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ABSTRACT. A numerical formulation is presented for anisotropic elastoplasticity behavior in 
finite strain with non-linear isotropic/kinematic hardening model. Non-linear kinematic 
hardening is modeled by the Lemaitre-Chaboche law with the aim of considering cyclic 
deformation phenomena. User-defined material subroutines are developed based on Hill’s 
quadratic yield function for both ABAQUS-Explicit (VUMAT) and ABAQUS-Standard 
(UMAT). For validation purpose, the tension-compression and cyclic shear tests are 
simulated. Several sheet forming processes including contact, anisotropic plasticity, elastic 
modulus variation with plastic strain and springback effects are simulated. Numerical results 
are compared with experimental data. 

RÉSUMÉ. Une formulation numérique est présentée pour les modèles élastoplastiques 
anisotropes en grandes déformations avec de l’écrouissage isotrope/cinématique non 
linéaire. L’écrouissage cinématique non linéaire est modélisé par le modèle de Lemaitre-
Chaboche afin de considérer les chargements cycliques. Des utilitaires numériques ont été 
développés pour ABAQUS-Explicit (VUMAT) et ABAQUS-Standard (UMAT). Dans un but de 
validation, les essais de traction et de cisaillement cycliques sont considérés. D’autres 
simulations plus complexes de mise en forme de tôles sont également réalisées incluant les 
phénomènes de contact, d’anisotropie, de module élastique variable en fonction de la 
déformation plastique et de retour élastique. Les résultats numériques sont comparés aux 
résultats expérimentaux. 
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1. Introduction 

Sheet metal forming processes commonly lead to large deformations and rotations 
which are both non-linear. A material model is important in sheet metal forming 
simulations in order to accurately predict the final geometry. In particular, sheet 
anisotropy is an important aspect that has to be considered in order to obtain accurate 
results (De Sousa et al., 2007; Yoon et al., 2000). In addition, modeling of kinematic 
hardening is of vital importance when the sheet is submitted to important strain-path 
changes, such as the traditional bending/unbending due to drawbeads (Taherizadeh et 
al., 2009). Most rate-independent plastic models have been expressed in terms of rate-
type constitutive law, for which the integration scheme has a considerable influence on 
the convergence of the integration scheme and the accuracy of numerical results. The 
most popular scheme is based on the predictor-corrector method (return map) during 
which the stress state is projected on the yield surface (Ortiz et al., 1985; 1986). Finite 
element methods (FEM) are commonly used to simulate forming processes including 
springback. Two main integration algorithms have been used to simulate loading 
(forming)/unloading (springback) stages: implicit/implicit (Laurent et al., 2010), 
explicit/implicit (Ghaei et al., 2010; Ingarao et al., 2004), and even explicit/explicit 
(Xu et al., 2004) schemes.  

The aim of this work is to develop an incremental scheme (integration algorithm) 
allowing simulations of metal forming processes, including springback. For this end, 
material anisotropy, non-linear isotropic/kinematic hardening and large 
deformations are considered. Also, our objective is to ensure the incremental 
objectivity and to save the CPU time consuming by considering a modified 
explicit/implicit incremental formulation. This paper is organized as follows. 
Section 2 presents a short summary of the important features of an objective 
elastoplastic constitutive model in large strain including combined non-linear 
isotropic/kinematic hardening using the Lemaitre-Chaboche model (Lemaître et al., 
1985). In particular, the elasticity is described by both hypoelastic and elastic 
formulations. This latter is reserved to the elastic prediction and especially for 
springback simulation (Chatti, 2010). In Section 3 is presented the incremental 
scheme for the integration of the constitutive equations. For validation purpose, the 
tension-compression test is simulated in Section 4. Cyclic shear test is also 
investigated in order to check the efficiency and the accuracy of the incremental 
scheme. Further numerical simulations are carried out as the bulge test and the 
cylindrical draw cup test. Finally springback is considered by means of the 
unconstrained cylindrical bending test presented in Numisheet’02 proceeding which 
involves severe contact conditions. The decrease of the unloading elastic modulus is 
taken into account in the implemented material model in order to accurately predict 
springback. Numerical results are compared with published experimental data. The 
main conclusions and perspectives are stated in Section 5. 
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2. Constitutive equations at finite strains 

The following notations are adopted: A  for second order tensor, A  for fourth-

order tensor, the symbol ‘‘:” between two tensors denotes double contraction (the 
trace of their product or the usual scalar product of two tensors), the superposed dot 
denotes the material time derivative and  denotes a tensor product.  

