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ABSTRACT. We present a new plate bending triangular finite element. It is developed in 
perspective to building shell elements. Its formulation uses concepts related to the 
deformation approach, the fourth fictitious node, the static condensation and analytic 
integration. It is based on the assumptions of the theory of thin plates (Kirchhoff theory). The 
approach has resulted in a bending plate finite element (HIMEUR) competitive, robust and 
efficient. 

RESUME. Nous présentons un élément fini nouveau de plaque triangulaire d’élasticité plane. 
Cet élément est développé dans la perspective de construction des éléments de coques. Sa 
formulation utilise des concepts relatifs à l’approche en déformation, au quatrième nœud 
fictif, à la condensation statique, à l’intégration analytique et se base sur les hypothèses de la 
théorie des plaques minces (Théorie de Kirchhoff). La démarche adoptée a permis d’aboutir à 
un élément fini de plaque (HIMEUR) concurrentiel, robuste et performant. 
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1. Introduction 

Complex shell structures are frequently encountered in various fields. The 
development of simple and efficient finite elements for the analysis of these 
structures is a major thrust of scientific research in solid mechanics. Nevertheless, 
problems are often encountered, making difficult the achievement of the assigned 
objectives. The main observed constraints are often linked to the followings: 

– Displacement fields incompatibility aspects when affixing the membrane 
elements with those of the plate. 

– Both phenomena of “shear locking” and “membrane locking”. 

– The numerical problems induced by the absence of the “sixth DOF” in the case 
of co-planar elements. 

– The numerical problems associated with numerical integration. 

Many finite elements are developed for solving these problems. But most of 
them have remained ineffective in the analysis of arbitrary geometric configurations. 
Isoparametric elements are the most successful among those available due to their 
ability to successfully modelling curved structures. Only the phenomenon of shear 
locking leaves these unsuitable for the analysis of thin plates with distorted mesh. 
Despite the use of reduced integration and stabilization techniques of finite element 
in order to circumvent this problem, the developed formulations did not converge to 
the solutions given by the theory of thin plates and often confront the problem of 
singularity of the stiffness matrix. 

A brief review of the literature allows us to identify, but not limited, some recent 
work by researchers to address these problems: 

– Development of a plate element by (Barik et al., 2002) that has the qualities of 
an element in terms of isoparametric modelling capability with any mesh size, and 
without the disadvantage of the phenomenon of shear locking. 

– The amendments made by (Chinosi, 2005) at the boundary conditions for 
Reissner-Mindlin plates; prevent free boundary conditions to address the problem of 
convergence towards the reference solution for plates of small thickness. 

– The triangular shell element with six nodes based on the approach MITC 
developed by (Do-Nyun et al., 2009) is characterized by quality spatially isotopic 
element and the absence of zero energy modes. 

The objective of this research is, “the formulation of shell finite elements based on 
the “deformation approach” whose purpose is to circumvent these difficulties on the 
one hand, and the construction of finite shell elements which are simple and effective 
for the analysis of complex structures, on the other hand. To do this, we have enriched 
our approach with the concepts and development techniques based on: 

– the adoption of the “deformation approach”; 

– the introduction of a “fictitious fourth node”, 
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– the elimination of the freedom degrees corresponding to the “fictitious fourth 
node” by static condensation, 

– the use of “analytic integration” to evaluate the stiffness matrix. 

Early works (Himeur, 2008) led to the construction of triangular membrane finite 
elements which can be easily combined with inflected elements (slabs, beams and 
shells). Those elements are:  

– “T3_Kteta” (Himeur, 2008), in which the unknown nodal rotation is obtained 
by adding to the “CST” stiffness matrix (as expressed in stain approach), a stiffness 
matrix associated with rotation around the normal (drilling rotation). Starting from 
the (Providas et al., 2000) approach, this rotation matrix is obtained by minimizing 
the rotation strain energy around the normal. 

– “T43” (Himeur et al., 2008) and “T43_Eq” (Himeur, 2008) are triangular finite 
elements with central disrupted node. They are characterized by the presence of 
unknown rotation nodal defined by the derivation of displacement fields (drilling 
rotation). The interpolation functions are those used by Sabir (Sabir, 1985) for the 
“T43” element and those obtained from the equilibrium conditions for the “T43_Eq” 
element (bi-harmonic polynomials selected from the solutions given by the 
(Teodorecu, 1982) Airy function development).  

