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This paper presents an approach to the numerical simulation of crack propagation with
cohesive models for the case of structures subjected to mixed mode loadings. The evolution
of the crack path is followed by using an adaptive method: with the help of a macroscopic
branching criterion based on the calculation of an energetic integral, the evolving crack path
is remeshed as the crack evolves in the simulation. Special attention is paid to the unknown
fields transfer approach that is crucial for the success of the computational treatment. This
approach has been implemented in the finite element code Z-Set (jointly developed by
Onera and Ecole des Mines) and is tested on two examples, one featuring a straight crack
path and the other involving a complex crack propagation under critical monotonous
loading.
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1. Introduction

The accurate prediction of crack propagation becomes increasingly necessary for a wide range
of industrial applications (e.g. aerospace or automotive industries, civil engineering). Due to
increasing complexity and advanced optimisation methodologies, manufacturing requires even
more sophisticated design techniques and precise damage tolerance analysis for correct
lifetime assessment. Critical parts, such as rotors in aircraft engines, are actively investigated
for cracks, using non-destructive means of detection. Such parts, if cracked, are usually
replaced immediately for safety reasons. However, crack detection technologies have limita-
tions, and some very small initiated cracks might remain undetected during inspections. Thus,
it is necessary to determine when the next inspection should occur without compromising
safety. Modelling how such small cracks propagate due to fatigue loading is believed to help
address this concern.

During the last decade, many approaches have been developed to efficiently perform
complex 3D crack growth simulations under fatigue loading (mostly based on either X-FEM/
Levelset methods (Bechet, Minnebo, Moes, & Burgardt, 2005; Chessa, Smolinski, & Bely-
tschko, 2002; Moes, Dolbow, & Belytschko, 1999; Zi & Belytschko, 2003) or efficient
remeshing techniques (Bonnet, 1999; Chiaruttini, Feyel, & Chaboche, 2010; Destuynder,
Lescure, & Djaoua, 1983), but these are mostly limited to the linear elastic fracture mechanics
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(LEFM) framework. Due to many technical issues, it is quite difficult to close the gap
between complex LEFM and the study of cracks arising in elastic-plastic materials.

An usual alternative to LEFM is the use of cohesive zone models (Barenblatt, 1962;
Dugdale, 1960), which allow to model the energy dissipated in a crack opening process as a
damaged interface situated on the crack path. Such approaches give the opportunity to
separate the energy loss arising on the crack surface from any kind of dissipative volume
material behaviour (e.g. visco-plasticity or damage). Usually, in structural mechanics, the
numerical implementation of cohesive zone models is carried out using standard finite ele-
ment techniques, where specific dissipative interface elements are inserted on a predefined
crack path along which the crack is assumed to progress when a load is applied. Efficient
tackling of mixed mode loading, where the crack path is complex and hardly predictable, is
still non-trivial. A possible solution consists of inserting cohesive elements on each interface
between bulk finite elements (Levy, Seagraves, Molinari, & Radovitzky, 2009), but such
approach greatly increases the number of degrees of freedom (DOFs), makes the predicted
crack path mesh-dependent and, furthermore, adds difficulties when calibrating the model
due to numerous branchings and unpredictable energy dissipation. Recently, an alternative
numerical technique has been developed (Geißler & Kaliske, 2010) in order to predict the
crack path evolution; an averaged principal stress direction criterion is applied and a
morphing approach is used to update the crack location in the mesh.

The work presented here can be seen as an extension of the latter approach, using the
efficiency of remeshing techniques recently developed at Onera. When using cohesive zone
models, a fine mesh is usually required near the “process zone” where energy dissipation occurs.
Thus, for long crack propagation simulations, refining to mesh on the whole predefined crack
path can be extremely expensive in terms of computational time (especially for 3D problems).

