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ABSTRACT. A method has been developed to dynamically characterize complex structures’ 
interfaces at low frequencies. The aim is to optimize vibration isolation of a main structure 
subjected at its junctions to forces generated by connected substructures. An eigenvalue 
problem is formulated by minimizing the average dissipated power flow of the system. Hence, 
the derived eigenvalues and eigenvectors describe the energy pattern at each given frequency. 
It is then possible to characterize the real interface forces and, for example, to control them 
by determining the appropriated external forces to apply to the structure. This method has 
been studied on an academic system and applied to a simple coupled structure. 

RÉSUMÉ. Une méthode de caractérisation dynamique des interfaces de structures complexes 
dans le domaine des basses fréquences est présentée. Elle vise à optimiser l’isolation 
vibratoire d’une structure principale soumise à des efforts de jonction au niveau des liaisons 
avec différentes sous-structures. En minimisant l’expression de la puissance moyenne 
dissipée on aboutit à la résolution d’un problème aux valeurs propres. Les valeurs et vecteurs 
propres ainsi obtenus permettent de décrire la nature des chemins énergétiques en fonction 
de la fréquence. Il est alors possible de caractériser les efforts réels d’interface et, par 
exemple, de les contrôler en calculant les forces extérieures appropriées à appliquer à la 
structure. Cette méthode a été étudiée sur un système académique discret et appliquée à une 
structure couplée simple. 
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1. Introduction

Industrial structures are often referred to as complex structures. They are com-

posed of an assembly of several substructures, whose mechanical properties generally

differ, joined at their interfaces by different junction types. However, their local dy-

namic behavior may not always be compatible, resulting in difficulties determining

the global response of the structure. To analyze and reduce vibration propagation,

engineering techniques usually attempt to decouple the substructures by using passive

isolators, which tends to be ineffective or even impossible as the complexity of the

interface increases. It is therefore necessary to have design methods to perform vibra-

tion isolation, i.e. to minimize the vibrational power transmission and to control the

power flow through the interface.

The vibration transmission between the boosters and the rocket core of the Eu-

ropean space launcher Ariane 5 perfectly illustrates this stake. During atmospheric

flight, combustion of the solid propellant excites acoustic modes of the boosters re-

sulting in harmonic oscillations of their structures. One of these modes induces an

important dynamic response at the junction with the rocket core, which could have an

impact on the dynamic environment. For such reasons, industrials need to have access

to design methods to determine optimal power flow paths and thus to ensure vibration

isolation (Gonidou, 2007).

Various methods have been developed to solve this kind of problem, whose appli-

cability strongly depends on the considered frequency band and on the complexity of

the studied structure. The method presented in this paper is based on power flow anal-

ysis (PFA) techniques, which have been first discussed by Goyder and White (Goyder

et al., 1980a; Goyder et al., 1980b): their goal is to minimize the power transmis-

sion, induced by structural vibrations, between a source and its adjacent structure and

then to control the power flow through this structure. By considering a continuous

formulation of wave propagation in structures like infinite beams or plates, repre-

senting simple machinery foundations, mobility and impedance methods have been

introduced to compute the averaged dissipated power (Pinnington et al., 1981). These

are derived from the concept of electric impedance (Gardonio et al., 2002) and make

the link between the force applied to an element and its dynamic response at a par-

ticular observation point. They also have the advantage of allowing substructuring

approach: in the case of complex structures each junction can be treated separately

and the behavior of the assembled global structure is obtained by means of continuity

equations.These methods have then been applied to frame structures by using a di-

rect dynamic-stiffness method (Langley, 1990) and also to simple periodic structures,

allowing model size reduction (Cuschieri, 1990).

Based on the equality between the time-averaged power of a system and the en-

ergy dissipated by its damping, Miller (Miller et al., 1990) first proposed to perform

an eigenvalue analysis of the system’s power matrix at the interface to determine fre-

quency ranges and mode combinations which cause the junction to dissipate power.