– “T42” and “T42_Eq” (Himeur, 2008) which do not have an unknown nodal 
rotations,  

This on going work is a continuation for our research whose main focus this time 
is on the development of plate finite triangular elements. The triangular finite 
element inflected with a fictitious fourth node based on the deformation approach is 
the culmination of this above mentioned work. We call it «HIMEUR».  

This element is formulated by using the deformation approach. The interpolation 
functions of the deformation fields (consequently, displacements and stresses) are 
developed by using Pascal’s triangle. It is a triangular element to which we added a 
fourth fictitious node positioned outside and away from the triangle. This position, 
outside, is thus chosen to avoid the relaxation of the stiffness matrix resulting in an 
overestimation of the nodal displacements. The freedom degrees corresponding to 
the fourth node are then eliminated by the static condensation of the stiffness matrix 
at the elementary level. So the main interest of this fictitious node lies on the 
enrichment of the displacement field (p refinement i.e.: increase in the degree of the 
polynomial interpolation), which consequently aims at a greater precision in the 
approximation of the solution. The corresponding variational criterion is that of the 
total potential energy. The analytical integration for the evaluation of the stiffness 
matrix is highly interesting to avoid the loss of convergence phenomenon observed 
in isoparametric elements which use numerical integration and are very sensitive 
(their convergence is conditioned by a regular mesh - undistorted). The assumption 
of this formulation is that of the thin plate theory (Kirchhoff’s theory). This latter 
neglects the effect of transverse shear. 



458     European Journal of Computational Mechanics. Volume 20 – No. 7-8/2011 

In a bid to validate the new HIMEUR element, we have undertaken a set of test 
cases. For each test case, the result is compared, on one hand, to the corresponding 
reference solution, and on the other hand, the solution is given by certain plate 
elements found in existing literature. The behaviour in pure bending (bending to the 
dominant shear) is treated through the example used by J.-L. Batoz and Dhatt G. 
(Batoz et al., 1990). This test proves very useful to evaluate the convergence levels, 
robustness and performance of our element. The behaviour of this element, relative 
to the transverse shear, is analyzed by using the example treated by Guenfoud 
(Guenfoud, 1993), Belarbi and Sharif (Belarbi et al., 1999). We have ultimately 
submitted our element to the tests suggested by Robinson (Robinson, 1978) to gauge 
its behaviour to the torsion aspects. 

On the whole, the approach in our development has resulted in a competitive, 
robust and efficient (HIMEUR) plate finite element. This is visible, first, through its 
excellent convergence rhythm towards the reference solution, and secondly, through 
its behaviour performances towards other triangular plate elements in the existing 
literature: DKT, HCT (Batoz et al., 1990), CO (Belytschko, 1984), ANST3 
(Guenfoud, 1990), ANST6 (Guenfoud, 1990), TRUMP (Argyris et al., 1977) and 
SRI (Sabourin et al., 2000).  

2. Basic equations of the thin plates theory (Kirchhoff theory) 

2.1. Kinematics equations 

                

Figure 1. Deformation of a bending plate (Kirchhoff Theory) 

In Figure 1, the rotations around the two axes x and y are denoted θx and θy , and 
slopes in both directions are defined by the variables βx and βy, with: 

y x
            xy     [1] 

The assumption of the cross section implies a linear variation of the 
displacement over the thickness of the plate. What is translated by: 
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),(),(),,( yxzyxzzyxu yx   , 

),(),(),,( yxzyxzzyxv xy   ,  

),(),,( yxwzyxw    [2] 

The expressions [2] permit to uncouple the displacement (u, v) and the arrow (w) 
is in reference to the assumptions of Kirchhoff, the only field to define the behaviour 
of the plate. Thus, the displacements are given by: 
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The infinitesimal strain tensor is then: 
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Moments related to the bending curvatures are given by: 
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2.2. Kinematics compatibility conditions 

These conditions were established by St. Venant (1854) (Frey, 1998). Their 
satisfaction is required to guarantee the uniqueness of the displacements. The 
compatibility equations are as developed as follows: 
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2.3. Constitutive law 

In plane state of stress and for isotropic materials, generally accepted hypothesis 
for the calculation of thin structures (beams, plates and shells), the constitutive law 
is written: 

.
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This translates in terms of relationship “moment-curvature” by the following 
equation system: 
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2.4. Equations of equilibrium 

