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The level-set method, as introduced by Osher et al. (Osher, S., & Sethian, J., 1988. Fronts
propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formu-
lations. Journal of Computational Physics, 79, 12–49.) presents some flaws with respect to
algorithmic simplicity and solution admissibility. In this paper, we present a robust
approach for the level-set modelling by taking advantage of readily available work from
phase-field framework. By adapting the latter with proper velocity correction, we have
obtained a non-local formulation of the level-set problem that overrides the aforementioned
problems. An application of this approach, both in explicit finite differences and implicit
iso-geometric analysis, illustrates the efficiency of this new formulation.

La méthode level-set (fonction de niveaux), telle qu’introduite par Osher et al. (Osher, S.,
& Sethian, J., 1988. Fronts propagating with curvature-dependent speed: Algorithms based
on Hamilton–Jacobi formulations. Journal of Computational Physics, 79, 12–49.) présente
des inconvénients lorsque l’on s’intéresse à la simplicité algorithmique et á l’admissibilité
des solutions. Dans cet article, nous présentons une approche robuste pour la modélisation
par fonctions de niveaux en s’inspirant de développements déjà disponibles réalisé dans le
cadre des méthodes de champs de phases. En adaptant cette approche avec une correction
appropriée de la vitesse, nous avons obtenu une formulation non-locale du problème level-
set qui permet de s’affranchir des difficultés citées plus haut. La méthode développée est
appliquée à un cas test standard, à la fois en différences finies avec un schéma explicite et
dans le cadre iso-géométrie avec un schéma implicite, illustrant ainsi son efficacité et sa
versatilité.
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1. Modelling hyper-surfaces

In the level-set approach, hyper-surfaces are modelled through an implicit description. In the
framework of structural mechanics, this approach encountered a rising success past decade as
they were used for the modelling of cracks (Gravouil, Moës, & Belytschko, 2002) and phase
change interfaces (Coret, Valance, Laniel, & Réthoré, 2009; Harari & Dolbow, 2010) in the
eXtended Finite Element Method (X-FEM).

However, the level-set technique, as introduced by Osher and Sethian (1988), is not easy
to handle: it implies three different equations – i.e. level-set propagation, velocity extension
and signed distance reinitialisation – at not a priori predictable moments of the computation.
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Moreover, the propagation equation turns out to be difficult to solve in the classical Galerkin
set-up without proper stabilisation terms (Chessa, Smolinski, & Belytschko, 2002; Valance,
De Borst, Réthoré, & Coret, 2008).

In this work, we propose a non-local level-set formulation that enables to suppress the
aforementioned problems: only one equation is necessary to handle correctly the level-set sur-
face propagation. The velocity field is still to be known on the domain of interest, but there
is no need any more to enforce the orthogonality between the field lines of the level-set field
and the field lines of the normal velocity field.

The paper is structured as follows. First, we will recall the basics of level modelling. We
then introduce the approach used to formulate a non-local evolution equation for level-set
modelling. Afterwards, we present the numerical set-up used to study this model in both finite
differences and finite elements – iso-geometry – approaches. Finally, we discuss results
obtained by the two techniques in the classic benchmark of a rigid motion of a circular iso-0.

2. Definition of a level-set

The space that defines level-set over a domain D in the sequel is the space LS such that:

LS ¼ f/ 2 C1ðD ! RÞj8M 2 D;/jM ¼ 0 ) jjr/jjjM 6¼ 0g: ð1Þ

The definition of a surface S/ on a level-set field / of the above space is a smooth sur-
face characterised by:

8/ 2 LS; S ¼ fM 2 D j /jM ¼ 0g ð2Þ

If the level-set field is now attached to a particle field x,

/ ¼ /̂ðt; xðtÞÞ; ð3Þ

it follows from the stationarity of the level-set field with respect to the particle field x:

D/
Dt

¼ 0 , @

@t
/̂ðt; xðtÞÞ þ @xðtÞ

@t
� r/̂ðt; xðtÞÞ, @/

@t
þ F k r/ k¼ 0 ð4Þ

where, k � k is the euclidean norm of �. F is an external data of the problem defined with
respect to the required surface motion at velocity uS of the surface S/ by:

F 2 CðD ! RÞ; FjM2S :¼ uS �
r/

jjr/jj ¼
@xðtÞ
@t

� r/
k r/ k ð5Þ

Equation (4) is the standard propagation equation of the surface S/ implicitly defined by the
level-set field /.