Su (Su et al., 1995) hence developed a power flow expression using the eigenmodes
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of the real part of the mobility matrix and derived its upper and lower bounds. These

results have been extended and synthesized by Ji (Ji et al., 2003b; Ji et al., 2003a) in a

mobility-based power mode method. To overcome the strong dependency of the mo-

bility matrix on the physical parameters of the system, the frequency and the external

force, Xiong (Xiong et al., 2005) have developed a complementary damping-based

power flow mode theory and formulated power flow design theorems to control re-

quired energy flow dissipation levels and patterns. Other works exposed by Bessac

(Bessac et al., 1996), which are complementary based on a primal space formulation,

must also be emphasized. Coupling eigenvalues and eigenvectors have been derived

by considering a dimensionless coupling matrix, representing the interaction between

subsystems. These two quantities allowed to respectively characterize the coupling

strength and the modal transmission path between coupled substructures.

This study presents a power flow mode method that comes within a general ap-

proach aiming at minimizing the response level of a substructure by minimizing the

power flow dissipated at the interfaces with other substructures. This method is based

on the eigenanalysis of the interface dynamic flexibility matrix. The derived eigen-

values and eigenvectors respectively represent power flow intensity factors and the

associated force distributions or patterns. Particular attention is paid to this set of ba-

sis vectors: it does not depend on the external excitations and it spans the power flow

space, allowing a complete characterization of the interface forces by projection. The

general idea is thus to optimize the junction parameters in order to project the inter-

face forces, generated by a given external loading, onto the power flow subspace that

is orthogonal to the most dissipative directions.

Following this introduction, the theoretical formulation of the problem is exposed

in Section 2 and the concept of power flow mode is introduced. Then the behavior

of the power flow eigenvalues and eigenvectors, with regard to the frequency and to

the system’s parameters, is described in Section 3. Section 4 details the interface

force characterization and develops an optimization procedure to show the dissipated

power flow pattern controllability, with regard to the external excitations. Finally, the

proposed optimization method is applied to a simple multimode coupled structure in

Section 5, before ending with some general conclusions.

2. Problem statement and formulation

The general theoretical problem, illustrated Figure 1, can be stated as follows.

Let substructure S1 be excited by an external force fext. Interface forces fj are then

applied to substructure S2 through junctions. This will generate displacements at the

interface and a dynamic response γ of the whole structure. The purpose of this study

is to optimize the structural interface forces fj by minimizing the dissipated power

flow at the junction.
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Figure 1. Representation of the interface between two substructures

2.1. Dissipated power flow of a dynamic system

The averaged power P transmitted in a cycle through a multiple point, n degree-

of-freedom (dof), interface subjected to interface forces is given by

P =
1

T

∫ T

0

Pinst(t)dt =
1

T

∫ T

0

finst(t)vinst(t)dt [1]

where Pinst(t) is the instantaneous power, T is the time observation period, finst(t)
and vinst(t) are vectors of size n respectively denoting the instantaneous interface

force and velocity. By considering a harmonic force of complex amplitude f , at a

frequency ω, and the resulting velocity of complex amplitude v and after integrating

Equation [1] over a single period, the complex power Pc can be expressed as (Cremer

et al., 2005)

Pc(ω) =
1

2
f∗(ω)v(ω) [2]

where the asterisk denotes the transpose complex conjugate quantity. The averaged

dissipated power, also known as active power, is then extracted from the real part of

the complex power

Pdiss(ω) = ℜe(Pc(ω)) [3]

As both force and velocity are harmonic, and noticing that v = jωx, where x is the

displacement vector, the averaged dissipated power becomes

Pdiss(ω) = ℜe
(

j
ω

2
f∗x

)

= −ω

2
ℑm(f∗x) [4]