The article is organised as follows. Section 2 introduces the modelling strategy used for
the problem at hand and, in particular, the modified Crisfield cohesive zone model chosen
(Alfano & Crisfield, 2001; Mi, Crisfield, Davies, & Hellweg, 1998). In Section 3, an
approach aiming at performing efficient cohesive zone modelling with adaptive remeshing
and a predefined crack is presented, detailing the fields transfer method which is a critical part
of the process. The required branching criterion and the remeshing process for crack path
adaptation in mixed mode loading are explained in Section 4. Finally, Section 5 reports
preliminary numerical assessments of the implementation of the proposed algorithm on the
simulation of a critical crack propagation, highlighting the computational savings allowed by
the proposed treatment.

2. A continuous mechanical model with cohesive zone

Consider a mechanical problem for a structure X, where an initial crack is defined by a
surface C0, a prescribed displacement evolution udðtÞ is imposed on a subset ouX of the
boundary oX of the domain, while prescribed tractions FdðtÞ are applied on the complemen-
tary portion oFX of the external boundary. The structure evolution is modelled within the
small-deformation framework, as only the crack surface geometry Ct evolves inside the
domain during the considered time interval ½0; tf �, and quasi-static conditions (e.g. slow crack
propagation) are assumed. For the sake of simplicity, the bulk material is assumed to have
linearly elastic constitutive properties. Besides, a cohesive zone model is used to model the
energy dissipated as the crack propagates. Thus, the governing equations are:

eðtÞ ¼ 1

2
ð$uðtÞ þ ð$uðtÞÞT Þ in X ð1aÞ
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rðtÞ ¼ A: eðtÞ in X ð1bÞ

$ � rðtÞ ¼ 0 in X ð1cÞ

uðtÞ ¼ udðtÞ on ouX ð1dÞ

rðtÞ � n ¼ FdðtÞ on oFX ð1eÞ

rðtÞ � nC ¼ f ð½½uðtÞ��; kÞ on Ct ð1f Þ

where A denotes the elasticity tensor, n the outward unit normal to any point of the boundary
oX, nC the unit normal to any point on the crack surface C and f the cohesive law relationship
where k is an internal variable that describes the damage of the interface.

In order to preserve an accurate numerical solution, a hybrid cohesive formulation is
chosen. Like in Mergheim, Kuhl, and Steinmann (2004), the initial formulation of the cohe-
sive interface is based on a discontinuous Galerkin (DG) method. When a specific stress
threshold is reached on any point of the interface, a classical linear dissipative cohesive model
is applied. This approach leads to the following variational formulation for the problem at
hand: find u that verifies 8v 2 fw 2 H1ðXÞ;w ¼ 0 on oUXg and t 2 ½0; tf �:
Z
X
eðtÞ: A: $v dX�

Z
Ct

ð1� aÞ ðhA:$vi: ðnC � ½½uðtÞ��Þ � hrðtÞi: ðnC � ½½v��Þ

þ jð½½uðtÞ�� � nCÞ: A: ðnC � ½½v��ÞÞdS
¼

Z
oFX

FdðtÞ � v dS þ
Z
CðtÞ

a f ð½½uðtÞ��; kÞ � ½½v��dS ð2Þ

where, for any point of the surface Ct and any generic fields q1; q2 defined on the lower and
upper crack faces Ct;1 and Ct;2, one has set:

hqi: ¼ 1

2
ðq1 þ q2Þ; ½½q��: ¼ q2 � q1; ð3Þ

with nC is the unit normal on Ct pointing from Ct;1 to Ct;2.
The scalar a is initially set to 0 for t ¼ 0. The criterion on the stress is defined such that

for any point of the surface Ct, a is set to 1 once hrðtÞi:ðnC � nCÞ[rF . To take into account
the damage accumulated on the surface, this process is irreversible.

If a ¼ 0, the applied formulation is based on the Nitsche internal penalty method
(Nitsche, 1971), where j is a penalty coefficient: if j is chosen equal to C=h in the discrete
solution process with C positive and large enough and h the smallest surface element charac-
teristic size, the stability and convergence are guaranteed.

