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ABSTRACT. Being able to reproduce the coupling between normal and flexural components is a 
crucial point for multifiber beam element modeling. The aim of this work is to propose a 
solution for this coupling, using the incompatible modes method. Applied to axial 
interpolation functions, this method makes possible the coupled description of normal and 
flexural responses with the same order of accuracy. The enrichment is presented in detail 
then its performances are highlighted thanks to an academic test. 

RÉSUMÉ. La capacité à reproduire le couplage effort normal/moment de flexion est un point 
clef de la modélisation par éléments de poutre multifibre. L’objectif de ce travail est de 
proposer une solution pour ce couplage en utilisant la méthode des modes incompatibles. 
Appliquée aux fonctions d’interpolation du déplacement axial, cette méthode permet une 
description couplée des réponses axiale et de flexion avec le même niveau de précision. 
L’enrichissement de l’élément est présenté en détails puis ses performances sont mises en 
évidence grâce à un cas test académique.  
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1. Introduction 

Predicting the behavior of structures subjected to severe loadings, requires a 
precise modeling of the structure, even within the framework of simplified methods. 
Indeed, very important couplings are very often highlighted (Ragueneau et al., 
2003). The multifiber beam approach (Spacone et al., 1996) has many advantages: 
the computing time is reduced and thus makes it possible to treat more cases or to 
perform parametric studies. Among the highlighted couplings, the normal force - 
bending moment coupling seems a major stake of the multifiber beam element 
modeling. The simultaneity of a high tension force and a high bending rotation can 
thus lead to a premature ruin of the structure, which has to be predicted. However, 
there is no coupling between normal and flexural responses in a basic multifiber 
beam element, and the axial strain is constant over the element. It is thus necessary 
to enrich this axial deformation’s calculation. In order to simplify the presentation, 
Euler-Bernoulli beam kinematics is used. An enrichment of the interpolation of the 
axial deformation using the incompatible modes method (Ibrahimbegovic et al., 
1991) is proposed and established in the finite element code FEAP (Taylor, 1996). 
Then its performances are highlighted thanks to an academic test. 

2. Euler-Bernoulli multifiber beam element 

2.1. Presentation 

A traditional beam finite element can only describe one element made up of one 
material. It is thus not adapted for composite structures like reinforced concrete 
ones. A way of enriching this element is to make a multifiber beam element of it. 
Using multifiber beam elements has many advantages. Indeed, adopting beam 
kinematics in cross-sections, they make it possible to treat complex problems with 
nonlinear constitutive laws within a one-dimensional framework. In the cross 
section, various fibers are described with various constitutive laws. After integration 
along the cross-section, there are few degrees of freedom, compared to the 
complexity of the modeled structure.  

The Euler-Bernoulli multifiber beam element is a finite element with two nodes 
which can be a bi- or three-dimensional element. It is defined by its section geometry 
and its length. The section’s kinematics is the Euler-Bernoulli continuous beam one 
(Figure 1). Two Gauss points are used for integration. Thus, with kinematics 
assumptions and nodes displacements, one obtains, thanks to the shape functions, the 
axial strain and the section curvature, at the Gauss points’ locations. The 
deformation of each fiber and then its normal stress (thanks to one-dimensional 
constitutive laws) can be calculated. Integration on the section, then on the element, 
leads to the normal force and bending moment at the nodes. If constitutive laws are 
elasticity ones,  
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with: ε(x), the axial strain ; χ(x), the curvature ; N, normal force ; M, bending 
moment ; Ep, elastic modulus at P. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Section kinematics in Euler-Bernoulli beam 

2.2. Shape functions 

The shape functions usually used for Euler-Bernoulli beam elements are the 
Hermit polynomials (Hermite, 1873). The shape functions for axial displacement 
u(x) are linear (  222111 ,,,,,  vuvu  nodes’ displacements (Figure 2)): 
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Figure 2. Nodes’displacements 

And then, the displacements (u(x), v(x)) of any point P(x) from the beam’s 
neutral axis are written as following :  
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So, whatever the loading, the deformation in the beam is given by the axial strain 
ε(x) and by the curvature χ(x): 
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The axial deformation is thus constant over the entire element length and the 
curvature varies linearly on the element. 