In order to express Pdiss as a function of the system’s parameters, the dynamic flex-

ibility matrix Γ(ω) is derived from the dynamic matrix equation of the associated

degrees-of-freedom interface system

(−ω2M + jωB +K)x = f [5]
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where:

– M is the real, symmetric and positive definite mass matrix;

– K is the real, symmetric and semi-positive definite stiffness matrix;

– C is the real, symmetric and semi-positive definite damping matrix;

– f denotes the complex amplitude of the excitation force vector;

such that

x = Γ(ω)f [6]

By substituting Equation [6] into Equation [4] and weighting it by the interface force

squared norm, a discretized Rayleigh-like quotient can be derived

Q(ω) = −ω

2
ℑm

(

f∗Γf

f∗f

)

[7]

2.2. Stationarity of the averaged dissipated power

The averaged dissipated power formulation given by Equation [7] can be inter-

preted as the ratio of two quadratic forms and considered as a Rayleigh-like quotient.

Thus, optimizing the quotient Q at a given frequency ω = ω0 comes to differentiating

Equation [7] with respect to the real interface force f = fr

∂Q(ω0)

∂fr
= 0 ⇔ ∂s

∂fr
= 0 [8]

According to the stationarity property of the quotient, this leads to solve, at ω = ω0,

the following equivalent eigenproblem

(Γi − sνI) fν = 0 ; ν = 1, ..., n [9]

where Γi is a real matrix of size n denoting the imaginary part of the complex matrix

Γ. It is assumed that S = diag (sν) is a non-positive diagonal matrix of the power

flow eigenvalues sν arranged in ascending order, i.e.

s1 ≤ s2 ≤ ... ≤ sn < 0 [10]

and that F = [f1, ..., fn] represents the orthogonal matrix of the normalized power

flow eigenvectors, both satisfying the following orthogonal relations

FTF = In [11]

FTΓiF = S [12]

where the subscript T denotes the transpose and In is the identity matrix of size n.
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The derived frequency dependent eigenmodes precisely characterize the power

flow at the interface: the eigenvalues and eigenvectors respectively give quantitative

and qualitative information about the vibration transmission mechanisms at a given

frequency. It must also be noticed that these eigenmodes are independent of the exter-

nal excitations applied to the structure.

3. Frequency analysis of the power flow eigenproblem

As stated above, the imaginary part of the dynamic flexibility matrix Γi admits

n eigenvalues at a given frequency. However, it depends on the mass, stiffness and

damping system’s parameters. Thus, a parametric analysis of the power flow eigen-

problem is performed. For the sake of simplicity, a two degree-of-freedom academic

discrete system will be considered in what follows (see Figure 2). A proportional

damping hypothesis, where C = αK + βM , is initially assumed. The initial values

of the system’s parameters are summarized in Table 1.

Figure 2. Two dof damped spring-mass system

Table 1. Parameters of the initial system

Substructure 1 Substructure 2

Mass (kg) m1=2 m2=2

Stiffness (N.m−1) k1=1000 k2=1000

Junction stiffness (N.m−1) kj=2000

Proportional damping coefficients α = 0, 001 β = 0, 5

3.1. Influence of the system parameters on the power flow eigenvalues

Case 1: initial analytical study

At first, the power flow eigenvalues are determined analytically and their behavior

is studied with regard to the frequency (see Figure 3). It confirms that both eigen-

values are strictly negative and shows that the two dof system admits two power flow

resonances. A complementary analytical study has shown that these are very close but

not equal to the dynamic vibration eigenfrequencies of the system, even if damping is

taken into account. One should also notice that the curves cross each other: the eigen-

values have been sorted so as to follow their associated eigenvector. In this particular
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case, these are invariant, frequency independent and similar to the dynamic vibration

modes.
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Figure 3. Power flow eigenvalues of the two dof system vs. frequency

Case 2: influence of mass variation

With regard to the complexity of the analytical expressions in the case of non-

symmetrical system, the parametric study is then carried on numerically. First of all,

the influence of the system’s mass distribution is investigated. Figure 4 a) presents

the variation of the eigenvalues versus frequency for three different values of m1 and

m2, such that m1 = m2. Their behavior is mainly affected by a shift of the resonance

peaks: as the mass increases the power flow resonance frequencies go down and

conversely. If the system is modified in a non-symmetric way, i.e. m1 6= m2, a

frequency shift and a fall of the initially crossing curves around the antiresonance can

be observed (see Figure 4 b)).

