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ABSTRACT. A numerical method is described for computing tyre vibrations over a large 
frequency range. It is based on a recursive finite element method for building the dynamic 
stiffness matrix of a complete tyre from the knowledge of a finite element model of a small 
part of the structure. The present method is compared to full three-dimensional finite element 
solutions showing a perfect agreement for low frequencies. However, this method allows 
computations for medium and high frequencies which are needed for the analysis of noise 
generated by a tyre. The influence of various parameters on the frequency response functions 
like the positions where the responses are computed, the mechanical parameters of the tyre or 
the internal air-pressure are described. 

RÉSUMÉ. Une méthode numérique permettant le calcul des vibrations d’un pneumatique sur 
une large gamme de fréquences est proposée. Elle est basée sur une approche récursive pour 
calculer la matrice de rigidité dynamique d’un pneumatique complet à partir de la 
connaissance d’un modèle éléments finis d’une petite partie de la structure. La méthode 
proposée est comparée à un calcul tridimensionnel et montre un parfait accord pour les 
basses fréquences. Cette méthode permet cependant des calculs dans les moyennes et hautes 
fréquences qui sont nécessaires pour analyser le bruit engendré par le roulement d’un 
pneumatique. L’influence de paramètres variés sur les fonctions de réponse en fréquences, 
comme les positions des points de calcul, les paramètres mécaniques du pneumatique ou la 
pression de gonflement est décrite. 
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1. Introduction

The modelli ng of tyre noise radiation requires the computation of tyre vibrations
for a wide frequency range, including medium and high frequencies. This problem is
difficult to solvewith classical numerical methodslikethesum of modescomputed by
thefinite element method. With thepresent computer resources, thiscan bedoneonly
for low frequencies and leads to very heavy computations for higher frequencies both
for the number of modes to consider and the number of degrees of freedom required
to compute asingle mode. Nevertheless, various methods have been proposed in the
past to try to compute tyrevibrations.

The first classof methods is based onanalytical models. The first model consid-
ered in the past was the circular ring model (Heckl, 1986; Huang et al., 1987; Kropp,
1989; Campanacet al., 2000) in which the tyre is described by a circular beam under
tension. To be more realistic for high frequencies, more complex analytical models,
mainly based on orthotropic plates, were proposed. The time domain Green’s func-
tion for the orthotropic plate was computed by Hamet (Hamet, 2001). In (Larsson
et al., 2002b) a high frequency model based on the coupling of two elastic layers is
presented. Muggleton et al. (Muggleton et al., 2003) developed a semi-analytical
model made of orthotropic plates in plane stress submitted to an internal air pres-
sure. Two plates are connected and represent respectively the tread and the side of a
tyre. The internal pressure is considered, but the curvature of the side geometry and
the non uniformity of the thicknessare neglected. More generally in (Pinnington et
al., 2002), a four parameters model is described leading to a fourth order wave equa-
tion. In (Pinnington, 2002) a methodis proposed to estimateside rigidities at various
frequencies and in (Pinnington, 2006a; Pinnington, 2006b) the model was extended
to include the following parameters: curvature, shear rigidity, rotary inertia, tension,
rotating velocity and internal air pressure. The curvature leads to a coupling between
the radial and tangential movements. A shell model was also developed by (Kim et
al., 2004) to study the influenceof the rotation and an analytical shell model coupled
with an acoustic cavity was developed by (Molisani et al., 2003) while another shell
model was developed by (Kozhevnikov, 2006). All these analytical models provide
interesting insights into tyre vibrations, however, they do not allow the consideration
of thedetailed geometrical and material properties of a real tyre.