2.1. Kinematical aspects 

In this study the mechanical model takes into account large elastoplastic strains 
and rotations. The classical multiplicative decomposition of the deformation 

gradient pe FFF   into elastic ( eF ) and plastic ( pF ) parts is assumed (Mandel, 

1971). However, the additive assumption of the strain rate pe DDD   into elastic 

( eD ) and plastic ( pD ) parts is also widely used which justified in the case of 

negligible elastic strain when compared with plastic deformation. It is of importance 
to notice that models for anisotropic plasticity need an objective formulation. It is 
well established that the objectivity requirement can be simply obtained by deriving 
the material model in a Lagrangian configuration obtained from the actual 
configuration by a rotation Q  (the so-called rotating frame) which should follows 

material orientations. In other words, an Eulerian tensor A  is expressed in the 

rotated configuration (with Lagrangian orientations) by the transformation 

QAQA T  [1] 

Henceforward, the bar over a tensor indicates that the correspondent tensor is 
turned by Equation [1]. Notice that this transformation is not applied to a non-(fully) 
Eulerian tensor, as the elastic and plastic deformation gradients (see Equation [5]). 
Using the polar decomposition of the elastic and the plastic deformation gradients 
we obtain the natural intrinsic decomposition  

peppeepe F
~

VURRVFFF   [2] 

where eV  is the elastic left stretch tensor obtained from the polar decomposition of 
eF , pU  is the plastic right stretch tensor obtained from the polar decomposition of 

pF  , eR  and pR  are, respectively, the elastic and plastic rotations, and 
p

F
~

 is 

introduced to define the stress free configuration (configuration obtained by 
unloading without rotation). A more general decomposition, called multiplicative 
decomposition in rotating frame, is adopted (Sidoroff and Dogui, 2001; Badreddine 
et al., 2010) and given by  
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pepepe FFFVQFQVF   [3] 

where 
p

F  is the rotated plastic deformation gradient. Notice that the decomposition 
[2] leads to the so-called decomposition in the plastic proper rotating frame defined 
by 

pppe UF ; RRQ   [4] 

From Equations [2] and [3], one can found that 

pTp
F
~

QF   ; QVF ee
  [5] 

Using Equation [3], the evolution of the (plastic) rotating frame is derived as 

pp
WQ  QW

~
Q   [6] 

where 
p

W  and 
p

W
~

 are the plastic spin tensors relative to 
p

F  and 
p

F
~

, 

respectively, as 

A
ppP 1

FFW 





 , 
A

ppP 1

F
~

F
~

W
~











  

where the subscript ‘A’ denotes the antisymmetric part of the tensor. The rotated 
plastic velocity gradient is given by  

PP1ppp
WDFFL 

  [7] 

where 
p

D  is the symmetric part of the rotated plastic velocity gradient. Notice that 

the rotating frame should accurately follow the material axes (orientations). As a 
consequence, the rotating frame evolution is an essential component of the 
constitutive model. We assume therefore a kinematic definition of the rotating frame 
in which 

ppp
D : V

~
KW 







  [8] 

where K  is a fourth order anti-symmetric tensor. Note that the corotational plastic 

rotating frame is given by the choice of 0K   and written as 

pT W
~

Q Q   [9] 

where, the plastic proper rotating frame is given in Equation [4].  
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Our interest is on the simulations of sheet metal forming processes in which the 
elastic strain is negligible when compared with the plastic deformation. In this case, 
it can be shown that the plastic and the total rotating frames are almost the same:  

WW
~

Q Q
PT   [10] 

Also, it was established (see for example Dogui, 1988) that the choice of a 
rotating frame has an effect only for tests that allow important rotations of material 
directions as in shear (or torsion) test with large shear amount (more than 100% of 
deformation). It is clear that such amount of deformation cannot be reached in the 
most of sheet metal forming processes. As a result, the (total) corotationnel rotating 
frame is chosen because the integration of the differentiel Equation [10] can be 
simply obtained as it will be shown below.  