Case 3: influence of stiffness variation

The influence of the stiffness parameters is then examined. Whatever the

modification, symmetric or not, it implies a frequency shift: as the stiffness increases

the power flow resonance frequencies increases too and conversely. It must also be

noticed that junction stiffness only acts on the second power flow resonance, which

corresponds to the anti-symmetric vibration mode, i.e. the mode where the junction

is caused to dissipate power.

Case 4: influence of damping variation

Finally the damping rate and its model are studied. Initially, the assumption of

proportional damping is made, i.e. C = αK + βM . Thus it is possible to reduce it

to modal damping rates. The effect of increasing these rates, illustrated Figure 5 a),

results in a smooth decrease of the power flow resonance amplitudes and widths, as

encountered with dynamic vibration mode damping. However, by changing this model
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Figure 4. Power flow eigenvalues for different values of a) m1 and m2, b) m2: full

line +5%; dashed line +100%; dotted line -50%

0 5 10 15

−10
−2

−10
−4

−10
−6

−10
−8

Frequency (Hz)

E
ig

e
n

v
a

lu
e

s

0 5 10 15

−10
−2

−10
−4

−10
−6

−10
−8

Frequency (Hz)

E
ig

e
n

v
a

lu
e

s

a) b)

Figure 5. Power flow eigenvalues for different values of a) alpha, b) c2 and c3: full

line +5%; dashed line +100%; dotted line -50%

into a matrix that does not verify Caughey’s condition, i.e. KM−1C = CM−1K, a

fall the curves is observed again (see Figure 5 b)).

This parametric study has shown that the behavior of the power flow eigenvalues

is closely related to the modal one of the vibrating system. However, in the case of

independent parameters an interaction between the curves occurs and increases with

the perturbation. Both aspects are discussed in the following sections.
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3.2. Power flow mode determination by a modal approach

As stated above, the behavior of the power flow eigenvalues with regard to the

frequency has shown similarities with the dynamic behavior of the structure. Never-

theless, this direct approach does not allow to derive explicit relationships between

the system parameters and its power flow modes. The aim here is to develop a simple

expression of these modes depending on dynamic modal parameters.

At first, the conservative natural vibration modes of the system are determined by

solving

(K − ω2
νM)yν = 0 ; ν = 1, ..., n [13]

It is stated that Λ = diag(ω2
ν) is the spectral matrix containing then eigenvalues of the

structure and that Y = [y1, ..., yn] represents the orthogonal matrix of the associated

normalized eigenvectors, both satisfying the following orthogonal relations

Y TMY = In Y TKY = Λ Y TBY = β [14]

Assuming that the damping matrix C verifies Caughey’s condition (see Section 3.1),

β becomes a diagonal matrix containing the modal damping rates βν,ν . The dynamic

flexibility matrix is then easily determined and takes the form

Γ = Y (−ω2In + jωβ + Λ)−1Y T = Y H−1(ω)Y T [15]

Hence, the equivalent power flow eigenproblem given Equation [12] can be re-

expressed

Γi = Y H−1
i (ω)Y T [16]

and finally allows to re-formulate the power flow eigenvalue expression as

FSFT = Y H−1
i (ω)Y T ⇒ S = ZH−1

i ZT [17]

where Z = FTY . Then, supposing the mass matrix to be proportional to the identity

matrix, i.e. M = mIn, one finds

ZZT =
1

m
In [18]