The other approaches were mainly numerical or a coupling of numerical and ana-
lytical models. So, Larssonet al (Larssonet al., 2002a) developed a coupled numerical
and analytical model of a tyre including the bloc pattern. Blocs with simple shapes,
like cubic shapes, are considered and theother partsof the tyre aremodelled asan or-
thotropic plate. Theradial mobilit y is improved bythe inclusion of blocs in themodel
while the improvement is lessfor the tangential mobilit y. The full three-dimensional
model of a tyre was considered by (Brinkmeier et al., 2008) but the frequency range
of analysis was limited by the huge requirement in computational power needed by
this type of model. A similar approach was used by (Lopezet al., 2007) but with an
original methodtaking into account the influenceof the rotation of the tyre.
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It can be useful to seetyres as circular waveguides. This leads to another interest-
ing numerical methodwhich isthespectral finite element method(SFE). It isbased on
an analytical wave decomposition along the waveguide axis and is mainly described
by (Finnveden, 1997a; Finnveden, 1997b) for uniform waveguides with a complex
section. In this method, the discrete equation is developed into a series of different
powers of the wavelength with matrices obtained by variational methods which are
different from the usual matrices of the finite element methodand must be computed
for thedifferent types of elements.

Other approaches are based onwave propagation in periodic media. Wave propa-
gation in waveguides and periodic structures was considered by many authors. Wave
propagation in general periodic structures were studied by (Brill ouin, 1953; Mead,
1973; Mead, 1975a; Mead, 1975b; Mead, 1996; Mead, 2009) using Floquet’s the-
orem or transfer matrices. The waveguide finite element method (WFE) is similar
to the SFE but the classical massand stiffnessmatrices obtained by commercial fi-
nite element software can be used. So very complex waveguides can be modelled
using the results of a finite element computation on only one period of the struc-
ture. This methodis described in (Maceet al., 2005; Houill on et al., 2005; Duhamel
et al., 2006; Duhamel, 2007) and consists in the analysis of wave propagation in
periodic structures. This approach was applied to tyre vibration computations by
(Nilsson, 2004; Waki et al., 2009). Classical methods for repetitive structures, for
instance using cyclic periodicity, were also proposed by (Wang et al., 2003). In
(Duhamel, 2009) a recursive methodwas proposed for the computation of frequency
response functions of periodic structures. This method does not require the computa-
tion of wave functions and iscomputationally efficient.

In this paper the recursive method of (Duhamel, 2009) is applied to the computa-
tion of tyre vibrations for medium and high frequencies. In the first part the recursive
method for curve periodic structures is described and its application to the computa-
tion of frequency responsefunctions isexplained. Then, examplesof computationsof
tyre frequency response functions arepresented before the conclusions.

2. Vibration of periodic structures by the recursive method

2.1. Cell dynamics

Theperiodic structure isdivided into different cellsas shown in Figure1. A cell i s
described byafinite element model with an equal number of nodesontheleft andright
parts of the boundary. The discrete dynamic equation obtained by the finite element
methodfor describing themovement of a cell i sgiven, at the circular frequency ω, by

(K + iωC − ω2M)q = f [1]

where K, M and C are respectively the stiffness, mass and damping matrices, f is
the loading vector and q the vector of the degrees of freedom (dofs). Introducing the
dynamic stiffnessmatrix D̃ = K + iωC − ω2M, decomposing the dofs into the left
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Figure 1. Periodic structure with the force and displacement vectors on the left and
right parts of theboundary

(L), right (R) and interior (I) sets, assuming there is no force on the interior dofs,
results in




D̃II D̃IL D̃IR

D̃LI D̃LL D̃LR

D̃RI D̃RL D̃RR







qI

qL

qR


 =




0

fL
fR


 [2]

The interior dofs can be eliminated by using thefirst row of Equation [2] to get

qI = −D̃−1
II

(
D̃ILqL + D̃IRqR

)
[3]

This leads to

[
D̃LL − D̃LID̃

−1
II D̃IL D̃LR − D̃LID̃

−1
II D̃IR

D̃RL − D̃RID̃
−1
II D̃IL D̃RR − D̃RID̃

−1
II D̃IR

] [
qL

qR

]
=

[
fL
fR

]

[4]

or under amore compact form
[

DLL DLR

DRL DRR

] [
qL

qR

]
=

[
fL
fR

]
[5]

This new dynamic stiffnessmatrix is obtained after the elimination of interior dofs.
By the symmetry of the stiffness, massand damping matrices the dynamic stiffness
matrix of Equation [5] isalso symmetric andweget tDLL = DLL, tDRR = DRR and
tDLR = DRL where t is the transposeoperator.