The balance of an element of dimensions dx × dy is obtained by the balance of 
forces of internal and external actions. 
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where Qx and Qy are the shear forces in the sections perpendicular to the axes x and y 
respectively; the expression [10] is simplified to give: 
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The balance of moments about the axes x and y gives: 
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By replacing the Qx and Qy values of Equations [12] in [11] and using bending 
behaviour law [9], the equilibrium condition would result in the displacement 
function “w” by the following expression: 
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3. Formulation of the element “HIMEUR” 

 

 

 

 

 

 

 

Figure 2. Triangular plate element with w, βx, βy freedom degrees at each node 

3.1. Shape function 

For rigid body motions, bending curvatures are related to zero: 

0K x   0K y     0Kxy        [14] 

By replacing in Equations [6] the curves with their values given by 
Equations [14] and after integration, we obtain the displacement fields representing 
the rigid body motions which are as follows: 

32321 aa-.xa - aW ay yx        [15] 

with a2 and a3, parameters representing rotations θx and θy of the rigid body about 
respective axis “y” and “x” representing the translation and a1 (arrow) of the rigid 
body along the normal (axis “z”). 

Our element has four nodes (see Figure 2): three vertices to which we have 
added a fourth fictitious node. Each of its nodes has three degrees of freedom. So the 
displacement fields, formulated by the use of the model deformation, have 12 
independent constants (a1, ..., a12). The first three (a1, a2, a3) are used in Equations 
[15] to represent rigid body motions. The other nines (a4, ..., a12) are used to 
represent the state of pure bending. They are divided into the deformation 
interpolation functions to satisfy the Equations [7] of kinematics compatibility for 

+  Fourth fictitious node 
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plane elasticity. Thus, the deformation fields for the higher modes are derived from 
Pascal’s triangle as follows: 
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By replacing in Equations [6] the curves with their values given by 
Equations [16] and after integration, we obtain the following field trips: 
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The final field of displacements is obtained by adding the relations [15] and [17]: 
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Matrix forms the displacement field given by Equations [18] we read it as 
follows: 
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Knowing the nodal coordinates (xi, yi) corresponding to the nodes j (j = 1... 4) 
and applying the relation [20], the vector of nodal displacements at the elementary 
level is given as follows: 
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 is the matrix of nodal coordinates. It has been developed in the 

appendix. 

From Equation [21], we deduce the value of parameters “ai” which are given by 
the system of equations: 
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which represents the matrix of interpolation functions Ni. By replacing in 
Equations [6], w(x,y) values of Equation [19], the relationship strain - displacement 
takes the following expanded: 
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Thus, the deformation matrix [Q(x,y)] is given as follows ([K]=[Q(x,y)]{ai}): 
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3.2. Elementary stiffness matrix 

The internal virtual work, elementary discredited is given by the expression: 
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follows: 

    
V

Te dVADAK 11T ][.y)Q(x,]..[][.y)Q(x,][  [30] 

The expression [30] can be written: 

    111T1 ]].[[][].[.y)Q(x,].[y)Q(x,][][    AKAAdVDAK o
T

V

Te  [31] 

The evaluation of the expression  0K  is determined by analytic integration of 

the various components of the resulting matrix product    .y)Q(x,[D].y)Q(x, T  whose 

expressions take the form “ 
 yxCH x .. ”. The matrix [Ko] on the element 

“HIMEUR” is appended. So the matrix [Ko] is evaluated by analytical integration of 
values 

 yxCH
x y

x

x y

..    . Finally, the elementary stiffness matrix, to be 

considered at the assembly and construction of the global stiffness matrix of the 
structure, is obtained after condensation of the matrix [Ke]. The static condensation 
is related at the freedom degrees to the fictitious fourth node. 

4. Validation of the element “HIMEUR” 

4.1. Patch-tests 

4.1.1. Rigid modes Patch-test 

This test is performed on one single element. The aim is to check the 
representation of rigid body motions of our element. To do this we define three 
vectors {Uti}, {Uxzi} {Uyzi} corresponding to the rigid modes. Then, we checked 
for each mode, provided that: [K]{Un}={0}. The vectors considered are: 
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– Translation rigid mode          : <Uti>   = < 1   0  0      1    0  0     1    0  0> 

– Rotation rigid mode in “xz”  : <Uxzi> = <-x1  1  0     -x2  1  0     -x3  1  0> 

 – Rotation rigid mode in “yz”  : <Uyzi> = <-y1  0  1     -y2  0  1     -y3  0  1> 

To see also the influence of geometric distortion, we tested several geometric 
shapes (isosceles triangle, rectangular triangle and any form of lowered). The results 
show that for our part there is a good representation of rigid body motions, since the 
condition [K]{Un}={0} is satisfied whatever the geometry of the element. 