Substituting this equation into Equation [17] leads to

SZ =
1

m
ZH−1

i [19]

where both H−1
i and S are diagonal matrices. Consequently, an expression of the

power flow eigenvalues is given by the general term of the latter matrix

sν(ω) = − 1

m

βν,νω

(ω2
ν − ω2)

2
+ (βν,νω)

2 [20]
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Furthermore, it is observed that SZ = ZS, which means that Z is also a diagonal

matrix and that both sets of eigenvectors can be related as follows

Z = FTY =
1√
m
In [21]

By considering the analytical expression given Equation [20] it can be noticed

that, whatever the system parameter perturbation, the power flow eigenvalues will

always cross each other and admit a single resonance peak (see Figure 3). Numerical

simulations have been performed on the previous academic discrete system to compare

both direct and modal approaches when the strong hypothesis of Equation [18] is no

more verified. Figure 6 a), representing the summed power flow eigenvalues with

regard to the frequency, shows that this approach keeps the previously encountered

behavior with regard to a mass modification. The relative error between direct and

modal approaches can be observed Figure 6 b): it rises as the perturbation, i.e. a non-

symmetric mass modification, increases; reaches its maximum value at the power flow

resonance frequency and is equal to zero at the anti-resonance.
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Figure 6. Comparison between direct (black) and modal (grey) approaches for differ-

ent values of m2: full line +5%; dashed line +100%; dotted line -50%; a) summed

eigenvalues; b) relative error

Further investigations are needed to extend this interesting approach for some gen-

eral mass matrices and to evaluate its validity from quantitative point of view.

3.3. Hybridization of the power flow eigenvectors

Many articles in the literature, e.g. (Pierre, 1988), show that in structures with

crossing, double-order eigenvalues, small perturbations of the system’s symmetry can

compromise this property. These perturbations can generate interactions, sometimes
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in a very localized way, between the eigenvalues, whose loci will come closer un-

til they reach a minimal distance and then diverge. This phenomenon, referred to as

eigenvalue loci veering, also implies a hybridization of the associated eigenvectors,

whose deformed shapes will be exchanged in a rapid but continuous way. To visu-

alize this, a simple eigenvector veering criterion (EVC) is proposed. It is based on a

frequency dependent modal assurance criterion (MAC) and calculated as follows,

EV C
(k,l)
ij =

|fωT
i

k f
ωj

l |2
|fωi

k |2|fωj

l |2 [22]

Figures 7 a) and 7 b) represent the EVC matrix between the first and second power

flow eigenvectors at each frequency (from 0Hz to 150Hz): orthogonality or collinear-

ity respectively result in a black or white color. On the one hand, the black colored di-

agonal confirms the fact that power flow eigenvectors constitute a basis for the power

flow space at each frequency, even at the power flow resonance, around 6Hz. On

the other hand, the white areas illustrate the exchanged deformed shapes between the

eigenvectors. Intermediate colors give information on the quickness and the level of

the veering phenomenon. Therefore, as the modal behavior of the system evolves

with regard to the frequency, the interface force patterns defined by the power flow

eigenvectors hybridize to follow their associated eigenvalues, which are ordered in a

decreasing averaged dissipated power flow.

a) b)

Figure 7. Eigenvector veering criterion for mass m2 a) +5%, b) +100%

4. Structural interfaces analysis

The aim of this section is to characterize the vibration transfer between two

substructures by means of the power flow mode information previously defined in

Section 2.
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4.1. Interface forces characterization

The first step consists in evaluating the forces at each side of the junction, which

is supposed to be rigid and non-dissipative in this study. Such junctions are com-

monly modeled as localized springs of infinite stiffness. The interface forces are thus

determined by a substructuring approach

fj = ZSSk

ji XSSk

i + ZSSk

jj XSSk

j [23]

where subscripts i and j respectively denote internal and junction dof, ZSSk is the

frequency dependent dynamic stiffness matrix of the kth substructure and XSSk its

dynamic response.

