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nonlinear frequencies. The objective of the present work was the extension of this method to 
the nonlinear forced transverse steady-state periodic response of 2-dof system leading to 
nonlinear frequency response function in the neighbourhood of the two modes 
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appliquée aux vibrations libres transversales non linéaires des systèmes discrets à non-
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transversales non linéaires forcées des systèmes discrets soumis à des forces périodiques et 
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1. Introduction

The objective of the present work is the treatment of the transverse steady-state

periodic forced response of 2-dof systems with cubic nonlinearities, using the method

developed in references (Eddanguir et al., 2009; Beidouri et al., 2008; El Kadiri et al.,

2002b; Benamar et al., 1993) and applied to the investigation of nonlinear vibration

of different structures, of various types, geometries, and material characteristics.

In a nonlinear system, the relationship between cause and effect is no longer pro-

portional, which has very important consequences, both quantitative and qualitative,

on the dynamic behaviour. Due to this important property of nonlinear systems, the

nonlinear behaviour exhibits many complicating aspects, such as the uniqueness and

existence of solutions which are not always guaranteed, the existence of instable re-

gions at which the jump phenomena may occur, the curvature of the frequency res-

ponse functions to the left or to the right, depending on the type of nonlinearity, i.e.

softening or hardening, the amplitude dependence of the system stiffness, and conse-

quently, of the mode shapes and resonant frequencies ; the presence of many harmo-

nics in the nonlinear free or forced response, the occurrence of chaotic behaviour (see

for instence (Azrar, 1999; Benamar, 1990; Bennouna, 1982; White, 1971)).

Also, it should be noticed that vibrating systems may exhibit sometimes, in addi-

tion to the distributed nonlinearity, various kinds of localised nonlinearity. This is the

case for example of a beam with a non-uniform cross section, a plate with stiffeners, or

when the beam or the plate carries a concentrated mass, or rests on a nonlinear spring

at a given point. In such cases, discretised models, such as that presented here, may

be very useful for approaching, with a reasonable computational effort, the nonlinear

behaviour.

The purpose of the present work is determination of the nonlinear frequency res-

ponse function of a 2-dof system using an approximate explicit method in the neigh-

bourhood of the two resonant frequencies.

The next step following the present work is the extension of this method to the

nonlinear transverse steady-state periodic forced response of N-dof systems and the

application of the discrete model developed to study nonlinear transverse vibration of

beams having localised nonlinearities, due, for example to discontinuities in the mass

or in the rigidity distributions.

2. Brief state of the art on the subject

Without attempting a comprehensive review, which would exceed the scope of

the present paper, some of the works related to the subject of nonlinear structural

vibrations are going to be mentioned and briefly commented below :
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2.1. Brief review on discrete systems

The notion of normal modes of nonlinear Multi-degree of freedom systems was

introduced by Rosenberg in the beginning of the sixties (Rosenberg, 1962). The work

of Rosenberg was the foundation of most of what followed. The system considered

was constituted by N-masses interconnected by nonlinear springs, and the first and last

of the masses were connected by nonlinear springs to fixed points (or to infinitely large

masses). The system was supposed to be conservative and the equations of motion

were derived from a potential. The following definition of the nonlinear normal modes

was based on the observation that the normal solutions of the linear system are all

periodic of the same period, and that the ratio of the displacement of any mass to that

of any other is identically equal to a constant for all time : "The nonlinear system is

said to be vibrating in normal modes when :

– All masses vibrate at the same frequency.

– They pass through their equilibrium position at the same time.

– When, at any time t, the position of all the masses is uniquely defined by the

position of any one of them".

The concept of ’Nonlinear Normal Mode’ (NNM) has been discussed by Vaka-

kis in (Vakakis, 1997) and used to study forced resonances of nonlinear systems,

and nonlinear localisation of vibrational energy in symmetric systems. Additional ap-

plications of NNMs to modal analysis, model reduction, vibration and shock isola-

tion designs, and the theory of nonlinear oscillators were also discussed. In reference

(Lamarque, 2000), the study was restricted to simple and two degree of freedom sys-

tems, with a unilateral constraint on one of the degrees of freedom, for which the

response can be analytically determined. Generalized frequencies, modes and masses

were built in the procedure. The results obtained for various sets of parameters in-

dicated some limitations to the validity of a general modal superposition formula.

Reference (Chakraborty et al., 2001), was concerned with the dynamics of a weakly

nonlinear periodic chain. This periodic structure is constituted by repeating identical

systems which are called elements. Such a discrete structure without ends is called

a cyclic periodic structure. Harmonic wave propagation in an infinite, nonlinear per-

iodic chain was investigated. The nonlinear normal modes found consisted of almost

two linear modes, and for some boundary conditions, exhibited restricted orthogona-

lity properties. Some explicit numerical results were included to validate the wave-

propagation approach for studying free vibration of such nonlinear periodic chains.

The two dof systems have been treated in several papers to illustrate the validity

and efficiency of the methods developed for discrete systems in thesis works. Then,

in reference (Lewandowsky, 2003), a symmetric 2-dof system has been treated by R.