2.3. Need for enrichment 

A constant axial strain over the beam element’s length can lead to various 
blockings. As soon as a variation of the axial strain due, either to loading (pile weight, 
dynamic loading), or to constitutive laws (plasticity, damage, non-linearity), or to the 
structure geometry, a blockade situation or an incompatibility is likely to appear and 
disturb the computational FEM process. Indeed, a nonlinear constitutive law or the 
beam cross-section’s reference axis’ choice (different from the neutral axis for 
example) can generate a non-controlled coupling between the normal force and the 

bending moment via (  S P ydSE ) in Equation [1] which links (N, M) and (ε, χ). 

Moreover, it can be very important to obtain the same precision in the 
knowledge of the normal force and the bending moment on an element (Ragueneau 
et al., 2003). However, in the basic Euler-Bernoulli multifiber beam, an 

incompatibility in the writing of the axial strain exists because  x  is constant [6] 

and  x  is linear [7]: 

   xyx fibrefibre    [8] 

To fix this problem, one solution consists in increasing the number of elements of 
the problem discretization. The precision of the axial strain description will depend 
on this number. Thus, this solution has important effects on the computing time and 
decreases the effectiveness of simplified models. Another solution, which will be 
developed in the following paragraph, is to change the description of the axial strain 
in the element by carrying out a kinematic enrichment. 

3. Enrichment 

The axial strain enrichment proposed uses the incompatible modes method, 
introduced in the 1970’s by (Wilson et al., 1973) and then (Wilson et al., 1990). 
This method is presented and then the enrichment is carried out. 

3.1. Incompatible modes method 

The equilibrium equations, the kinematics equations and the constitutive laws are 
usually used to solve continuum mechanics problems. The incompatible modes 
method uses the Hu-Washizu three-field variational principle (Washizu, 1982) which 
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consists in building the weak form of the preceding equations by introducing a 
virtual field of displacements, stresses and strains.  

 ,,u are respectively the fields of displacements, strains and stresses. For any 
virtual field, the following equations must be checked: 

  0ˆ.ˆ ,  uWdu extijji   [9] 

   0ˆ , du ijjiij 
 [10] 

   0ˆ dC klijklijij 
 [11] 

with  uWext ˆ , the external forces’ work in the field of virtual displacements û , and 

ijklC , constitutive law tensor. 

A new decomposition of strains is then introduced, in which the added strains 

appear: ~  (real) and ̂~  (virtual): 

ijjiij u  ~
, 

 [12] 

ijjiij u  ~̂ˆˆ , 
 [13] 

These expressions ([12] and [13]) are then introduced in relations [9], [10] and 
[11]. 

The incompatible modes method’s idea is then to choose the stresses space, 
orthogonal with the added strains space. The equations to be solved become 
(Ibrahimbegovic, 2009): 

  0ˆˆ ,  uWdCu extklijklji   [14] 

0~̂  dC klijklij 
 [15] 

  0ˆ ,  dCu klijklijji 
 [16] 

These expressions can be simplified by supposing that the strong form of the 
constitutive law is checked, namely:  
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  0ˆˆ ,  uWdu extijji 
 [17] 

0~̂  dijij
 [18] 

klijklij C  
 [19] 

This system must also be checked for a constant stress field, to guarantee the 
convergence of the problem. This condition is called “patch test”. 

3.2. Formulation 

In order to fix the incompatibility on the integration described previously in 2.3, 
it is possible to carry out a kinematic enrichment of the element. In order to enrich 
the axial displacement, a new axial displacement,  and its shape function N0(s), 
corresponding to a new strain ~  called “enhanced strain” within the framework of 
the incompatible modes method, are introduced.  