2.2. Periodicity along a circle

In this case, the dynamic stiffnessmatrix is not periodic in a Cartesian coordinate
system. A possibilit y for getting a periodic system is to compute the matrices in a
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local cylindrical coordinatesystem (er, ey, eθ) obtained byarotation of theCartesian
system (ex, ey, ez) by an angle θ aroundey. The dynamic stiffnessmatrices of each
portion of theperiodic system will be identical in thesenew coordinates.

When anodeis located at an angleθ, oneonly needsto multiply thedisplacements
and forcesby a rotationmatrix to get thenew matrix in the coordinatesystem defined
by (er, ey, eθ). This rotation matrix isgiven by (for a rotation aroundthey axis)

R(θ) =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


 [6]

For each point xi, oneneedsthe angleθi correspondingto thispoint to get therotation.
Thenew displacements areobtained, for instance, by

qP
i = R(θi)q

C
i [7]

where P means the rotated system and C the cartesian one. The discrete equation in
the cartesian reference system is, with DC denoting the dynamic stiffnessmatrix in
this referencesystem,

FC = DC .QC [8]

or, showing the contribution of each node,



R−1
1 (θ1) f

P
1

R−1
2 (θ2) f

P
2

...
R−1

n (θn) fP
n


 = DC




R−1
1 (θ1)q

P
1

R−1
2 (θ2)q

P
2

...
R−1

n (θn)qP
n


 [9]

which can also bewritten as



fP
1

fP
2

...
fP
n


 =




R1 (θ1) 0 · · · 0

0 R2 (θ2) · · · 0
...

...
...

...
0 0 · · · Rn (θn)


 [10]

× DC




R−1
1 (θ1) 0 · · · 0

0 R−1
2 (θ2) · · · 0

...
...

.. .
...

0 0 · · · R−1
n (θn)







qP
1

qP
2

...
qP

n




In the new coordinates the transformed system isFP = DP .QP . Hence, one gets the
relationship DP = T.DC .T−1 with

T =




R1 (θ1) 0 · · · 0

0 R2 (θ2) · · · 0
...

...
...

...
0 0 · · · Rn (θn)


 [11]
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Theother matrices have thesame form and aregiven by

MP = T.MC .T−1 [12]

CP = T.CC .T−1 [13]

They have the same properties of symmetry as the original matrices. The relations
linking the loading and displacement vectors in the two systemsare

FP = T.FC [14]

QP = T.QC [15]

2.3. The recursivealgorithm

This algorithm consists in eliminating recursively the interior dofs. Consider a
structurewith a largenumber N of cells. Thisnumber can be represented asasum of
powers of 2 as

N =
∑

i

2pi with p1 > p2 > · · · ≥ 0 [16]

where pi is the position of the ith figure 1 in the binary representation of N , for
instanceN = [1010...01]2. Here, we want to compute the dynamic stiffnessmatrix
for astructurewith N cells.

Thedynamic stiffnessmatrices of two neighbouring cellsare

D(1) =

[
D

(1)
LL D

(1)
LR

D
(1)
RL D

(1)
RR

]
; D(2) =

[
D

(2)
LL D

(2)
LR

D
(2)
RL D

(2)
RR

]
[17]

Assemblingthetwo matricesto get thedynamic stiffnessmatrix of thetwo-cells struc-
ture and eliminating the interior dofs leads to the equivalent matrix for the two-cells
structure linking only the two boundaries.