If a ¼ 1, a simple cohesive model (mostly built for mode I loading) is activated. First, an
interface damage parameter k is used, defined, only if a ¼ 1, by:

kð0Þ ¼ 0 and kðtÞ ¼ min 1; max
s2½0;t�AND½½u���nC[0

k ½½uðtÞ�� k
uF

� �
;
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so that the interface behaviour can be defined as (Figure 1):
• if ½½u�� � nC[0, a traction loading is applied:

f ð½½uðtÞ��; kÞ ¼
½½uðtÞ��
k uF

ð1� kÞ rF ; if k\1
0; otherwise

�
ð4Þ

• otherwise, a compressive loading is applied:

f ð½½uðtÞ��; kÞ ¼ Kcomp½½uðtÞ�� ð5Þ

where uF denotes the critical jump at the interface where damage is triggered, rF is computed
related to the critical energy release rate of the material and Kcomp is a penalty coefficient to
apply perfect contact when a compression loading is applied close to the considered C surface
point.

3. Adaptive refinement approach for cohesive zone model based on a remeshing
process

Using a discretised version of the formulation given in the last section and considering a quasi-
static loading that ensures a stable evolution of the system, it is possible to solve the crack
growth problem on a completely predefined cohesive zone, using a standard Newton-Raphson
algorithm. The “process zone” is defined as the group of cohesive elements which contains, at
the current time t, at least one integration point that satisfies 0\k\1.

To solve such problems accurately usually requires a very fine mesh in the “process zone”.
Thus, if the same mesh is used to model the problem over the complete evolution duration
½0; tf �, mesh refinement is needed on the whole crack path, making the overall solution process
computationally expensive. In this section, an efficient adaptive remeshing approach is pre-
sented, which considerably accelerates the numerical solution of such problems.

During the adaptive refinement process, a prescribed minimal element size h is set based
on considerations related to the dissipative model and the size of the “process zone”: the
characteristic length ‘c of the “process zone” is defined as the smallest distance between two
material points whose state evolves from k ¼ 0 to k ¼ 1. The usual requirement is that the
cohesive elements in this zone must have a maximal size of h ¼ ‘c=4. Then, a zone built

Figure 1. Cohesive law adopted for the crack propagation when the threshold has been reached.
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from the non-damaged elements within a distance Lc (a second characteristic length) to the
actual “process zone” is defined. In this region, the prescribed mesh size is set to h ¼ ‘c.
Elsewhere on the surface and in the volume mesh, the remeshing algorithm is free to apply
the most suitable element size.

During computation, the “process zone” evolves (Figure 2). If it reaches a “coarse”
cohesive element, the solution state is reverted to the last converged state, where all active
cohesive elements size is prescribed (in the “refined” zone). A remeshing process is then
triggered in order to generate a more suitable mesh from the current converged solution. A
mesh refinement is imposed in an updated Lc-based zone, coarsening is applied where the
cohesive elements are broken, and the exact topology of the elements in the “process zone” is
preserved.

Before computing the next problem increment, a field transfer process is required. For
both the bulk linearly-elastic behaviour and the non-linearities concentrated on the cohesive
surfaces:

• The integration point transfer is only crucial for the “process zone” elements;
elsewhere, only binary values of k must be correctly transferred because of the linear
behaviour. Thus, a “closest integration point” transfer technique is used, separating
volumetric elements and the cohesive ones. Since the topology is exactly preserved on
the “process zone”, the static equilibrium is perfectly kept for these elements.

• Since there is a localised discontinuity when the displacement field crosses damaged
cohesive elements, the transfer of nodal unknowns is complex. However, for the sake
of simplicity, since the problem is set in a linear elastic constitutive framework, the
displacement fields are initialized to zero everywhere.

An equilibrium increment is then performed in order to revert the problem back to its
state before the field transfers by applying the complete loading from t ¼ 0 to the current
time within one step. The global evolution on this interval has to be almost completely linear
because of the specific behaviour models of the bulk material and the cohesive interfaces.