The axial displacement becomes: 

       ... 02211 xNuxNuxNxu 
 [20] 

and the axial strain is then: 
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In order to have the axial strain and the curvature described with a linear function 
of x, N0(x) must be a quadratic function of x. Moreover, N0(x) should not change the 
values of u(x) in x=0 and x=L. The function chosen for N0(x) is a “bubble” function 
(Figure 3): 
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Figure 3. «Bubble» shape function for added displacement 
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In this way, there is no incompatibility between the axial strain’s interpolation and 
the curvature’s one: both are linear functions of x-coordinate. The incompatible modes 
method will enable to calculate the added strain and the added displacement, for 
enriching the axial strain’s description of the Euler-Bernoulli multifiber beam element. 

4. Numerical implementation 

The enrichment has been established in the FEM code FEAP (Finite Element 
Analysis Program) (Taylor, 1996). Indeed, there is in this code a multifiber beam 
elements library, FEDEAS (Filippou, 1996), with a Euler-Bernoulli multifiber beam 
element. Moreover, the number of nodal displacements is reduced by removing the 
ones which create only rigid body motions. Instead of as the beam nodes’ 

displacements  222111 ,,,,,  vuvuU  , V is used: 
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This allows reducing computation time considerably, without harming the 
results’ quality since this simplification is done without loss of information 
(Filippou, 1996). 

Thus, the unknown factors of the Euler-Bernoulli beam element are: 

 2112  uuV  : nodes’ displacements 

 SSSV   : strain and curvature in cross-section  

 SSS MNF   : forces in cross section 

SS FVV ˆ,ˆ,ˆ  respective virtual fields 

For a cross-section S, located at x-coordinate, one can write: 
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– the derivative of the shape function associated with , the added displacement : 
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These expressions are replaced in the equations of the incompatible modes 
method’s final system [17] [18]: 
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Thus, function G checks the “patch test” well. 

The system is solved with a sequential method. The variable for global 
computation index is called i. For each i iteration, the complete system can be 
written as: 
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with:  
élément eS

Te dGCBF ... ;  
élément eS

Te dGCGH ... ; eU , the 

displacements’ increment;  
élément eS

Te dBCBK ... , the element’s rigidity 

matrix ; e , incompatible mode’s increment  

The displacement’s value of incompatible mode being independently defined in 
each element, one can carry out a static condensation of this system, in order to have 
only the global equation to solve (the calculation of   is realized at the level of the 
element). 

One obtains then: 
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The computation of  is solved by using an iterative method, at the level of the 
element. By noting i, the index of “global” iteration, and j, the index of local 
iteration: 
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The converged value of  parameter is obtained when: 

    0),( iie Uh   [40] 

5. Academic test 

5.1. Test description 

In order to highlight the enrichment, the following test is proposed. The structure 
tested is a beam with rectangular constant cross-section S and length L. It is on two 
supports: pivot at the left end of the beam and simple support at the right end. 
Firstly, an increasing axial load F is applied at the right end node of the beam, up to 
a Fmax value. Then, F value is maintained constant and equal to Fmax, and rotation θ 
of the left end node of the beam is increased or decreased linearly. 
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If the beam’s material evolves with a non-elastic law, then the axial strain will 
not stay constant. Indeed, it will be larger in the already plasticized or damaged 
zones, because of the shift of the neutral axis. Thus, a lot of basic Bernoulli beam 
elements are needed to model this behavior. 

Only two new enriched elements are enough to reproduce the evolution of the 
axial strain along the beam (one cannot go down below two elements to discretize a 
structure with FEAP, because of the code operation). 

The geometrical characteristics of the tested beam are: L = 2m and S = 0,2m x 0,2m  

The beam’s material is an elasto-plastic steel with work hardening (Young 
modulus = 200000 MPa, elastic limit = 500 MPa, work hardening = 1%). The beam 
is modeled with two multifiber beam elements (Figure 4). Each cross-section is made 
of (3 x 3) fibers. The axial load Fmax is 19 MN. The  rotation is increased up to 
10.E-3 then decreased to 5.E-3 then increased again, up to 20.E-3. 
 