Deq =

[
D

eq
LL D

eq
LR

D
eq
RL D

eq
RR

]

=

[
D

(1)
LL − D

(1)
LRD∗D

(1)
RL −D

(1)
LRD∗D

(2)
LR

−D
(2)
LRD∗D

(1)
RL D

(2)
RR − D

(2)
RLD∗D

(2)
LR

]
[18]

with D∗ = [D
(1)
RR + D

(2)
LL]−1.

Continuing this process, one can compute the equivalent matrices for structures
with 2, 4, ..., 2nb−1 cells where nb is the length of the binary representation of N .
Assembling the matrices corresponding to the pi figures and eliminating the interior
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Figure 2. Model of the tyre

dofs leads to the equivalent matrix for the global structure. The advantage of this
method is that the computing time is proportional to log N , see(Duhamel, 2009) for
moredetails.

2.4. Computation of the frequency response function

After the elimination of all the interior dofs, the discrete relation for the whole
structurebetween sections1 andN + 1 is

[
f1

fN+1

]
=

[
DT

11 DT
12

DT
21 DT

22

] [
q1

qN+1

]
[19]

The conditionsof continuity of thedisplacementsandthe equili brium of forcesonthe
section where the load isapplied lead to (seeFigure2)

{
q1 = qN+1 = q

f1 + fN+1 + F = 0
[20]

From Relations [19] and [20], onegets

−F = f1 + fN+1

= DT
11q1 + DT

12qN+1 + DT
21q1 + DT

22qN+1

= (DT
11 + DT

12 + DT
21 + DT

22)q [21]

DenotingDT
11 + DT

12 + DT
21 + DT

22 = Dtot, one gets thedynamic equation

Dtotq = −F [22]
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Table 1. Mechanical properties of thematerials of the tyre

ρ E ν η
Rubber 1000kg/m3 28 106Pa 0.48 0.1
Steel 7850kg/m3 2 1011Pa 0.33 0
Tread 2500kg/m3 400 106Pa 0.4 0.1

The solution of this equation gives the displacements on the section. By post-
processing, the solution in the whole structure can be obtained by assembling and
solving relations equivalent to Equation [22] for various parts of thestructure.

3. Application to tyre vibrations

3.1. Model of a tyre

A tyre is considered as a structure with a rotational symmetry. A section of a
tyre is composed of different materials, for instance the belt is made of steel wires
with rubber. Moreover the geometry is complex and only a finite element model
can describe correctly the details of this structure. The geometrical parameters of
a typical tyre are presented in Figure 3 whereR = 0.278m is the exterior radius and
r = 0.168m the interior radius. The geometry of this tyre is identical to that of the
Michelin "energy 165/65R13". The section, the mesh and the material distribution
are also presented in Figure 3 for a periodic cell . The material properties are given in
Table1 whereE, ν, ρ, η arerespectively theYoung’smodulus, thePoissoncoefficient,
the density and the lossfactor. Some simplifications have been made on the material
properties because the real purpose here is to ill ustrate the possibiliti es of the method
and not to consider with great details thewhole complexity of the tyremodel.

Two cases are considered, without and with pres-stress. In the first case, the in-
ternal air-pressure is neglected. In the second case, the influence of the internal air-
pressure on the stiffnessof the structure is considered. This pressure creates an ini-
tial static stress field σ0, an initial displacement q0 and the dynamic movement is
supposed to be asmall perturbation aroundthis static solution. The displacements,
deformations and stressescan bedecomposed as

q = q0 + q∗

ε = ε0 + ε∗

σ = σ0 + σ∗

[23]

where 0 meansthestatic solution, ∗ isthedynamicperturbationandtheleft handsides
of therelationship givethetotal mechanical fields. Globally, this leadsto anew model
with a modified dynamic stiffnessmatrix given byD = [K + KG] + iωC − ω2M

with the new stiffnessmatrix [K + KG]. The matrix KG, which is the contribution
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(a)