4. Crack direction prediction and remeshing process

In this section, a specific crack direction prediction criterion, used for updating the crack path
during the simulation, is discussed. To process complex crack path updates while using cohe-
sive zone models, a global energetic approach is chosen. Since a linear elastic behaviour is

Figure 2. Representation of the cohesive surface, the relationship between the mesh size and the
interface elements’ damage status during a remeshing step.
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used for the bulk material, if the ratio between the crack surface area and the surface of the
“process zone” is large enough, the considered problem can be treated as a small-scale yield-
ing fracture problem. Thus, a direction prediction criterion formulated for linear elastic
fracture mechanics can be used.

In order to apply such criteria to general 3D problems with cracked surfaces, the first step
consists of building a crack front (Figure 3):

(1) Discrete cohesive zone solutions usually produce a “process zone” made of non-contiguous
elements, which make it particularly difficult to identify an approximated crack front. In
order to limit these artefacts and build a more regular surface, the “process zone” is extended
to all the cohesive elements that have at least one node linked to it.

(2) Segments on the boundary between the extended zone and the completely damaged
elements (where the damage internal variable k ¼ 1) are ordered and linked together
to build a continuous polygon. Using a smoothing technique (Chiaruttini, Feld-Payet,
& Rannou, 2012), an average curve cD ¼ fcDðsÞ; s 2 Sg is built (where s denotes an
arc-length coordinate).

(3) By using the same technique, an average curve cU is built on the interface between
the undamaged elements.

(4) Finally, the averaged crack front c is built according to:

cðsÞ ¼ 1

2
ðcU ðsÞ þ cDðsmÞÞ where sm ¼ argminn k cU ðsÞ � cDðnÞ k ð6Þ

In other words, cðsÞ is the midpoint between a given point cU ðsÞ and the point of cD
closest to the latter.

To define the new crack orientation, an interaction integral computation (Gosz, Dolbow,
& Moran, 1998) is carried out on the crack front (Chiaruttini, Feld-Payet, & Rannou, 2012).
Usually the volume mesh diameter for the energetic integral computation is about 10 times
that of the “process zone”. A maximal opening stress criterion is then used: if the extracted

Figure 3. Representation of an approximated crack front and an integration volume for stress intensity
factor computations.
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stress intensity factor value in mode II KII is sufficiently high compared to mode I value KI,
the branching angle b is obtained in order to satisfy:

KI sinðbÞ þ KII ð3 cosðbÞ � 1Þ ¼ 0 ð7Þ

If the criterion indicates that the crack direction changes, an adaptive remeshing process
is used (Chiaruttini, Feyel, & Chaboche, 2010) (with respect to the considerations expressed
in the last section, see Figure 4):

(i) a surface mesh is generated as an extension of length Lc of the undamaged “process
zone” boundary cU in the directions given by the criterion (it should therefore not
intersect the actual “process zone”).

(ii) the current mesh is cut by the previously generated surface.
(iii) the previously undamaged elements are deleted and the new crack surface is generated

as a union of the previous zone linked to the “process zone” and the new generated
extension.

(iv) an adaptive remeshing stage is applied, where a prescribed element size ‘c is set for
the newly generated undamaged cohesive elements. The “process zone” topology is
preserved whereas the totally damaged elements are removed.

(v) the transfer technique presented in the last section is used once again.

If no branching occurs, the computation continues until the “process zone” reaches the
end of the predefined cohesive surface. At this point, another remeshing process is triggered
at the beginning of the current time increment and the surface is extended by a length Lc.

5. Numerical assessments

In this last section, two applications of the developed algorithm are presented. The first one is
focused on the adaptive remeshing technique, which can considerably reduce the computa-
tional time in case of cohesive zone model with a predefined crack path. The second one is
based on the simulation of a complex, stable crack propagation in a bi-material specimen,
using the adaptive crack path prediction technique.

5.1. Example 1: adaptative remeshing for a double cantilever beam

In this section, a simple 2D double cantilever beam (DCB) under monotonous traction is con-
sidered. The material is linear elastic (Young modulus: 200,000MPa, Poisson ratio: 0:3).