3. Order parameter: characteristic thickness and motion

To establish a non-local form of the above introduced propagation equation, we will make an
extensive use of already derived results obtained in the framework of phase change theory
(Cahn & Allen, 1977). The Allen–Cahn equation for the modelling of ordering phenomenon
in continuum media via a field g reads:
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@g
@t

þMðw0ðgÞ � jDgÞ ¼ 0; ð6Þ

where, M, the mobility coefficient, and j, the interfacial energy coefficient, are parameters of
the model; w is a function associating energy states to values of g.

The above equation arises as the solution of the minimisation of a potential energy field
defined as follows:

EðgÞ ¼ wðgÞ þ j
2
rg � rg: ð7Þ

In the above definition, the technical definition of w is a prototypical double-well poten-
tial: it possess two local minima at f�ge; geg and a local maximum at 0 valued to wb. The
local minima correspond to a stable state. The local maximum represents an energy barrier
that is to be crossed in order to change from one phase to another. Finally, the second term in
Equation (7) provides an interfacial energy characteristic of the two phases interaction.

A slightly modified form of the Cahn–Allen equation is widely known as the Ginzburg–
Landau equation. Caginalp (1986) analysis demonstrated the existence of solutions for this
equation and that the thickness of the interface remains stable throughout time. Our purpose
is now to adapt this equation in order to build a level-set propagation equation where the
level-field is ensured to remain in LS.

In the order–parameter context, an interface as an infinite thickness. However, it is possi-
ble to define a relevant measure of the interface thickness e through:

e ¼ 2
ge

k rg kg¼0
: ð8Þ

With such a definition, at equilibrium, the following relation between the j parameter and
the thickness holds:

j ¼ wb

2

e

ge

� �2

ð9Þ

For a logarithmic double-well potential, the velocity FK of the iso-0 surface in the
absence of external action is given by (Cahn & Allen, 1977):

FK ¼ M �K; ð10Þ

where, �K is the mean curvature of the iso-0 surface of the order parameter field.
If the order parameter field is attached to a particle field x moving at the velocity

F �M �K, we obtain the propagation equation of a level-set field at the velocity F which
verifies the belonging of the field / to the space LS. After some reduction, using the formula
for curvature proposed in Goldman (2005), one obtains the equation:

@/
@t

þ F k r/ k þM w0ð/Þ � j
r/ � r/

r/ � H/ � r/

� �
¼ 0; ð11Þ

where, H� represents the Hessian differential operator applied to �.
Equation (11) is a non-local propagation equation for a level-set field /. It can already be

seen that this equation includes one more term with respect to the usual propagation equation,
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M w0ð/Þ � j
r/ � r/

r/ � H/ � r/

� �
: ð12Þ

Considering a zero normal velocity, the equilibrium, i.e. @/=@t ¼ 0, is reached when this
term collapses. This term can, therefore, be considered as a measure of the quality of the gradi-
ent of the level-set field at the interface. In the sequel, we will use this term in order to control
the spatial quality of the obtained solution. Therefore, we introduce the following definitions:

f pð/Þ:¼k r/ k; ð13Þ

f gð/Þ:¼ w0ð/Þ � j
r/ � r/

r/ � H/ � r/

� �
: ð14Þ

4. Numerical implementation

4.1. Explicit finite differences

The scheme presented below is an explicit finite difference scheme. The equation is solved
on a two-dimensional domain regularly gridded with a grid step size h. Two orders of trunca-
tion have been tested to compute the spatial differential operator. The first one, denoted as
low-order scheme, uses a 5 points stencil and presents a truncation error of Oðh2Þ for both
first and second derivatives. The second one, high-order scheme, uses a 16 points stencil and
presents a truncation error of Oðh4Þ for both first and second derivatives.