(b)

(c)

Figure 3. (a) Global geometry, (b) mesh of a period and(c) dimensionsandmaterials
in a section of the tyre. The materials are : rubber in blue, steel reinforced rubber in
magenta andsteel in red
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of the internal pressure to the stiffness, can also be obtained by Ansys. Appropriate
boundary conditionsmust be applied at bothendsectionsto get asolutionwithcircular
symmetry on a period for the static solution under the influence of the air-pressure.
Thesesections should haveplanar displacementsandthe anglebetween thesesections
should be the same as in the initial mesh so that the displacement will be only radial
as it would be if the complete tyrehad been computed.

3.2. Homogeneous section

To test themethod, wefirst consider thesimple caseof a tyrewith ahomogeneous
section. The mesh is obtained by Ansys with an equal number of nodes on the two
opposite sections of the period and the nodes at the rim are fixed in the modelli ng
considered here. There is a total of 116 nodes, 58 on each section as there is no
interior node in this example and globally this leads to 348 dofs. The mesh is made
with 28 elements of type solid45 from Ansys with 8 nodes. The material is linear
isotropic. Anisotropic elements would allow a better modelli ng of the tyre but, as
this does not change the number of dofs, only isotropic elements are used here. The
material properties here are E = 80MPa for the Youngmodulus, ν = 0.42 for the
Poisson coefficient, ρ = 1200kg/m3 for the density and η = 0.1 for the damping
coefficient. The nodes in contact with the rim are fixed. A point force is applied in
the middle of the tread and the mobiliti es are computed for various points on the tyre
surface. Thesepointsareshown in Figure4 for atransversesection of thetyre. Figure
5 shows the comparison of the full three dimensional analysis with Ansys and the
computation with the periodic model. The full threedimensional model is made of
the same elements as the periodic section with a total of 2610 nodes and 7830 dofs.
The curves represent the radial and transverse point mobiliti es at the position of the
force, respectively. The transverse mobilit y is obtained with a forcetangential to the
tyre along the circumferential direction and with a response in the same direction.
It can be observed that the two results are very close. The periodic model allows
computations up to 2000Hz without difficulties while the Ansys computations have
been limited to low frequencies to be compatible with a reasonable computing time.
The maximal relative error between the periodic and full three-dimensional solutions
has been found to be of order 4 10−6 in the axial case. So no significant loss in
precision is found by using the periodic method instead of the usual finite element
solution.

In Figure 6, the influenceof the angle of the periodic cell i s presented. The force
is located as in the precedent example but the response is computed at point 5 of
Figure 4. As expected the influenceof the angular aperture is important only for high
frequencies. One can also observethat theinfluenceishigher for theradial component
than for the tangential part. Thesolution isnot strongly dependent on the angleof the
cell as longas thisangle is small enoughfor the frequency of the computation.
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Figure 4. Position of the excitation and of the responsepoints

3.3. Tyrewith a more complex section

The periodic cell shown in Figure 3 is used to model the real tyre. It is made of
threematerials : rubber, steel reinforced rubber and steel with the properties given in
Table1. To simpli fy the computation, thesteel reinforced rubber hasbeen considered
as isotropic, while a more detailed analysis should consider the anisotropy of this
material. A first computation is made without internal pressure with the mesh shown
in Figure 3. The angle of a period is 6o and the nodes near the rim are fixed. In
Figure 7 the computation of the mobilit y at the position of the force and at the points
shown in Figure 4 are presented for the present method. The responses are close for
low frequencies except at the position of the force. The differences increase with the
frequency.

Another set of results is presented with an internal air-pressure of 2 105Pa. The
results are shown in Figure 8 for the periodic model and for the 3D modal synthesis
over 1000modes. There is a perfect agreement over the frequency range where the
two curves can be compared. Results agreevery well up to 800Hz which is the limit
of the3D results, while thepresent methodallowsan efficient computation upto 2000
Hz.