Figure 4. Remeshing process with cohesive surface reorientation.
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Details about the geometry are given on Figure 5, where all units are millimetres. A notch
has been inserted on the mid-plane of the beam with an initial length of 8 mm. A zero dis-
placement is prescribed to the right end of the specimen, whereas vertical increasing displace-
ments are applied to each left corner along opposite directions so as to open the notch. The
cohesive zone model is based on the hybrid DG/linear dissipative model presented in section
2 with rF ¼ 100 MPa and uF ¼ 1� 10�3 mm.

First, a numerical simulation is carried out using a single mesh i.e. without adaptive reme-
shing. A fine discretisation is imposed near the dissipative interfaces (Figure 5). Both cohe-
sive elements and bulk material elements feature quadratic shape functions for a total of
173,460 DOFs.

Next, an initial adaptive mesh is set up using the considerations exposed in Section 3.
The size of the elements in the refined zone is the same as in the previous, fixed-mesh, simu-
lation. This second mesh initially involves 6273 DOFs (and stays under 7000 DOFs during
the whole crack propagation, see Figure 6, while undergoing 221 successive remeshing steps).
Thus, the overall computational time for 400 loading increments (using an updated Newton-
Raphson procedure) is less than 15min, instead of over 3 hours using the non-adaptive fine
mesh.

5.2. Example 2: crack propagation with a complex crack path

This example aims at assessing and demonstrating the efficiency and robustness of the
method. In this respect, a critical crack growth problem is simulated for a modified CT speci-
men that is specially designed to ensure that the crack growth is stable. The 3D specimen
geometry (Figure 7, right) is obtained from the 2D geometry in the ðx; yÞ-plane of Figure 7
(left) by (i) extending it along the z (out-of-plane) coordinate so as to create a 0.1mm uni-
form thickness (with the z ¼ 0 plane as symmetry plane) and (ii) subsequently applying the
geometrical transformation

x # xþ :005yjyjez ðlengths in millimetresÞ ð9Þ

The specimen thickness thus varies between 0.1 mm (in the central part y ¼ 0) and
9.1mm (at the top or bottom right edges). The mechanical loading is defined by:

• zero displacements prescribed on the right side;
• increasing vertical displacements applied at the upper left and the lower right corners.

The structure is mostly made of PMMA (Young modulus: 2380MPa, Poisson ratio: 0.35),
with a rigid steel inclusion (Young modulus: 200,000MPa, Poisson ratio: 0.3) inserted in the

Figure 5. Example 1: fixed and initially adapted meshes for DCB propagation.
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central region of the specimen. The model assumes perfect bonding conditions between the
two materials, which are both considered linear elastic. The proposed cohesive model is used
on the dissipative interface with rF ¼ 100 MPa and uF ¼ 1:10�3 mm. The numerical study
will focus on the crack path prediction, the whole crack evolution being stable by design of
the specimen.

The crack path evolution predicted using the present adaptive remeshing method is shown
in Figure 8. In this case, 62 remeshing steps have been performed. A usual linear elastic
crack propagation simulation has also been performed for comparison (with the same branch-
ing criterion, prescribed advance step and linear loading conditions). The two resulting pre-
dicted crack paths are shown in Figure 9; they are quite similar, although they do differ in
the region where the cracks avoid the steel inclusion.

Figure 6. Example 1: evolution of adapted mesh during propagation (contour map of von Mises
equivalent stress).

Figure 7. Example 2: specimen geometry (units are millimetres) and loading conditions.
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6. Conclusion

In this paper an adaptive remeshing strategy has been presented, aiming at considerably
reducing computational costs for predefined crack path and update the cohesive interface
geometry by using an energetic linear elastic criterion. The preliminary numerical examples
presented herein demonstrate the efficiency of this approach for quasi-2D problems. Future
extensions will be focused on the simulation of real 3D configurations and the extension of
the approach to more complex bulk material behaviours, which add challenges such as main-
taining the static equilibrium during the field transfer process.

Figure 8. Evolution of crack path during the problem evolution using the adaptive cohesive zone
modelling (von Mises isovalues).

Figure 9. Comparison of crack paths obtained via adaptive cohesive model (plain line) and linear
elastic fracture mechanics (dashed).
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