As exposed in Section 2.2, the force basis F spans the whole power flow pattern

space. Hence it is possible to decompose the interface forces as a linear combination

into the form

fj = Fα =

n
∑

ν=1

ανfν [24]

where αν are complex coefficients representing the power flow participation of each

eigenvector fν in fj . These are easily determined by means of the orthogonal property

of the basis, Equation [11], which yields to

ασ = fT
σ fj = αR

σ + jαI
σ [25]

Moreover, by comparing the |αν |, a truncated power flow subspace can be consti-

tuted to only retain the most significant paths, i.e. [f1, ..., fm] ⊂ F , with m << n.

Finally, by substituting these power flow mode parameters into Equation [4], an ap-

proximate expression of the averaged dissipated power can be derived. It is related to

the optimal interface force configuration, expressed by Equation [24], truncated at the

m first eigenmodes and, at a given frequency ω0, is given by

P diss(ω0) ≈ −ω0

2

m
∑

ν=1

[

(ανfν)
∗Γi(ανfν)

]

= −ω0

2

m
∑

ν=1

|αν |2fT
ν Γifν

= −ω0

2

m
∑

ν=1

|αν |2sν > 0 [26]

It must be noticed that the obtained averaged dissipated power flow is a positive scalar

quantity, contrary to the dissipated energy which may become negative. This expres-

sion allows to quantify the truncation error made by only considering the firstm power

flow modes in the form

0 < ε
Pdiss(ω0)

=

∑m

ν=1 |αν |2sν
∑n

ν=1 |αν |2sν
≤ 1 [27]
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4.2. Optimization with regard to the external loading

The characterization method presented in the previous section can be directly ap-

plied in order to optimally control the power flow dissipated at the junction between

two substructures. Indeed, by assuming a given junction topology, it is possible to

determine, at a given frequency of interest ω = ω0, the external loading vector which

will ca the interface forces to be collinear to an a priori chosen low dissipated power

flow pattern.

In this particular case the dynamic equilibrium of the global system is given by



















ZSS1
ii xSS1

i + ZSS1
ij xj = fSS1

ext

ZSS1
ji xSS1

i + ZSS1
jj xj = fj

ZSS2
ii xSS2

i + ZSS2
ij xj = 0

ZSS2
ji xSS2

i + ZSS2
jj xj = −fj

[28]

where fext is the vector of the external forces applied to substructure SS1. The re-

quired power flow pattern is then set by replacing fj with the eigenvector associated to

a non dominant power flow eigenvalue. By using a dynamic condensation approach,

a matrix expression of fSS1
ext is derived, which finally comes to solve the following

problem

AfSS1
ext = fj [29]

with:

A = ZSS1
ji

(

ZSS1
ii

)

−1
[30]

fj =
[

−ZSS1
ji

(

ZSS1
ii

)

−1
ZSS1
ij

(

ZSS2
c

)

−1
+ ZSS1

jj

(

ZSS2
c

)

−1
+ Ij

]

fj [31]

It must be noticed that A is a rectangular matrix having a lot more columns than

rows, leading to a linear sub-determined inverse problem. In this study, an optimal

solution is computed by determining the pseudo inverse matrix A+ using singular

value decomposition technique (Golub et al., 1996).

5. Application

5.1. Model description

In this section, the power flow mode method is applied to a multimode coupled

structure. It is constituted of two clamped-free beams having identical geometric prop-

erties but different material parameters. They are also identically discretized (same

2D-beam element formulation, same number of nodes) and a proportional damping

assumption is made. These two substructures are coupled by means of two complete
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junctions (see Figure 8). The second one is excited at its middle by a constant har-

monic force of 10N , with a 45˚ positioning. A dynamic study of the structure is

carried out to determine its natural vibration modes and to compute the dynamic re-

sponse at the junction nodes (see Figure 9). A frequency band of interest is a priori

fixed between 0Hz and 500Hz, which contains ten resonance modes.
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Figure 8. Beams coupled by two rigid junctions on four nodes
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Figure 9. Harmonic response in the a) x direction and b) y direction
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5.2. Power flow modes