The computing time, on a PC with a core 2 quad processor and 4GB of memory,
can be estimated to an average of 10s per frequency with the periodic methodwhile
the3D computationwith Ansysneeds133secondsper frequency by thedirect method
andabout 3s for themodal synthesis, seeTable2. However in this last case, it wasnot
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Figure 5. Comparison of the present technique with a full Ansys computation for the
radial (a) andtangential mobiliti es (b)



Recursive method for tyre vibrations 21

10
1

10
2

10
3

10
−4

10
−3

10
−2

Frequency [Hz]

R
ad

ia
l m

ob
ili

ty
 [m

.s
−

1.
N

−
1]

 

 

Cell 0.5°
Cell 1°
Cell 2°
Cell 4°
Cell 8°

(a)

10
1

10
2

10
3

10
−4

10
−3

10
−2

Frequency [Hz]

T
an

ge
nt

ia
l m

ob
ili

ty
 [m

.s
−

1.
N

−
1]

 

 

Cell 0.5°
Cell 1°
Cell 2°
Cell 4°
Cell 8°

(b)

Figure 6. Comparison of the radial (a) andtangential (b) mobiliti es for periods with
angles0.5◦, 1◦, 2◦, 4◦, 8◦ and anexcitation at themiddleof thebelt



22 EJCM − 20/2011. Dynamics of materials, structures andsystems

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Frequency [Hz]

N
or

m
al

 m
ob

ili
ty

 [m
.s

−
1.

N
−

1]

 

 
Force
Point 1
Point 2
Point 3
Point 4
Point 5

Figure 7. The FRF of thenormal mobiliti es at different points in a section

Table 2. CPU timesand data sizes

Method CPU Times per frequency Datasize
Ansys 3D direct solver 133s 26 GB

Ansys 3D with 1000modes 3s 28 GB
Recursive method 10s 2 MB

possible to computewith morethan 1000modesbecausetherequirements in memory
and disk size were larger than the possibilit y of the computer. So, in practise, the
results and comparisons could only be provided for low frequencies for which the
modal synthesis is faster but this method cannot give results for frequencies larger
than 1000Hz or for meshes with a higher density than whose used in the examples
presented here. Concerning the volume of data with a mesh of the total tyre with 60
periodic cells, each with 173 nodes, theAnsys result filesizeis28GB by 3D methods
while only 2MB are needed by the present method because the sizeis independent of
thenumber of cells.
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Figure 8. Comparison of theFRF with theAnsysmodal synthesis for the tyrewith an
internal pressureat point 1 in direction y (a) and at point 5 in direction y (b)
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Figure 9. Influenceof themodulusof the rubber on the radial mobilit y at theposition
of the force
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3.4. Influenceof someparameters

The tyre has a large volume of rubber. Its properties should have agreat influence
on thedynamic responseof the tyre. In Figure9 themobiliti esarepresented for three
different values of the modulus of the rubber. As expected, the mobiliti es decreases
with thevalueof the rubber modulus.

In Figure 10 this influence is presented on the mobilit y for the frequency range
[0-3000Hz]. It can be observed that changing the pressure mainly results in a shift
in the resonancefrequencies which comes from the increase in rigidity as the internal
pressure increases.

4. Conclusions

The computation of vibrations of a real tyre with the detailsof the material prop-
erties and of the geometry is presented using a recursive method based on a finite
element modelli ng. Only a small part of the tyre needs to be meshed and the com-
putation bythe recursive algorithm allows the determination of mobiliti es at different
pointsonthetyreover amuch larger frequency rangethan thetraditional threedimen-
sional analysis. A parametric study is possible showing, for instance, the influenceof
the rubber Youngmodulusor of the internal air-pressureon theresponseof the tyre at
different points.
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