Lewandowsky using the classical Galerkin’s method to give some remarks on what he

called Benamar’s method. This investigator has not succeded in his attempt to apply

the method, mainly because of the necessity of writing the amplitude equation in the

modale basis in order to apply properly the method. Due to this misunderstanding, we

have been leaded to develop for the first time the theory for discrete systems at large
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vibration amplitudes using Benamar’s method. Other works have been made in this

field in (Pesheck et al., 2002; Shaw et al., 1993), based on a new Galerkin’s approach

using the invariant manifolds for accurate nonlinear normal modes of discrete systems.

This approach was extended to nonlinear normal modes under harmonic excitation in

the reference (Jiang et al., 2005), leading to determination of the frequency response

for a simple 2-dof mass-spring system with cubic nonlinearities and for a discretized

beam model with 12-dof. N-dof systems are still in interest and lead to several works

by physician and mathematician investigators using different methods and taking into

account several conditions : linear or nonlinear, free or forced, damped or un-damped.

A new concept to derive upper bounds of the solution of initial value problems for free

linear and nonlinear ordinary differential equations representing vibration problems

was presented in reference (Kohaupt, 2004).

2.2. Brief review on the work on nonlinear finite element method

As mentioned above, the difficulties involved in nonlinear problems have led in-

vestigators to concentrate their effort on the understanding of the nonlinear behaviour

associated with simple geometries, such as beams, plates and shells. However, some

effort has been devoted in parallel to develop adequate nonlinear finite element formu-

lations in order to provide engineers and analysts with adequate tools for investigating

the behaviour of complex structures. There were some pioneer investigators which

have developed the finite element method for nonlinear vibration problems such as in

references (Mei, 1986; Mei, 1985; Mei, 1984; Mei, 1973), the finite element displa-

cement method for large amplitude free flexural vibrations of beams and plates and

forced vibrations of rectangular plates was investigated, and also comments and dis-

cussions on "Lagrange-type formulation for finite element analysis of nonlinear beam

vibrations" were made.

More recently, new developments in the finite element method and the conside-

rable interest in composite materials induced many papers on the linear vibrations of

laminated rectangular plates in references (Han et al., 1996b; Han et al., 1996a). The

first reference was concerned by free linear vibration analysis of symmetrically lami-

nated, rectangular plates with clamped boundary conditions. It was shown that for hie-

rarchical finite element method that the natural frequencies converge rapidly with an

increase in the number of polynomials used, resulting in far fewer degrees of freedom

than those required when using a conventional finite element method. It was shown

that the mode shapes of symmetrically laminated plates depend upon the degree of

bending-twisting coupling. The linear forced vibration of isotropic and symmetrically

laminated rectangular plates was studied in the second reference by using the hierar-

chical finite element method. The loads considered have been harmonic acoustic plane

waves impinging on the plate surface in a normal direction and at grazing incidence.

It was found that with far fewer degrees-of-freedom than conventional finite element

method, accurate results may be produced using the HFEM. The autors of references

(Ribero et al., 1999a; Ribero et al., 1999b; Ribero, 1999a; Ribero, 1999b) have conti-
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nued in the field of finite element method applied to nonlinear vibration problems by

studying the model for geometrical nonlinear, steady, forced and periodic vibration of

plates based on hierarchical finite element method, and the stability analysis of multi-

modal response. Composite laminated plates and beams with internal resonance have

also been considered.

2.3. Presentation and discussion of The Benamar’s method

The so-called Benamar’s method in reference (Lewandowsky, 2003) is based on

a theoretical model based on spectral analysis, using the linear mode shapes of the

structure considered as a basis for the expansion of the unknown displacement series.

It reduces the large vibration amplitude problem, via use of Hamilton’s principle and

spectral analysis, and integration of the time function over a period of vibration, to a

set of nonlinear algebraic equations which is solved numerically for each value of the

amplitude of vibration. This method has been applied to a variety of situations, which

can be classified as follows :

– Different structures : beams, plates, shells (Beidouri et al., 2006; Moussaoui et

al., 2000; Azrar et al., 1999a; Benamar et al., 1994; Benamar et al., 1991; Benamar,

1990). .

– Different geometries : rectangular and circular plates, finite and infinite shells,

rings (see for instence the just cited referenceses and also (Rougui et al., 2003; Hater-

bouch et al., 2003; Moussaoui et al., 2001)).

– Different end conditions of beams and edge conditions of plates (see for instence

previous references from (El Bikri et al., 2003) in addition to (Benamar et al., 1994)).

– Different material laws : isotropic, composites (see references cited above with

(Haterbouch et al., 2005; Harras et al., 2002))

– Different types of problems : nonlinear free response, nonlinear forced response

(references cited above in addition to (Beidouri et al., 2006; Azrar et al., 2002; Azrar

et al., 1999b)).

– Several description levels :

- Assuming a harmonic motion, or assuming in addition to the harmonic res-

ponse a harmonic distortion of the response (Atmani, 2005; Benamar, 1990).