4.1.2. Mechanical Patch-test 

We consider, on this test, an assembly of four triangular elements on a 
rectangular domain of sides 2a and 2b = 40 units = 20 units. We impose on the 
contour of this domain a Stresses reflecting the constant moments (or stress) state 
defined as shown in Figure 3. 

Other data of the problem are:    E=1000;   ν=0.3;  h=0.01 – 0.04 – 1.0 – 4.0;       
W1=W2=W3=0 

 
(a) Stresses on the contour reflecting the constant stress state 

 
(b) Equivalent nodal forces 

Figure 3. “Mechanical” Patch test of element Kirchhoff type 

After calculating the stiffness matrix, assembly, taking into accounts the 
boundary conditions and the resolution we get to nodes 4 and 5, the results given in 
Table 1. From these results we conclude that our element passes with success this 
patch test. 
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Table 1. Results of “mechanical” Patch test of element Kirchhoff type 

Thickness h=0.01 h=0.04 h=1.0 h=4.0 

1 yx MM

 
 

1xyM  

)05(nodexM  0.98 0.98 0.98 0.98 

)05(nodeyM  
-1 -1 -1 -1 

)05(nodexyM  
-0,97 -0,97 -0,97 -0,97 

4.2. Twisting of a square plate 

This problem is used to evaluate the ability of the HIMEUR element to represent 
a constant twisting. The same problem has been considered in references (Yuan et 
al., 1988), (Clough et al., 1965) and (Batoz et al., 1980). The plate in Figure 4 is 
simply supported (W=0) at the corners B, C and D. A transverse force of  P=5 lb is 
applied at corner A. Young’s modulus is 10.000 psi, Poisson’s ratio is 0.3 and the 
thickness and the length of the plate are 1.0 and 8.0 in., respectively. The exact 
solution using thin plate theory is WA =0.24960 in. and WF =0.06240 in. at the centre 
of the plate, Mxy =2.5 lb in/in. and Mx = My =0 everywhere in the plate. 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 4. Twisting of a square plate  

Results for the deflections at point A and F, and for the moments Mx, My and 
Mxy everywhere in the plate are presented in Table 2 with those of other elements 
given in references (Yuan et al., 1988), (Clough et al., 1965) and (Batoz et al., 
1980). The results for the HIMEUR element are excellent, and the four meshes give 
the exact solution for the stresses and deflections.  

x 
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y 
P 

C D 

B A 

F 
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Table 2. Twisting of a square plate – Deflections at point A and F 

Element type 
Deflection at Moments in the plate 

Point A Point F Point A Point F 

HIMEUR (4 meshes) 0.24960 0.06240 0 - 

ACM (Clough et al., 1965) (8x8) 0.24972 0.06244 - - 

HCT (Clough et al., 1965) (8x8) 0.25002 0.06254 - - 

DKT (Batoz et al., 1980)  0.24960 0.06240 0 2.5 

HSM (Batoz et al., 1980) 0.24960 0.06240 0 2.5 

Exact solution (Thin theory) 0.24960 0.06240 0 2.5 

4.3. Cantilever beam subjected to point load at its free end 

This test checks the behaviour of our simple bending element based on the 
slenderness ratio (L/h). Indeed, in this case the bending test before the shear is 
dominant for ratios L/h rates. At the free end, the beam is subjected in the direction 
“Oz” to A point load of intensity P = 0.1. It simulates a perfect fitting to the other 
end (see Figure 5). 

 

 

 

 

 

 

Figure 5. Cantilever beam subjected to point load 

Geometric data and mechanical loading are given in Table 3.  

Table 3. Geometric and mechanical loading for the cantilever beam in simple 
bending 
 

Length L=10.0 

Width b=1.0 

Thickness h= (L/100 ≈ L) 

Young’s modulus E=1.2x106 

Poisson ν  = 0.0 

Loading P=0.1 

z

x

L
b

P

A y
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To see the influence of transverse shear on the behaviour of our element, we 
simulate in this test case, the displacement “w” from point “A” under the direction 
of “Oz” for several values of the ratio L/h.  

We then compare the results, first to the theoretical solution given by (32) of the 
beam theory and on the other hand, the behaviour of other triangular elements 
treated Guenfoud DSTM, ANST6, DKTM (Guenfoud, 1993).  

