with Young’s modulus E ¼ 300 N=cm2 and a Poisson’s ratio m ¼ :3. An
isotropic hardening of the matrix has been considered through a power law of the form:

Figure 4. Finite element mesh of 1/2 cylindrical tensile test specimen.
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�r
r0

¼ �r
r0

þ 3G

r0
�epm

� �N

ð36Þ

where r0 ¼ 1 is the initial yield stress, N ¼ :1 is the hardening parameter and G is the elastic
shear modulus.

As in Tveergard & Needleman (1984), the initial porosity f0 ¼ 0 and the coalescence
parameters fF ¼ :6 and fc ¼ :59 have been adopted. The void nucleation parameters,
eN ¼ :3, sN ¼ :1 and fN ¼ :04, used are the same as those given by Needleman (1972).
For comparison with GTN model, we consider parameters q1 ¼ 1:5, q2 ¼ 1 and q3 ¼ 2:25.
These parameters were introduced by Tvergaard (1981) to make the predictions of the Gur-
son model agree with numerical studies of an elastic-plastic medium containing a periodic
array of voids.

The example problem focuses on the neck development, which is a precursor to fail-
ure in the form of cup–cone fracture. The formation of the neck results in a triaxial state
of stress at the centre of the specimen, which accelerates the growth of the nucleated
voids.

A finite element computation using our model implemented in LS-DYNA explicit
dynamic code, using the 3D solid-shell mesh as illustrated in Figure 4. The specimen is fixed
at the bottom edge and submitted to an imposed displacement to its top edge.

The predictions of nominal stress vs. the nominal strain of the present model and those
obtained by the GTN model are given in Figure 5. It is shown that the maximum load is
reached at a nominal strain of about 9%, after which the specimen softens due to coalescence
of voids and eventually fractures across the neck region. Due to the explicit nature of our cal-
culation, we observed a relative influence of the dynamic loading speed on the final results.
Different loading velocities have been tested, and finally a velocity of :07 m=s is found to be
a good compromise between efficiency and speed.

Moreover, it is observed that the results predicted by the present model recover com-
pletely those of GTN model. In fact, it is well known that the stress triaxiality in the centre
of the cylindrical tensile specimen is very low.

Figures 6 and 7 show total void volume fraction and pressure stress contours, respectively,
at 11% for the two previous models. It appears that, for the porosity and for low stress triaxi-
ality, the present model and the GTN one are in good agreement.

Figure 5. Stress–strain comparison between the present and the GTN models.

264 A. Jaziri et al.



Figure 7. Hydrostatic pressure distribution of the 1/4 specimen at time = 9ms.

Figure 6. Void volume fraction distribution of the 1/4 specimen at time = 9ms.
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5.2. Modelling of trabecular bovine bone behaviour

This section is devoted to the adaptation of our elastoplastic damage model to biological tis-
sues by considering a basic cell in conformity with the trabecular bone microstructure. For
this end, an estimate for the mechanical properties of the bone trabeculae can be identified by
inverse methods using the experimental data of bovine trabecular bone described in Halgrin
(2009).

In their previous work, Halgrin, Rahmoun, Chaari, Markiewicz, & Drazetic, 2009
performed uniaxial compression tests of four cubic samples 10� 10� 10mm3extracted from
the same bovine rib at a constant loading velocity of 10 mm=min until the complete compac-
tion of the sample.

Figure 8 shows the mechanical response of nominal stress against nominal strain for all
four samples. We can observe that trabecular bone exhibits four different regimes, similar to
those identified with other cellular materials (Gibson & Ashby, 1997). A linear elastic
behaviour is reached at low compression strains. Then, a peak stress occurs at strains of 10%.
After elastic buckling, the specimen seems to crush progressively with a quasi-constant stress.
For strains higher than 60%, the total compaction of the sample occurs and the compression
force increases quickly, this last phase is known to be consolidation regime.

We conducted an inverse identification procedure to identify the bone matrix material
parameters. It consists of fitting computed results and experimental measurements by finding
the optimal set of constitutive parameters (Young’s modulus Em and the yield stress of the
bone matrix �r). The volume void fraction is measured by microtomography for each sample
and the aspect ratio of spherical voids is fixed to w ¼ 1. The average value of volume void
fraction based on experimental measurements using the microtomography is 77%. It is impor-
tant to notice that in the present formulation, the REV is not modelled classically using very
fine mesh as reported by Halgrin et al. (2009). Therefore, thanks to the Mori–Tanaka scheme,
the REV is modelled using a simple mapped mesh of only 1000 solid-shell elements (see Fig-
ure 9).

Table 1 summaries the obtained results using an inverse identification procedure. As we
can observe, the identified Young’s modulus of the bovine bone matrix Em shows slight varia-
tions from 1700 MPa to 2000 MPa, this is a direct consequence of the variations observed on
the measurements data themselves. The same conclusions could be drawn, when observing
the identified yield stress of the bone matrix �r, which varies from 30 MPa to 40 MPa. Finally,

Figure 8. Experimental results of the four bovine rib samples under compression.
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thanks to the homogenised material tensor obtained, using the Mori–Tanaka scheme one can
obtain the apparent Young’s modulus Eapp, which is usually used in biomechanical
applications. These results are also presented in Figure 10.

6. Conclusion

In conclusion, the framework of homogenisation was used to derive a yield criterion using an
approximate limit-analysis based on the MCK criterion for porous materials. The elastic
properties of these materials were determined by a coupling from the Mori–Tanaka scheme
and experimental measurements of anisotropy using microtomography techniques. The

Figure 10. Numerical vs. experimental results of bovine trabecular bone behavior under compression.

Figure 9. FE model: (a) REV classical fine mesh (424707 Hex elements in Halgrin et al., 2009) and
(b) Present model (10� 10� 10 solid-shell elements).

Table 1. Trabecular bovine bone material parameters.

Sample 1 Sample 2 Sample 3 Sample 4 Min–max

Em (MPa) 2000 1700 1700 1700 1700–2000
�r(MPa) 40 38 33 30 30–40
Eapp (MPa) 279.82 240.64 238.51 236.68 236.68–279.82
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obtained model matches correctly the results obtained by the GTN model via a cylindrical
tensile test specimen and allows to identify the mechanical response of trabecular bone. Its
applications to the human femur bone are the subject of a forthcoming work.
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