After having computed the dynamic flexibility matrix and extracted its imaginary

part, the power flow eigenproblem is solved at the six interface dof between the two

substructures. Figure 10 shows the variation of the eigenvalues versus frequency:

these are all negative and ten power flow resonances can be seen at about the same

frequencies as natural vibration ones. Both loci veering and crossing can be observed,

implying hybridization of the eigenvectors (see Figure 11). The first two eigenvalues

represent the major part of the dissipated power flow and are larger than the others,

except at 403Hz where only the 5th one seems to be sensitive to the first longitudinal

vibration mode.
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Figure 10. Power flow eigenvalues of the system vs. frequency

Figure 11. Eigenvector veering criterion for the first two eigenvectors



44 EJCM – 20/2011. Dynamics of materials, structures and systems

As exposed in Section 4.1, the interface forces are then computed and projected on

the power flow eigenvector basis. Figure 12 represents the normalized magnitude of

the αν complex projection coefficients with regard to the frequency. The importance

of the first power flow mode is again enlightened around flexural vibration resonances,

while the second eigenvector becomes locally predominant at antiresonances. More-

over, the previous remark concerning the longitudinal vibration mode is confirmed by

the high value of the 5th projection coefficient between 420Hz and 490Hz.
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Figure 12. Interface force projection coefficients |αν | vs. frequency

Figure 13 shows the ratio between the total averaged dissipated power flow and the

truncated one with regard to the frequency. More than 80% of the total power flow is

achieved by only retaining the first two modes in the projection subspace and the 5th

mode is necessary to release the power flow of the longitunal vibration mode.
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Figure 13. Truncated power flow ratio for : dotted ligne F = [f1]; dashed ligne
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5.3. Interface force optimization

The optimization method exposed in Section 4.2 is finally applied to the coupled

beam system. By looking at the harmonic response Figure 9, the energy eigenvalues

Figure 10, and the initial projection coefficients Figure 12, it is decided to determine

an optimal external force vector so that interface forces are collinear to the 3rd power

flow mode, at a frequency of 155Hz. After solving the inverse problem, a full vector

having components of variable magnitude is obtained. It is hence normalized and

filtered to only retain the translational dof associated to 80% of the total norm. The

derived force distribution is illustrated Figure 14. It is then applied to the system and

the projection coefficients are computed. Figure 15 clearly states that, at 155Hz, the

interface forces are collinear to the 3rd power flow mode, inducing a lot less power

dissipation than at the inital state (see Figure 12).
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Figure 14. Normalized optimal external force distribution (black), and interface
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6. Conclusion

A power flow mode method has been developed to characterize the interface forces

at the junction between two substructures. It is based on the minimization of the av-

eraged dissipated power flow at the interface, which is equivalent to determining, at

each frequency, the eigenmodes of the imaginary part of the junction dynamic flexibil-

ity matrix. The derived eigenvalues and eigenvectors are respectively quantitative and

qualitative parameters representing the intensity of the dissipated power flow and the

pattern of the associated forces. Therefore, it is possible to characterize the interface

forces, generated by the external excitations, by projecting them onto the eigenvector

basis. An approximated expression of the averaged dissipated power flow can also be

obtained by considering a dominant subspace of this basis.

A parametric study has been performed and has shown a complex behavior of the

power flow eigenmodes. A modal approach has been proposed to determine a sim-

ple analytical expression of the eigenvalues under a strong mass matrix hypothesis.

Moreover, eigenvalue loci veering phenomenon has been enlightened and a visualiza-

tion criterion has been introduced to observe the associated eigenvector hybridization.

A simple optimization method has finally been developed and illustrated to show the

dissipated power flow pattern controllability, for a given junction topology and at a

given frequency, with regard to the external excitations.