The time integration scheme is the standard embedded Runge–Kutta at fourth order. We
use here, the Cash–Karp (Cash & Karp, 1990) version that enables to estimate the time inte-

gration error. Let /̂
�

n be the nodal vector associated to the level-set field at time step n. The

explicit time integration scheme is:

/̂
�
nþ1 ¼ /̂

�
n þ

X6
i¼1

ci k̂� i; ð15Þ

where, the k̂
� i at node A, k̂

� i

� �
A
, is defined by:

k̂
� i

� �
A
¼ Dt F � f p /̂

�
n þ

Xi�1

j¼1

bij k̂� j

 !
A

 !
þM � f g /̂

�
n þ

Xi�1

j¼1

bij k̂� j

 !
A

 ! !
; ð16Þ

with Dt the current time step length and /A being the value of field /̂
�
at node A. The param-

eters can be found in Cash and Karp (1990).
With this approach, an error estimate �n for time integration at time step n can be

obtained through:

�n ¼
X6
i¼1

ðci � cHi Þ � k̂� i

�����
����� ð17Þ

The structure of the non-local propagation equation authorises to define an error estimate
of the quality of the solution with respect to the interface gradient, Hn, through:
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Hn ¼ f̂
�

gðt; /̂
�
Þ

����
����; ð18Þ

with, f̂
�

g being defined at node A by:

f̂
�

g /̂
�

� �� �
A

¼ f g /̂
�

� �
A

� �
: ð19Þ

4.2. Implicit Galerkin

The variational problem associated to the above introduced non-local propagation equation is
as follows:

ðP20Þ 8q 2 U0
-; find / 2 U- such that:

B/ðq; /Þ ¼ 0; ð20Þ

where,

B/ðq; /Þ :¼ Btðq; /Þ þ Bpðq; /Þ þ Bgðq; /Þ
¼ hq; /;t iX þ hq; Ff pðt; /Þ iX þ hq; Mf gðt; /Þ iX; ð21Þ

and the spaces U0
- and U- are defined by:

U- ¼ f. 2 H1ðXÞ j 8M 2 C-; . ¼ -g; ð22aÞ

U0
- ¼ f. 2 H1ðXÞ j 8M 2 C-; . ¼ 0g: ð22bÞ

The time discretisation of the problem is done using the generalised-α method developed
by Chung and Hulbert (1993). This method has already been used in the framework of iso-
geometric modelling to solve phase-field type problems (Gómez, Calo, Bazilevs, & Hughes,
2008). The discretised vector ! is defined by:

NT

� � U� ’ /; ð23Þ

where, NT
� is the vector of shape functions expressed at the nodes. In the generalised-a

approach, time derivatives are estimated at different time within the actual time step; we refer

to these time derivatives, including their derivation time, using ð€U� nþam ;
_U� nþaf ; U� nþaf Þ

where, af and am are parameters. The definition of the residual vector is then:

R
�
¼ R̂

�
ð€U
� nþam ;

_U
� nþaf ;U� nþaf Þ; with; ð24aÞ

R
�
¼ fBðNA;/

hÞg: ð24bÞ
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The time-space discreticed problem then reads:

ðP25Þ given €U
� n; _U

� n; U� n;

find €U
� nþ1; _U

� nþ1; U� nþ1; €U
� nþam ;

_U
� nþaf ; U� nþaf ; such that:

R̂
�
ð€U
� nþam ;