2.2. Elastoplastic constitutive equations 

As mentioned above, in order to ensure the objectivity requirement, it is 
sufficient that tensors used in the constitutive equations have to be written in a 
rotated configuration (according to Equation [1]). We assume therefore the 
following constitutive equations for anisotropic elastoplastic behavior in finite 
strain: 

– Elastic law 

eeee :CVLn:C  




  [11] 

where   is the Cauchy stress tensor, e  is the logarithmic strain and eC  is the 

fourth-order isotropic elastic moduli tensor which can be written as:  

IIG
3

2
kIG2Ce 






   [12] 

where I  and I  are respectively the second and fourth-order unity tensors, G is the 

shear modulus and k is the bulk modulus.  

– Hypoelastic law  

 peee DD:CD:Cτ   [13] 

It is of importance to notice that the two elasticity formulations are introduced 
for the following reasons: 

– The hypoelasticity formulation [13] is the widely used in FE codes especially 
the classical Jaumann derivative. Perhaps the most obvious is that it is the simplest 



432     European Journal of Computational Mechanics. Volume 20 – No. 7-8/2011 

stress rate to calculate (leads to similar form as in small strains). It should be noticed 
that this formulation is habitually justified in the case of small elastic strain 
(Badreddine et al., 2010). This formulation will be used in the simulations of 
forming processes (loading). This law is written in a derivative form and must be 
integrated using an integration scheme and an interpolation path even in elastic 
evolution. These numerical treatments lead naturally to numerical errors. 

– However, the need of an integration algorithm is entirely bypassed when 
using the elastic law [11] and gives a correct solution in elastic evolution. This law 
will be used in springback simulation (Chatti, 2010) and also in elastic predictor 
step. 

– Plastic law 

 
NλX,gλD

P








 [14] 

where N  is normal to the yield function at the current stress point and  is the 

plastic multiplier which is nonnegative. 

– Kinematic law 

XDKX
p

.

  [15] 

where X  is a tensorial internal variable (back-stress tensor) describing the 

kinematic hardening,  characterizes the rate of approaching the saturation state and 
the ratio K/ provides the saturation value. 

– Yield function 

      0pRX,gp,X,f    [16] 

where p is an internal scalar variable ( p ) and R represents the isotropic 

hardening stress that defines the size of the yield surface. It is commonly 
represented by the Swift law given by 

R(p)=C(0+p)n [17] 

Whereas, for materials that exhibit some saturation of flow stress, the Voce law 
is commonly used 

R(p)=0+Q(1-e-bp) [18] 

where0, Q and b or 0, C and n are material constants. This study is limited to the 
orthotropic Hill’s 1948 law written as 



Sheet metal forming simulation     433 

     X:H:XX,g τττ   [19]
 

where H  is a fourth-order tensor which takes the symmetry of the material into 

account. In the case of the Von-Mises function, it becomes the identity forth-order 
tensor. The Hill’s stress potential is expressed in the orthotropic axes as  

     
  2

12
2
31

2
23

2
2211

2
1133

2
3322

N2M2L2H

GF
g τ




  [20] 

where F, G, H, L, M and N are material constants obtained by experimental tests of 
the material in different directions. Note here that 1, 2 and 3 are the material 
Cartesian coordinates aligned with the rolling, transverse and thickness directions, 
respectively. Consequently, the normal to the yield stress N  is expressed by  

 
R(p)

X:H
N 





 [21] 

In elastoplastic process, the following cases can happen  

– Elastic process for =0 and f<0 

– Plastic-elastic unloading for =0, f=0 and f <0  

– Plastic loading for >0, f=0 and f =0 (consistency condition) 

These cases can be resumed by the Kuhn-Tucker conditions:  

≥0, f≤0, f=0 and  f =0. 