The theoretical solution of the displacement “w” from point “A” in direction 
“Oz” is given as follows: 




















2

3

3

2

1
1

4

l

h

kEbh

PL
wt

     

    with k=5/6   [32] 

The simulation results point “A” in the direction “Oz” is given in Figure 5 and 
Table 4.  

Table 4. Displacement from point A along the axis “Oz” of the cantilever beam in 
simple bending 

L/h DSTM ANST6 DKTM HIMEUR Theoretical solution 
2 2.9x10-6 3.0x10-6 2.5x10-6 2.7x10-6 3.1x10-6 
3 9.0x10-6 9.6x10-6 8.4x10-6 9.0x10-6 9.6x10-6 
4 2.0x10-5 2.2x10-5 2.0x10-5 2.1x10-5 2.2x10-5 
5 4.0x10-5 4.2x10-5 3.9x10-5 4.1x10-5 4.3x10-5 
10 - - - 3.3x10-4 3.3x10-4 

100 0.31329 - 0.31327 0.33303 0.3333 
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Figure 6. Relative errors of displacement “W” on point A in pure bending 
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Figure 6 shows, in graphic form, the standard displacement of point “A” in 
simple bending function of the ratio L/h and comparing the behaviour of the element 
HIMEUR from the theoretical benchmark solution. We note that our element is very 
efficient for large slenderness (L/h> 10). It should be noted that its convergence to 
the solution is obtained with a mesh consisting of ten (10) elements. Table 4 also 
summarizes the results given by other existing triangular elements. We note here 
also that our element is robust to the elements DSTM (Guenfoud, 1993) and DKTM 
(Guenfoud, 1993) especially for L/h> 3, since its behaviour is closer to the 
theoretical benchmark solution.  

4.4. Isotropic square plate 

This example (see Figure 7) was taken by many authors in the literature 
including (Batoz et al., 1990). This is an isotropic square plate of side a and 
thickness h. In this work we simulate several scenarios based on the boundary 
conditions of the plate and the type of loading. It is in this test case to study the 
behaviour of the element HIMEUR considering different mesh sizes and several 
ratios “a/h”.  

 

 

 

 

 

 

 

 

 

Figure 7. Isotropic square plate subjected to point load applied at its centre 

The results concerning the displacement “w” the central point (C) of the plate is 
compared to analytical solutions for thin plate’s data for each case. As we proceed 
with comparisons with triangular elements in the existing literature, including 
elements SRI (Sabourin et al., 2000), CO (Belytschko, 1984), TRUMP (Argyris et 
al., 1977), DKT (Batoz et al., 1990). 
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4.4.1. Isotropic square plate requested by a point load applied at its centre 

4.4.1.1. Isotropic square plate simply supported on all four sides 

Geometric and mechanical data are given in Table 5.  

Table 5. Geometric and mechanical loading for the isotropic square plate, simply 
supported on all four sides, with concentrated load at point C  

Length a = 2.0m 

Thickness h= 0.03m 

Young’s modulus E=210x109N/m² 

Poisson ν  = 0.3 

Loading P= 800 N 

 
The theoretical solution of the displacement “w” from point “C” along the 

direction of “Oz” is given by (Batoz et al., 1990) as follows: 

D

Pa
wt

2

0116.0
              

with          2

3

112 
 Eh

D  [33] 

The results of the displacement of point “C” following direction “Oz” with 
different meshes is shown in Figures 8; 9 and Table 6. 
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Figure 8. Relative errors of displacement “W” on point C - isotropic square plate, 
simply supported on all four sides, with concentrated load at point C  
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Table 6. Normalized Displacement “Wc/Wt” Point C - isotropic square plate, 
simply supported on all four sides, with concentrated load at point C  

Mesh 4 x 4 6 x 6 8 x 8 

a/h 100 1000 10000 100 1000 10000 100 1000 10000 

SRI 0.070 0.9E-3 0.9E-5 0.134 0.0018 1.9E-5 0.207 0.0031 3.1E-5 

CO 0.898 0.382 0.008 0.960 0.781 0.083 0.978 0.916 0.309 

TRUMP 1.017 1.016 1.016 1.009 1.007 1.007 1.006 1.004 1.004 

DKT 1.003 1.003 1.003 1.002 1.002 1.002 1.001 1.001 1.001 

HIMEUR 0.984 0.984 0.984 0.997 0.997 0.997 1.000 1.000 1.000 

 