_U
� nþam ; U� nþaf Þ ¼ 0

�
; ð25Þ

where,

U
� nþ1 ¼ U

� n þ Dtn _U
� n þ Dt2n

2
€U
� n þ bDt2nð€U� nþ1 � €U

� nÞ; ð26aÞ

_U
� nþ1 ¼ _U

� n þ Dtn €U� n þ cDtnð€U� nþ1 � €U
� nÞ; ð26bÞ

€U
� nþam ¼ €U

� n þ amð€U� nþ1 � €U
� nÞ; ð26cÞ

_U
� nþaf ¼ _U

� n þ af ð _U� nþ1 � _U
� nÞ; ð26dÞ

U
� nþaf ¼ U

� n þ af ðU� nþ1 � U
� nÞ: ð26eÞ

The non-linear discretised problem (P25) is solved using a predictor–corrector algorithm.
In this algorithm, the prediction step is done under the “same U” hypothesis (Jansen,
Whiting, & Hulbert, 2000).

Here, a control of the time integration precision is also implemented: two successive com-
putations of the same time step are conducted. The first one is done with every generalised-a
parameters equal to 1, which renders the scheme equivalent to a backward Euler scheme. The
second one is conducted with q1 ¼ 1

2 and other parameters chosen following Bazilevs, Calo,
Zhang, and Hughes (2006). The two schemes present a difference of one order in integration
precision. An estimation of the time integration precision �n at time step n is obtained by
comparing the two obtained residual vectors:

�n ¼ U
�

BE
n � U

�
a
n

��� ���; ð27Þ

where, U�
BE
n and U�

a
n are the solutions obtained using the backward Euler and the generalised-

a schemes, respectively.
As in the finite differences case, it is possible to introduce an estimate of the quality of

the gradient norm through Hn defined by:

Hn ¼ jfBgðNA;/
hÞgj: ð28Þ
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4.3. Time and space quality control

In the derived equation for the non-local propagation of the level-set field, 11, the second
term on the right hand side enables to get an estimate of the quality of the gradient norm
at the interface. Otherwise said, the norm of this term is directly proportional to the error
with respect to the stationary solution of the problem for the actual location of the iso-0
surface.

A look at this term shows that the modification of the parameter M will enable to enforce
the control of this error throughout the computation via a control approach of the form:

Mnþ1 ¼ Mn Sg H0

Hn

� �bg
 !�1

; ð29Þ

where, Sg is a safety coefficient slightly smaller than the unit, H0 is the target error on the
gradient to be estimated at the beginning of the computation and bg is a parameter that may
vary depending if the target error is exceeded or not.

This control of the parameter M enables to set the velocity at which the control of the
gradient is done relatively to the overall propagation velocity of the field, F.

The control of the time step length can be achieved in both explicit and implicit schemes
through the use of the time integration error estimate. Several functions have been determined
for such a control (Gustafsson, 1991, 1994; Söderlind, 2006). In our approach, we selected a
simple, but reliable version:

�nþ1 ¼ St D0

Dn

� �bt

: ð30Þ

where, St is a safety coefficient slightly smaller than the unit, D0 is the target error in gradi-
ent to be estimated at the beginning of the computation and bt is a parameter that may vary
depending if the target error has been exceeded or not.

5. Benchmark

5.1. Rigid motion test set-up

One of the difficult motions to simulate within level-set is the rigid body motion: a hyper-
surface is submitted to a velocity field that does not involve shape change. Classical test case
in this area is the simulation of the rotation of a circle shape for half a revolution. In the
sequel, our computational domain is a square plate of unit size with its centre being located
in ð0:; 0:Þ in Cartesian coordinates. In the rigid body motion test case, we initialise the level-
set field through the projection of the field defined by:

ðxþ :25Þ2 þ y2 ¼ ð:125Þ2 ; ð31Þ

where, ðx; yÞ are the Cartesian coordinates of the current point. The velocity is then defined by:

F ¼ M � r/; ð32Þ

where, M is the coordinate of the current point taken from the centre of the plate.
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In these tests, the error on the solution is measured by comparison to a numerical ideal
solution. This reference solution is obtained by initialising the computation with a circular
contour centred at ð:25; 0:Þ and then obtaining the complete field by using the propagation
equation with a null velocity. This error is hereafter denoted relative error.