In order to solve the global finite element equilibrium equation, it is important to 
obtain the expression of the elastoplastic tangent modulus. The consistency 
condition applied to Equation [16] leads to 

0dp
p

R
Xd:

X

g
d:

g
df 








 
  [22] 

Substituting of Equation [14] into Equation [13] provides 













 g
dpdtD:Cd e  [23] 

Substitution of Equations [15] and [23] into Equation [22] yields 
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p

R
X:

X

gγg
:

X

g
K

g
:C:

g

εd:C:
g

dp
e

e



























 [24] 

where dtDd  . By Substituting of Equation [24] into Equation [13], the 

elastoplastic tangent modulus is derived 

p

R
X:

X

gγg
:

X

g
K

g
:eC:

g

C:
gg

:C

CC

ee

eep

ε




















































 [25] 

The derivative of the criteria function [19] gives  

N
g

X

g 






  [26] 

If the tensor eC  is isotropic [12] and by considering Equation [26], Equations 

[24] and [25] are respectively rewritten as 

 
p

R
X:NγN:NK2G

d:N2G
dp

ε




  [27] 

 
p

R
X:NγN:NK2G

NN4G
CC

2
eep

ε







 [28] 

3. Numerical aspects 

The FE implementation of such a model requires a numerical integration of the 
Equations [11-16] over a time increment t, from known state at time t to unknown 
state at time t+t. The time integration scheme is based on the widely used elastic-
predictor/plastic-corrector (return map) using Newton-Raphson iterative algorithm. 
Here and in the following, the index 0 indicates the time t (the last converged 
increment) and the index 1 indicates the time t+t. It is assumed therefore that are 
given the deformation gradients 0F  and 1F  and the list of state variables 
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 
0

p
0000 Q,F,p,X, . Our purpose is to develop a time integration algorithm in order 

to compute the state  
1

p
1111 Q,F,p,X, .  

3.1. Elastic prediction 

It is first assumed that the total strain increment is fully elastic then the yield 
surface equation is used to obtain the equivalent stress. If it is less than, or equal to 
the yield stress, then the deformation is fully elastic and the trial stress is accepted as 
the solution. The trial stress state is obtained as follows: 

– Obtain the trial elastic deformation gradient: 
1* P

01
e

FFF


  

– Perform the polar decomposition: 
** e*e

VQF   

– Obtain the trial rotated stress tensor: ]VLn[:C
*ee*

  

– Check for elastic process: 

if  0  p,X,f 00

*






  then the process is elastic. Consequently, no evolution of 

the state variables related to the plastic behavior as  

0101

P

0

P

1 pp ;XX ;  FF   [29] 

Also, *
1

QQ   and 
*ee

1 VV   and the Cauchy stress is  

  VLn:C e
1

e
1   [30] 

The kinematic hardening tensor is performed as 

T
1011 QXQX   [31] 

3.2. Plastic correction 

If the equivalent stress is higher than the yield stress, a plastic correction is 
needed by increasing the plastic state. This iteration persists until the updated stress 
tensor and the state variables verify the yield Equation [16]. In order to update the 
stress tensor, the hypoelostoplastic law [13] have to be integrated as 



436     European Journal of Computational Mechanics. Volume 20 – No. 7-8/2011 

     



  




Δtt

t

pe
01  dττDτD:C  [32] 

To this end, an interpolation path (to compute  D , t≤≤t+t) and an 

integration scheme are needed. It should be noticed that the obtained algorithm must 
verify the incremental objectivity as defined firstly by Huges et Winget, (1980) and 
generalized by Sidoroff, (1991). The exponential path (Nagtegaal and Dejong, 
1981), assumes that the strain rate is constant over the increment. The following 
relations can be obtained 

      ULndττD
Δtt

t Δ
   [33] 

0Δ1
QRQ   [34] 

where ΔΔΔ URF   (polar decomposition). Using the integration parameter s, which 

can take values between 0 and 1, the stress tensor is updated as 

      Δp NsNs1:C ΔpNsNs1ULn:C
p
1

p
0

e*p
1

p
0Δ

e
01    [35] 

where 
 

1

11
1

X,g
N






  presents the normal direction to the yield criterion at the 

updated stress (radial direction), 
 

0

00
0

X,g
N






  presents the explicit direction and 

p is the increment of the scalar internal variable given by 

p= p1-p0 [36] 

Also, the updated back-stress can be obtained as  

      1001 NsNs1pKXγΔps11
ps1

1
X 


  [37]

 

Remark that the explicit method is obtained for s=0, the radial return method for 
s=1 and the midpoint method for s=0.5. Ortiz and Popov, (1985) (small strains) and 
Chatti et al., (2001) (large strains) have studied these methods and they found that: 

– The explicit scheme presents convergence problems (not stable). 

– Numerical stability increases as the parameter s does. 

– Numerical results accuracy decreases as the parameter s increases. 
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– The radial return method is the most stable but presents the problem of 
inaccuracy of the numerical solutions. 