0,010

0,110

0,210

0,310

0,410

0,510

0,610

0,710

0,810

0,910

1,010

32 37 42 47 52 57 62 67

Mesh (Number)

N
o

rm
a
liz

e
d
 D

is
p
la

c
e
m

e
n

t 
"W

c 
/ W

t"
 P

o
in

t 
C

SRI

C°

TRUMP

DKT

HIMEUR

 

Figure 9. Normalized Displacement “Wc/Wt” Point C ( a/h = 100) - isotropic 
square plate, simply supported on all four sides, with concentrated load at point C  

Figure 8 shows, in graphic form, displacement from point “C” with different 
meshes. We note the good performance of our element, since it converges rapidly 
towards the analytical solution of reference. 

Table 6 and Figure 9 also includes the values of the normalized displacement 
“Wc/Wt” of point C of some elements of triangular thin plate, for different meshes 
and several reports “a/h” and highlights the quality of results obtained by the 
element HIMEUR to these elements. Again this element is more robust than the 
elements SRI (Sabourin et al., 2000), CO (Belytschko, 1984), TRUMP (Argyris et 
al., 1977), whatever the mesh or the ratio “a/h” and is very competitive with the 
DKT element (Batoz et al., 1990). 
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4.4.1.2. Isotropic square plate clamped at its four sides 

We resume the test case for this example in Figure 5 with the same geometrical 
and mechanical data of the material, but simulating a perfect fitting of the plate on 
all four sides. The theoretical solution of the displacement “w” from point “C” along 
the direction of “Oz” is given by (Batoz et al., 1990) as follows: 

D

Pa
wt

2

0056.0
              

with          2

3

112 
 Eh

D   [34] 

The results of the displacement of point “C” following direction “Oz” with 
different meshes are shown in Figure 9. 

The Figure 10 shows, graphically, the displacement from point “C” with 
different meshes. Just as the previous test cases, our present element, there is also a 
good performance, since it converges rapidly towards the analytical solution of 
reference. 
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Figure 10. Relative errors of displacement “W” on point C - isotropic square plate 
clamped at its four sides, with concentrated load at point C  

4.4.2. Isotropic square plate requested by a uniformly distributed load 

We resume for this test case the sample plate of Figure 7 that we are seeking a 
uniformly distributed load of intensity q=60 T/sqm. 
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Figure 11. Square isotropic plate subjected to a uniformly distributed load 

The theoretical solution of the displacement “w” from point “C” along the 
direction of “Oz” is given for the case of a plate simply supported by the formula 
[35] and for the case of the plate embedded in the formula (36): 
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Figure 12. Relative errors of displacement “W” on point C - isotropic square plate 
simply supported on all four sides with a uniformly distributed load  
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The simulation results of displacement of point “C” following direction “Oz” 
with different meshes are shown in Figures 12 and 13. Figure 12 summarizes the 
results for the case of a plate simply supported and Figure 13 summarizes the results 
for the plate clamped along its four sides. We note that for both test cases, our 
element behaves well, since it is characterized by rapid convergence to the analytical 
solution. 
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Figure 13. Relative errors of displacement “W” on point C - Isotropic square plate 
clamped at its four sides, with a uniformly distributed load  

4.5. Skew isotropic plate 

It is for this test, a plate of isotropic skew (corner 60 °) (Figure 14) subjected to a 
uniform load p with two simple supports (W = 0) and two free edges. Geometric and 
mechanical data are given in Table 7.  

Table 7. Data geometric, mechanical bias for the plate (60 °) isotropic 

Side length L = 100.0 

Thickness h= 0.1 

Young’s modulus E=1000 

Poisson ν  = 0.31 
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This problem treated by (Batoz et al., 1990) for the analysis of quadrilateral 
elements and DSQ Q4γ is used to evaluate the convergence of our element. To do 
this we considered grids of 2x2, 4x2, 8x2, 16x2 elements per side.  

 

 

 

 

 

 

 

Figure 14. Isotropic skew plate (60 °) with free edges 

The reference solution, obtained by a finite difference scheme (Razake, 1973), is 
given by formula 37. 
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Figure 15. Normalized Displacement “Wc/Wref.” the central point - isotropic plate 
with free edges skew 
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The results of displacements obtained by the element HIMEUR are illustrated by 
the Figure 15. We’ve also worn for purposes of comparison, the results given by the 
elements and quadrilateral DSQ Q4γ (Batoz et al., 1990). We observe a monotonic 
convergence for all three items with a convergence at the top of the element 
“HIMEUR”. 