The double-well potential w is constructed using the logarithmic potential:

wðxÞ ¼ x logðxÞ þ ð1� xÞ logð1� xÞ þ 3xð1� xÞ; ð33Þ

usually used in the phase-field theory. This usual double-well potential is scaled such that the
two local minimums are located at f�1; 1g and are valued to 0. For numerical reasons, it is
extended by continuity at fourth order with a polynomia outside the minimums locations,
i.e. on � �1;�1½ and on �1;1½. Due to its non-significance in the current context, the local
maximum at 0 is valued to 1 and, therefore, the parameter wb is also valued to 1.

5.2. Finite differences

In the case of finite differences, we have tested two different ways of selecting the parameter
j: either using a constant value – corresponding to an interface thickness of :1 via Equation
(8) – or a value evolving with the grid spacing – corresponding to an interface thickness of
four times the grid spacing.

In the case of a thickness of the interface varying with the mesh refinement, it can be seen
in Figure 1 that there is a lower limit for the relative error. This limit characterises the
inability to correctly compute the derived quantities when the interface becomes too thin. As
a result, even with finer meshes, the solution contour presents a constant shift with respect to
the theoretic solution contour as displayed in Figure 2. However, the shape of the contour,
for high order and/or fine grid is close to the ideal shape.

Figure 3 displays the relative error for a constant interface thickness and low-order and
high-order schemes. The final obtained contour compared to the theoretic solution contour is

Figure 1. Convergence for finite differences with a varying j.
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presented in Figure 4. In this case, there is no lower limit to the relative error. The high-order
scheme presents a higher convergence rate than the lower order.

For the high-order scheme, a good solution, with an error around :1%, can be obtained
with a coarse mesh of 40 by 40 elements (41 by 41 nodes), which correspond to a discretisa-
tion of the circle over about 10 nodes. In the low-order case, the grid should be finer to
obtain high-quality solution. Although difficult to compare, the obtained results appear to be
much better than the results obtained by Sethian (1999) for the same type of test cases.

Figure 2. Comparison of numerical solution and theoretic solution for finite differences with a varying j.

Figure 3. Convergence for finite differences with a constant j.
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5.3. Iso-geometry results

Owing to the study done in finite differences, we have only looked at the case of constant
interface thickness in the case of the iso-geometric formulation. This formulation has been
tested with closed regularly spaced knots vector. Two orders of continuity have been studied,
namely a C2 and a C3 projection space.

The evolution of the error with respect to the continuity, as depicted in Figure 5, suggests
that the convergence is the same in both cases. Within this background, a better solution can

Figure 4. Comparison of numerical solution and theoretic solution for finite differences with a constant j.

Figure 5. Convergence for iso-geometry with a constant j.
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be achieved with a coarser discretisation: already with second-order continuity and only 24
by 24 elements, the solution is as good as the one obtained in finite differences at high order
with 80 by 80 elements, although the error is measured with a different norm. The quality of
the solution can also be checked in Figure 6.

6. Conclusion

We have presented in this paper a numerical non-local approach able to track and propagate a
contour with a given velocity. The proposed scheme is a breakthrough with precedent
approaches in the sense that it simplifies drastically the algorithmic complexity to solve such
a problem by suppressing correction steps.

With the proposed scheme, the solution is, by construction, ensured to remain within a
space that corresponds to the definition of an implicit surface. Finally, we have demonstrated
that this approach can be implemented either in a finite difference approach or in a Galerkin
formulation.

The actual choice of the interface thickness is to remain a user question and is a trade-off
between the size of the object to be modelled and the quality of the problem solution. Finally,
although it has not been tested, there is no doubt that approaches reducing the computational
cost such that reducing computations on a finite band around the interface can also be applied
to this approach.
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