On going works concern the extension of the power flow mode method to large

complex structures with multiple interfaces, using a component mode synthesis ap-

proach. A multi-objective procedure is being studied to determine both optimal and

robust junction parameters in order to project the interface forces, generated by a given

external loading, onto the power flow subspace that is orthogonal to the most dissipa-

tive directions.

Acknowledgements

This work has been funded by the Future Preparation - Research and Technol-

ogy Sub-Directorate of the Centre National d’Etudes Spatiales (CNES) - Launchers

Directorate (Evry, France).

7. References

Bessac F., Gagliardini L., Guyader J.-L., “ Coupling eigenvalues and eigenvectors: a tool for

investigating the vibroacoustic behaviour of coupled vibrating systems”, Journal of Sound

and Vibration, vol. 191, n˚ 5, p. 881 - 899, 1996.

Cremer L., Heckl M., Petersson B., Structure-borne sound, 3rd edn, Springer Verlag, Berlin,

2005.

Cuschieri J., “ Vibration transmission through periodic structures using a mobility power flow

approach”, Journal of Sound and Vibration, vol. 143, n˚ 1, p. 65 - 74, 1990.



Power flow mode for component interfaces 47

Gardonio P., Brennan M., “ On the origins and developments of mobility and impedance meth-

ods in structural dynamics”, Journal of Sound and Vibration, vol. 249, n˚ 3, p. 557 - 573,

2002.

Golub G., Loan C. V., Matrix Computations, The Johns Hopkins University Press, third edition,

London, U.K., 1996.

Gonidou L.-O., “ Dynamic characterization of structural interfaces”, Proceedings of the the

Spacecraft and Launch Vehicle Dynamic Environments Workshop, 2007.

Goyder H., White R., “ Vibrational power flow from machines into built-up structures, part

I: Introduction and approximate analyses of beam and plate-like foundations”, Journal of

Sound and Vibration, vol. 68, n˚ 1, p. 59 - 75, 1980a.

Goyder H., White R., “ Vibrational power flow from machines into built-up structures, part III:

Power flow through isolation systems”, Journal of Sound and Vibration, vol. 68, n˚ 1, p. 97

- 117, 1980b.

Ji L., Mace B., Pinnington R., “ Estimation of power transmission to a flexible receiver from a

stiff source using a power mode approach”, Journal of Sound and Vibration, vol. 268, n˚ 3,

p. 525 - 542, 2003a.

Ji L., Mace B., Pinnington R., “ A power mode approach to estimating vibrational power trans-

mitted by multiple sources”, Journal of Sound and Vibration, vol. 265, n˚ 2, p. 387 - 399,

2003b.

Langley R., “ Analysis of power flow in beams and frameworks using the direct-dynamic stiff-

ness method”, Journal of Sound and Vibration, vol. 136, n˚ 3, p. 439 - 452, 1990.

Miller D., Hall S., von Flotow A., “ Optimal control of power flow at structural junctions”,

Journal of Sound and Vibration, vol. 140, n˚ 3, p. 475 - 497, 1990.

Pierre C., “ Mode localization and eigenvalue loci veering phenomena in disordered structures”,

Journal of Sound and Vibration, vol. 126, n˚ 3, p. 485 - 502, 1988.

Pinnington R., White R., “ Power flow through machine isolators to resonant and non-resonant

beams”, Journal of Sound and Vibration, vol. 75, n˚ 2, p. 179 - 197, 1981.

Su J., Moorhouse A., Gibbs B., “ Towards a practical characterization for structure-borne sound

sources based on mobility techniques”, Journal of Sound and Vibration, vol. 185, n˚ 4,

p. 737 - 741, 1995.

Xiong Y., Xing J., Price W., “ A power flow mode theory based on a system’s damping distribu-

tion and power flow design approaches”, Proceedings of the royal society, vol. 461, p. 3381

- 3411, 2005.



 