4.6. ROBINSON Tests  

There are two tests proposed by Robinson (Robinson, 1978) to study the 
behaviour of a triangular element loaded in bending and torsion constrained. 

 

 

 

 

 

 

 

a - 16.1 - bending constrained                         b - 16.2 - twisting constrained 

Figure 16. Cantilever beam subjected to ROBINSON tests 

The geometrical and mechanical characteristics of the material are given in 
Table 8. We study the influence of the ratio L/h (the length varies from 1 x h to 
10000 x h) on the move “W” from point “A” for both types of solicitations.  

Table 8. Geometric, mechanical material for the cantilever beam submitted to test 
ROBINSON 

Side length L = Variable 

Width b=1.0 

Thickness h= 0.05 

Young’s modulus E=1.0x107 

Poisson ν  = 0.25 

 

Test “A” for the behaviour of the cantilever beam under the action of two pairs 
My = 1.0 applied to the nodes of its free end. This is the bending constrained. Test 
“B” for the action of two concentrated loads Pz =- 1.0 and Pz = 1.0 respectively 
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applied to the same nodes. This is the twisting constrained. The reference solution 
(BENCHMARK) on triangular elements is extracted from (Guenfoud, 1990). 

Table 9. Test “A” – Bending constrained - displacement “W” from point “A” 

L ANST3 ANST6 HCT DKT HIMEUR BENCHMARK 

0.05 0.00000174 0.0000064 - - 0.000008022 - 
0.5 0.00087300 0.0011800 - - 0.00092053 - 
1 0.00356000 0.0038100 0.0010520 0.002105 0.00235240 0.0028 
2 0.00935000 0.0100000 0.0015790 0.006580 0.00614230 0.0056 
3 0.01480000 0.0162000 0.0010520 0.009870 0.00938960 0.0084 
4 0.02020000 0.0222000 0 0.013160 0.01215900 0.0112 
5 0.02550000 0.0280000 -0.0052600 0.016450 0.01477200 0.0140 
6 0.03070000 0.0339000 -0.0018420 0.019740 0.01735700 0.0168 
7 0.03600000 0.0397000 - 0.023030 0.01995100 0.0196 
8 0.04120000 0.0455000 -0.0028940 0.026320 0.02256200 0.0224 
9 0.04600000 0.0513000 - 0.029620 0.02518800 0.0252 

10 0.05170000 0.0571000 -0.0044730 0.032900 0.02782800 0.0280 
11 - - - 0.036190 0.03047800 0.0308 
12 - - -0.0057890 0.039480 0.03313700 0.0336 
25 0.12970000 0.1433000 - - 0.06805900 - 
50 0.25970000 0.2869000 - - 0.13567000 - 
500 2.59850000 2.6540000 - - 1.35530000 - 

 
Table 10. Test “B” - Twisting constrained - displacement “W” from point “A” 

L ANST3 ANST6 HCT DKT HIMEUR BENCHMARK 

0.05 0.00000116 0.00000383 - - 0.00000100 - 
0.5 0.00043800 0.00088300 - - 0.00045531 - 
1 0.00178000 0.00252000 0.0010660 0.001866 0.00186770 0.002666 
2 0.00467000 0.00555000 0.0024000 0.004400 0.00550220 0.005333 
3 0.00743000 0.00847000 0.0030660 0.006800 0.00840630 0.007999 
4 0.01010000 0.01130000 0.0034660 0.009200 0.01095800 0.010666 
5 0.01270000 0.01420000 0.0037330 0.011733 0.01344500 0.013333 
6 0.01540000 0.01710000 0.0042666 0.014000 0.01593200 0.015999 
7 0.01800000 0.02000000 - 0.016400 0.01842900 0.018666 
8 0.02060000 0.02290000 0.0050660 0.018933 0.05093700 0.021333 
9 0.02320000 0.02570000 - 0.021333 0.02345500 0.023999 

10 0.02580000 0.02860000 0.0061330 0.023600 0.02598100 0.026666 
11 - - - 0.025866 0.02851200 0.029333 
12 - - 0.0070660 0.028266 0.03104700 0.031999 
25 0.06489000 0.07170000 - - 0.06419500 - 
50 0.12986000 0.14350000 - - 0.12817000 - 
500 1.29930000 1.43270000 - - 1.28090000 - 