– The midpoint scheme has been recommended.  

Using the midpoint scheme, Equation [35] is rewritten as 

  2/pNN:C 10
e*

1    [38] 

and the back-stress is expressed by  

    1001 NNpKXγΔp2
γΔp2

1
X 


  [39]

 

In general, the return path defined by 1N  is not known in advance. It becomes 

therefore necessary to compute the return path for the stresses numerically. Two 
techniques can be employed: 

– The implicit method: it requires the resolution of a set of equations depending 
on the unknown variables. A highly nonlinear system is generally obtained, and 
consequently, the CPU time consuming increases rapidly for an increasing variables 
number.  

– The explicit method: it consists of taking the elastic predictor as the initial 
condition and variables at time t+t are computed by an iterative procedure. As a 
result, the non-linear implicit system is bypassed. However, the obtained algorithm 
may present convergence problems that generally can happen with Abaqus/Standard 
especially when using a relative important increment. To overcome this 
inconvenient, the following two successive actions can be planned: 

- The time increment is subdivided locally (into the representative volume 
element RVE) 

- The parameter s is increased from s=0.5 to s=1. 

In this study, the explicit method is retained. Using the plastic exponential path, the 
rotated plastic deformation gradient is performed as 

  p

01

p

0

pp

1 FNpExpFFF    [40] 

To prove the incremental objectivity of this algorithm, we consider that the 
increment of deformation gradient is an arbitrarily increment of rotation (orthogonal 

tensor 
  qF ). Figure 1 gives the incremental kinematic in this case, where C  

denotes rotated configurations, the superscripts e and p over C states respectively for 
elastic and plastic configurations. From this figure we can write 

p

0

e

11

p

0

e

00

p

00
e
01 FVQFVQqFQVqF 


 [41] 
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Thus,  

e

11

e

00
VQVQq 


 [42] 

So, 

01
QqQ


  and 

e

1

e

0 VV   [43] 

Which leads to 

01    [44] 

and  

T

01 qq


   [45] 

Consequently, the Cauchy stress at time t+t corresponds to the turned one at 
time t by 


q . This property can be easily verified for the kinematic tensor X  which 

in turn proves the incremental objectivity of the proposed incremental law. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Incremental kinematic 

The above numerical formulation was implemented into the ABAQUS-Standard 
(with the continuous tangent elastoplastic moduli [25]) and the ABAQUS-Explicit 

P

0F  

C C0

p
0C  

e
0C  


q  

0
Q  

0
Q  

e

0V  

e
0V  

0F  

e
0C  

1F

e

1V  

1Q
e
1C  

C1
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using, respectively, the implicit user subroutine UMAT and the explicit user 
subroutine VUMAT. 

4. Application to some sheet metal forming processes 

The main goals of the following numerical tests are, firstly, to check the 
accuracy of the integration algorithm, and secondly, to show that the implemented 
model takes into account the important aspects of isotropic and kinematic hardening. 

4.1. Application to the RVE: Parametric study of the integration algorithms 

4.1.1. Monotonic and cyclic tension 

Stress–strain data obtained experimentally (Taherizadeh et al., 2009) will be 
compared with numerical results obtained by the use of the following three 
hardening models: (i) isotropic hardening: IH; (ii) kinematic hardening: KH; and 
(iii) combined isotropic and kinematic hardening: IH+KH. Table 1 gives the 
material parameters of the DP600 steel used in the following numerical simulations. 
A fixed time step of t=0.01 s was adopted. Figure 2 shows that when the isotropic 
hardening is only used, an increase in the axial stress is observed, and the initial 
flow stress level obtained from both tension and compression are equal in 
magnitude. In the case of the KH law, it is again observed an increase in the axial 
stress, but the magnitude of the initial flow stress level in compression path is 
significantly smaller than the flow stress level in tension; a clear expression of the 
Bauschinger effect. When the IH is combined with kinematic hardening (IH+KH), it 
can be seen that there are again a clear Bauschinger effect upon strain reversal and it 
is clear that this model gives the best numerical results when compared with the 
experimental data. 