0,80m 

Section 1 Section 2

ELEMENT 1 ELEMENT 2 

1,20m 
 

Figure 4. Beam modeling 

5.2. Results 

The same computation is carried out with the basic elements and with the 
enriched ones.  

With the basic elements, the axial strains of Section 1 and Section 2 are identical 
(that is normal for this kind of element). As soon as some fibers start to plasticize 
(with the increase of the applied rotation), the element does not manage to preserve a 
constant normal force in its two sections, to ensure global equilibrium. There is also 
a very bad convergence, even a divergence at the global level. 

The results provided by the enriched multifiber beam element seem very 
satisfactory. Indeed, the evolution of the axial strain of Section 1 and that of 
Section 2 are different (Figure 5) within element 1, as soon as some fibers start to 
plasticize (Figure 6). This means that the incompatible mode parameter, α, that was 
added, functions correctly and makes it possible to have a non constant axial strain 
over the element. The element manages to preserve a constant normal force in both 
sections (Figure 7). Moreover, a very good convergence is observed. A synthesis of 
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the evolution of strains and stresses in Sections 1 and 2 of element 1 during the test 
(during the increase in imposed rotation) is proposed in Table 1. 

This test has been carried out with other nonlinear constitutive laws or with 
composite sections and has also given very good performances (Casaux, 2003). 
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Figure 5. Sections’ axial strains in element 1 with enriched elements 
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Figure 6. Stress/strain evolutions for fibres in [section 1 -element 1] during the test 
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Table 1. Strain-stress evolution in element 1 during the test for basic or enriched 
elements 

Cross-section 1 Cross-section 2 Test’s 
steps strain stress 

Equilibrium 
relations Strain  stress 

S
te

p
 1

  
 

 

 

 Elastic domain :  
 

moyenmoyen
21    

max21
21

Fdsds
SS

 
 

 

 

S
te

p
 2

 
 

θ
 

 



 

Elastic domain : 
  

moyenmoyen
21    

max21
21

Fdsds
SS

 
 

 

 

B
as

ic
 e

le
m

en
t 


élastique
élastique

 


max


max Section 1 : plastic – 

section 2 : elastic 

 

S
te

p
 3

   
   

   
   

   
   

   
   

   
θ

 

E
n

ri
ch

ed
 e

le
m

en
t 


élastique

 


max

Section 1 : plastic – 
section 2 : elastic 
 

moyenmoyen
21  

 

 
 
 



 
 
 



 

 

max21
21

Fdsds
SS

 

moyenmoyen
21  

max2
2

Fds
S



max1
1

Fds
S



moyenmoyen
21  

max2
2

Fds
S



max1
1

Fds
S



 

0,00E+00

2,00E+06

4,00E+06

6,00E+06

8,00E+06

1,00E+07

1,20E+07

1,40E+07

1,60E+07

1,80E+07

2,00E+07

0,00E+00 5,00E+00 1,00E+01 1,50E+01 2,00E+01 2,50E+01

time

ax
ia

l 
fo

rc
e 

(N
)

Sections 1 and 2

 

Figure 7. Normal forces in element 1 with enriched elements 
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6. Conclusion 

After detailing the Euler-Bernoulli multifiber beam element’s characteristics and 
measuring its advantages and disadvantages, an incompatibility in the description of 
the axial strain has been highlighted. This incompatibility can prevent the element 
from describing correctly the behavior of structures subjected to coupled loadings. 
An improvement, based on the incompatible modes method, has been proposed in 
order to cure this incompatibility. The new enriched multifiber beam element has a 
linear variation of its curvature according to its length, that gives him more flexible 
kinematics. The beam’s strain allows a controlled coupling between normal force 
and bending moment. The academic test has shown the efficiency of this new 
element compared to the basic Euler-Bernoulli one. Since this incompatibility has 
been corrected, others enrichments (Mazars et al., 2006) can be coupled to this one, 
and keep on improving multifiber beam modeling. 
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