 
Tables 9 and 10 and Figures 17 and 18 show the displacement “W” from point “A” 

according to the ratio L/h and comparing the behaviour of the element HIMEUR 
compared to the reference solution (BENCHMARK ) and the results given by other 
existing triangular elements ANST3 (Guenfoud, 1990) ANST6 (Guenfoud, 1990), 
HCT, DKT (Batoz et al., 1990). The detailed study of the results highlights the good 
performance of the element HIMEUR. Indeed the results achieved are very close to 
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the reference solution for both constrained for bending torsion constrained and this 
regardless of the length “L”. It should be noted that this result is obtained with a 
moderate mesh consisting only of four triangular elements.  Moreover, the element 
HIMEUR appears stronger than all the elements taken as a basis for comparison, 
although the element DKT for the situation constrained bending and to a lesser extent 
the ANST3 element for the situation of twist embarrassed it are competitive. Figures 
17 and 18 illustrate graphically these findings.  
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Figure 17. Test “A” - Bending constrained - displacement “W” from point “A” 
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Figure 18. Test “B” - Twisting constrained - displacement “W” from point “A” 
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4.7. Influence of the distorted meshes 

This event test checks the behaviour of the element when we are in the presence 
of a geometrically distorted mesh. Being a thin plate element, we considered a test 
case where it dominates the bending to shear. Indeed, it is a beam subjected to the 
right end, a shear force P = 4 N in the vertical direction Oz. This load is distributed 
appropriately to nodes of the right end. It simulates a perfect fitting to the left end of 
the beam (see Figure 19). 

 

 

 

 

 

 

 

 
Figure 19. Beam subjected to point load 

Geometric data and mechanical loading are given in Table 11.  

Table 11. Geometric and mechanical loading for the cantilever beam in simple 
bending 

Length L = 50 m 

Width b = 4 m 

Thickness h = 1 m 

Young’s modulus E = 6,825x107 

Poisson ν  = 0.3 

Loading P = 4 N 

 

The displacement “W” from point A  in the end is found analytically and results 
from the strength of materials as it is expected that the removals are low compared 
to the length of the beam (of small perturbations and linear elastic behaviour). This 
is given as fallows: 

IE

LP
wt .3

. 3


     

       with         
12

. 3hb
I      [38] 

The configuration of the mesh considered is shown in the diagram below: 
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Figure 20. Cantilever beam subjected to point load 
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Figure 21. Influence of the distorted meshes - Relative errors of displacement “W” 
on point A 

The results of the displacement of point “A” following direction “Oz” with 
different meshes is shown in Figure 21. We note that our element converges quickly 
for regular meshes “mA” and “mB”. Thus, there is also no significant effect on the 
orientation of the grid: the ratio WB / WA is between 0.990 and 1.014 depending on 
the density of the mesh. 

a – Mesh mA 

b – Mesh mB 

c – Mesh mC 

 

d – Mesh mD 
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Also, the results show that the Himeur element is insensitive to geometric distortion 
(“mC” and “mD”), especially for an optimum density of the mesh. For a mesh of N 
= 40, the influence is 2.45%. 

5. Conclusion 

In this work, we have presented a triangular inflected finite element in the 
perspective of linear static analysis and dynamic analysis for the geometric non 
linear of curved structures (arch and shell). The adopted approach and the 
development of concepts and techniques used have allowed us to come to a 
competitive, robust and efficient finite element for the treatment of thin plates. 

It remains that its  maturation is carried on to make of it a reliable and efficient tool 
so as to address the calculation of all situations of shells, from thin to thick, deep or 
shallow ones. It is an element which shows undoubted advantages which plead to its 
use. The presence of the fictitious node and the adoption of the deformation approach 
have given the opportunity of enriching the displacement fields, and consequently, a 
greater accuracy in the approximation of the solution by avoiding the complexity of 
the classical theories. The reduction of elementary stiffness matrices by the means of 
the “static condensation” technique is an action relating to the freedom degrees related 
to the fictitious node, and which allows the avoidance of enormous systems of 
equations to be solved. Therefore, non negligible savings of time are recorded. The use 
of analytical integration in the evaluation of the stiffness matrix, gave our element a 
behaved performance. This result was remarkable in the convergence tests carried out 
where we have noticed a rapid trend towards the solution contrary to the isoperimetric 
elements (using numerical integration). 
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7. Appendix 

A.1. Matrix of nodal coordinates 
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A.2. Matrix [ Ko ] 
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- Expanded form before analytic integration 
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- Expanded form after analytic integration 
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