Table 1. Material parameters of the DP 600 steel 

Voce law IH Kinematic KH Combined (IH+KH) 

Q=318 Mpa 
b=30 

K=9500 Mpa 

=30 
 

Q=200 Mpa 
b=8 
K=9500 Mpa 

=50 

Hill’48 parameters Elastic properties Initial yield stress 

F=0.438 
G=0.462 
H=0.535 
L=M=1.5 
N=1.822 

E=210 GPa 

=0.3 
0=420 Mpa 
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Figure 2. Comparison of axial stress versus axial strain for various hardening 
models in axial tension-compression test 

4.1.2. Cyclic simple shear test 

In this section, the accuracy and the stability of the integration algorithm are 
investigated. Also the material parameters displayed in Table 1 were used to 
simulate homogeneous cyclic simple shear test with an amount of shear limits of 
±0.1. The simulations are performed for the above three hardening models, and a 
model with no hardening is added, i.e, Q=0 and K=0.  

 

Figure 3. Shear stress versus shear strain in cyclic shear test 
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Figure 3 shows the important qualitative aspects of each case in cyclic simple 
shear, i.e. elastic-perfectly-plastic response in the case of no hardening, a continual 
increase in the flow stress in cases involving isotropic hardening, and a clear 
Bauschinger effect in cases including kinematic hardening. In Figure 4 are plotted 
the numerical solutions for an increasingly shear strain increment . As expected, it 
was found that the solution accuracy decreases as the time increment increases and 
no stability problems were observed in the range of tested strain increments. 

 

Figure 4. Solutions for reversed simple shear for increasingly shear strain 
increments 

 

Figure 5. Solutions errors for cyclic simple shear: t[0,0.1]= loading; 
t[0.1,0.2]=unloading (reversed simple shear); t[0.2,0.3]= reloading 
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In Figure 5 are plotted a relative-error parameter based on the following shear 
difference  

Relative-error (%) = 100
exact

numexact




 [46] 

where num is the numerical shear stress and exact is the exact one. Since no exact 
solution is available, the solution obtained using a time step of =10-3 was 
considered as the exact solution. Again, Figure 4 shows that the results accuracy 
decreases for increasingly time increments, especially at stress-strain reversals. 

4.2. Application to some sheet metal forming processes 

4.2.1. Hydro bulging test 

The hydraulic bulging test is schematically represented in Figure 6. Table 2 
gives the material parameters of the 2008-T4 aluminum alloy used in this test. The 
geometry dimensions are given as follows: blank radius of 81 mm; die radius of 12.7 
mm and the sheet thickness of 1.24 mm. Note that the specific dimensions of the 
tools and process parameters as well as the material properties were given in (De 
Sousa et al., 2007; Chung and Shah, 1992). The implicit FE simulations (UMAT in 
Abaqus Standard) were conducted using shell elements with 5 Gauss points through 
the thickness direction. Only a quarter section of the specimen was considered due 
to the orthotropic material symmetry.  

Table 2. Material parameters of 2008-T4 aluminum alloy 

Voce law IH 
R(p) = 185+223(1-e-6.14p) MPa 

Initial yield stress 

0=185 MPa 

Hill’48 parameters 
F=0.764 
G=0.541 
H=0.459 
L=M=N=1.584 

Elastic properties 
E=69 GPa 

=0.33 

 

 
 

 
Figure 6. Schematic illustration of the hydraulic bulge test 
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The deformed geometry and the equivalent plastic strain distribution are shown 
in Figure 7 with the final internal pressure value of p=7 MPa. In Figure 8 are plotted 
the sheet thickness throughout both the roller direction (direction 1) and the 
transverse direction (direction 2). This figure shows that there is a slight difference 
between results upon these directions explained by the anisotropic nature of the 
material. Simulation has been also performed using the Von-Mises isotropic yield 
function and leads to substantially different results.  

 

Figure 7. Deformed configuration and equivalent plastic strain distribution 

 

Figure 8. Thickness distribution from the pole to the outer side of the blank 
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and simulated results for elevated pressure values. Consequently, elastoplastic 
model coupled with damage should be used. 

 

Figure 9. Polar displacement vs. hydraulic pressure 

4.2.2. Deep drawing test 

In order to experiment the implemented material model in more complicated 
forming processes, a cylindrical deep cup drawing is simulated. This test is 
schematically presented in Figure 10 and specific tool dimensions are listed in 
Table 3. The used material is the Al2090-T3 and its parameters are displayed in 
Table 4.  

 

Figure 10. Cup drawing setup 
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the finite element mesh with 456 shell elements for the quarter section of the cup. 
The die, punch and blank holder are all defined as rigid tools.  

 

Table 3. Geometrical data for the cup drawing test 

Punch diameter 
Punch profile radius 
Die opening diameter 
Die profile radius 
Blank diameter 
Initial sheet thickness 

friction coefficient 
Blank holding force 

Dp =97.46 mm  
rp = 12.70 mm 
Dd = 101.48 mm 
rd = 12.70 mm 
Db = 158.76 mm 
t0=1.6 mm 
0.1 
22.2 KN 

 

Table 4. Material parameters of Al2090-T3 

Isotropic law (Swift) Kinematic law 

C=646 MPa 

0=0.025 

n=0.227 

K=300 MPa 

=5 

 

Hill’48 parameters 
F=0.5702 
G=0.3632 
H=0.6368 

L=M=N=2.57 

Elastic properties 
E0=69 GPa 

=0.33  
Initial yield stress 

0=276.6 MPa 

 

 

Figure 11. Element meshing of one quarter of circular sheet (1: Rolling direction; 
2: Transverse direction) 
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Figure 12 shows the deformed configuration of the fully drawn cup. It can be 
seen that four ears are obtained which agree with (Youn et al., 2000)’s results. 
Figure 13 shows that the thickness strain distribution in the rolling direction is in 
good agreement with the experimental result. However, Figure 14 shows that the 
thickness strain distribution in the transverse direction deviates from the simulated 
result at the outer side of the blank.  

 

Figure 12. Deformed shape and Von-Mises stress contour of fully-drawn cup 

 

Figure 13. Thickness strain along the rolling direction 

In Figure 15 are plotted the measured and the predicted cup height profiles 
between 0° and 90°. This figure shows that the magnitude of the earing profile 
obtained numerically deviates from the experimental result, especially around 45°. 
Note that a slight improvement is observed when using the kinematic hardening. It 
is reported by (Yoon et al., 2000) that the prediction of both earing amplitude and 
location of ears depend strongly on the used yield function. As a result, usual 
anisotropic yield criteria are not able to provide an accurate prediction of the earing 
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profile and more sophistical phenomenological yield functions can more accurately 
predict the earing profile. 

 

Figure 14. Thickness strain along the transverse direction 

 

Figure 15. Influence of the hardening law on cup heights for Al2090-T3 
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the implemented elastic-plastic model uses the hypoelastic law [13] in forming 
stage, while, in springback stage, the elastic law [11] is used. 

The sheet dimensions are length of 120 mm, width of 30 mm and thickness of 1 
mm. The material used is the 6111-T4 aluminum alloy with material parameters 
given in Table 5. Notice that the specific dimensions of the tools and process 
parameters as well as the material proprieties were given in (Yoon et al., 2002).  

 
 
 
 
 
 
 
 
 
 
 

 

Figure 16. Problem setup and dimensions of the unconstrained cylindrical bending 
test 

Table 5. Material parameters of the 6111-T4 aluminum alloy 

Young’s modulus (GPa) 70  

Poisson’s ration 0.3 

Hardening law (MPa) R(p) = 192.1+237.7(1-e-8.504p) 

 

Numerical simulations are carried out using plane strain elements with 
4 elements through the sheet thickness. Due to the material symmetry, only a half 
section of the blank was analyzed. Finite element mesh used for the analysis is 
composed of 480 plane strain elements (CPE4R) for the half section of the blank. 
Figure 17 gives the equivalent stress distribution in the sheet before and after 
springback. Table 6 shows that significant difference is observed between the 
experimental springback angle and the predicted one especially when considering 
constant unloading elastic modulus (E0). Notice that the angle reached just before 
springback stage was 32.9° found by Ferreira et al. (2006) by a computer vision 
based method.  
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Table 6. Measured and simulated springback angles 

 Angle after springback (°)  

Experiment 60.0 

Constant elastic modulus E0 49.2 

Unloading elastic modulus Eu 58.1 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 17. Stress distribution in the blank before (left) and after (right) springback 

It is worth noting that the springback prediction depends on material properties. 
In particular, it strongly depends on the elastic domain. Many experimental 
investigations have revealed that the unloading elastic modulus decreases as the 
plastic strain increases in the material. This phenomenon is explained by the fact 
that there is a close relationship between the dislocations structure developed with 
deformation (dislocations rearrangements) and the evolution of the unloading elastic 
modulus. It has been also observed that this decrease saturates to a particular value 


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after some amount of plastic prestrain. Both polynomial (Yu, 2009) and exponential 
(Yoshida et al., 2002) expressions were used in order to model this phenomenon. In 
this study, the widely used exponential expression is considered 

Eu=E0-(E0-Ea)[1-exp(- p
0 )] [47] 

where E0 is the initial elastic modulus, Ea is the decreased elastic modulus obtained 

for infinitely large prestrained material, p
0  is the equivalent plastic pre-strain 

reached just before the unloading stage, and  is a material constant which 
determines the rate of the elastic modulus decrease.  

A modified formula has been proposed by (Chatti and Hermi, 2011) that gives 
non linear unloading behaviour (non linear recovery experimentally observed in 
tensile tests) in order to obtain more accurate results in springback simulations. 
(Cleveland and Ghosh, 2002) reported that the elastic modulus can lose 19% of its 
value for high strength steel and 11% for the AA6022-T4 aluminum alloy for only 
7% of plastic strain. Accordingly, the unloading elastic parameters of the 6111-T4 
aluminum alloy, whose properties are similar to those of AA6022-T4, are displayed 
in Table 7. 

 

Figure 18. Distribution of the elastic modulus (left) and the equivalent plastic strain 
(right) in the unloaded sheet 

Table 7. Properties of the unloading elastic modulus 

E0  Ea 

70 GPa 61 GPa 120 

 

In the following simulations, the elastic modulus is taken to be constant in 
loading phase as suggested by (Ghaei et al., 2010), whereas, in springback 
simulations, the unloading modulus is reduced according to Equation [47]. It can be 



Sheet metal forming simulation     451 

easily shown that the elastoplastic tangent modulus [27] in springback simulation 

reduces to the elastic moduli tensor eC . 

Figure 18 gives the elastic modulus and the equivalent plastic strain contours in 
the unloaded sheet. Notice that the highest value of the equivalent plastic strain is 
0.085 which is generally a small value and no material damage can occur. Table 6 
gives the springback angle using the unloading elastic modulus [47]. It is clear that 
there is a significant improvement in springback prediction when compared to the 
experiment. These results allow concluding that, in order to obtain accurate 
springback predictions in sheet metal forming processes, the elastic modulus 
decrease have to be considered. 

5. Conclusions and main perspectives  

The anisotropic elastoplastic behavior which accounts for non-linear 
isotropic/kinematic hardening under large deformations was presented. Elasticity 
was modeled by both: 

– hypoelastic formulation used in loading phases (forming); 

– elastic formulation used in elastic processes (elastic predictor or springback). 

An incremental formulation was developed for the integration of the constitutive 
equations. In this study, only Hill’s yield criterion was considered. However, the 
proposed integration algorithm is quite general and can be used with any yield 
function. User material subroutines (UMAT and VUMAT) were developed for both 
ABAQUS-Standard and ABAQUS-Explicit. Simulations were carried out using 
several hardening models. It was found that, due to its ability to model the 
Bauschinger effect, the combined non-linear isotropic/kinematic model gives results 
which agree with experiment in cyclic simple tests. The accuracy of the 
implemented material model was also verified through the hydraulic bulge test. 
However, it was found that in the cylindrical cup drawing test the numerical results 
slightly deviate from experimental data. Nevertheless, it would appear that 
numerical results can be further improved by implementing more advanced yield 
functions; we leave such work to the future. Finally, the unconstrained cylindrical 
bending of Numisheet’02 benchmark including springback was simulated by using 
both explicit (for loading) and implicit (for unloading) simulations. The unloading 
elastic modulus decrease with plastic prestrain was taken into account in the 
implemented model and better springback prediction was obtained. However, the 
hysteresis phenomenon, observed in elastic evolution (unloading/reloading), should 
be taken into account in the behavior law. In addition, for highly loaded parts, 
coupled damage model have to be taken into account in order to consider the 
degradation of the elastic modulus which may strongly affect springback prediction. 
It can be concluded that the proposed numerical algorithm is sweetable for the 
simulation of sheet metal forming processes including springback. 
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