- Neglecting the in-plane displacements in the modelling of nonlinear trans-

verse vibrations of plates, or including these displacements in the theory (Haterbouch,

2004).

– To continuous structures and discrete systems (see for example (Eddanguir et

al., 2009; Beidouri et al., 2008; Haterbouch, 2004; El Bikri et al., 2006; El Kadiri et

al., 2002a; Azrar, 1999; Benamar et al., 1994)).

– Different methods of solution : iterative, explicit and linearized (see for example

(El Bikri et al., 2006; Atmani et al., 2004; Haterbouch et al., 2004; Haterbouch, 2004;

El Kadiri et al., 2002a; Moussaoui et al., 2002)).
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Two main features of this method could be deduced from the above mentioned

works as follows :

a- In all of the problems considered, the nonlinear vibration problem is presented

by three nonlinear dynamic characteristics, i.e. the mass tensor, the rigidity tensor, and

the nonlinear rigidity tensor. The last tensor is most of the times a fourth order tensor.

The formulation reduces to the classical modal analysis theory when the nonlinear

effects are neglected.

b- The nonlinear vibration problem is presented by a nonlinear algebraic system,

or a nonlinear eigenvalue problem, which reduces to the classical linear eigenvalue

problem, very common and well known in the linear modal analysis theory.

c- The solution process, conducted by any mean, i.e. iterative, linearised or explicit,

leads in all cases to a set of amplitude dependent mode shapes, i.e. the so-called non-

linear mode shapes, with the associated amplitude dependent nonlinear frequencies.

d- The experience accumulated in solving iteratively the nonlinear eigen value pro-

blems have conducted members of the nonlinear dynamic group team to notice that

explicit solution of such problems can be obtained by rewriting the system in the mo-

dal basis, i.e. the basis of the system linear mode shapes, and making appropriate

approximations. For very high amplitudes, for which the approximations made do not

work any more, another approach has been developed, which simplifies considerably

the formulation.

Some aspects of this method have been extensively discussed in the literature, such

as in (El Kadiri et al., 2002a; Lewandowsky, 2003). Some of the comments made in

the previous reference have been examined in (Beidouri, 2006).

3. Governing equations

Figure 1 shows the 2-dof system examined in the present work. It consists of two

masses and four spiral springs, with Cl
r and Cnl

r being respectively the linear and

nonlinear cubic rigidities of the rth spiral spring. The springs are attached by identical

bars of length l. These bars are supposed to be mass less, not infinitely rigid, and made

of an elastic material which may be slightly deformed. The momentumM r in the rth

spiral spring is given by :

M r = −Cl
rθ − Cnl

r θ3 [1]

The undeformed initial position of this system is presented in Figure 1. The two

masses m1 and m2 are excited respectively by two harmonic forces F1 and F2 cho-

sen in each case according to the mode to be dominately excited (Figure 2) :
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Figure 1. The undeformed initial position of the 2-dof system

Figure 2. The 2-dof system excited by the two forces F1 and F2

The displacements of the masses m1 and m2 from the undeformed positions

of the springs are denoted as y1 and y2 . The displacement vector {y} defined by

{y}
T

= [y1y2] can be written as :

{y} = y1~u1 + y2~u2

= ȳ1
~φ1 + ȳ2

~φ2 [2]

where {~u1, ~u2} is the Displacement Basis (DB) defined by the vectors {u1}
T

= [1 0]

and {u2}
T

= [0 1] and
{

~φ1, ~φ2

}

is the Modal Basis (MB), defined by the vectors

{φ 1}
T

= [ϕ11 ϕ21] and {φ2}
T

= [ϕ12 ϕ22] representing respectively the first and

second linear mode shapes of the 2-dof system. As can be seen in Equation [2] the

components of the displacements of the masses m1 and m2 in DB and MB are deno-

ted by (y1, y2) and (ȳ1, ȳ2) respectively. The transition matrix from DB to MB is the

matrix of the column vectors ~φr.

The system is supposed to be subjected to a harmonic excitation force given by :

Fi = fi cos (ω t)

= f̄jϕij cos (ω t) i, j = 1, 2 [3]
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where fi is the amplitude of the excitation force Fi applied to the mass mi, expressed

in DB, f̄i is the amplitude component of the excitation force Fi expressed in MB and

ω is the excitation frequency.

Assuming a harmonic motion defined by :

yi = Ai cos (ω t)

= ajϕij cos (ω t) i, j = 1, 2 [4]

where Ai is the modulus of the displacement yi of the mass mi expressed in DB (or

the contribution of the normalized vector ~uiof DB), and ai is the component of the

displacement yi expressed in MB (or the contribution of the normalized vector ~φi of

MB).

In order to adapt the theory developed in (Beidouri et al., 2008), the kinetic, linear

and nonlinear potential energies of the 2-dof system shown in Figure 1 are developed

as :

T =
1

2
ẏiẏjmij

=
1

2
aiajω

2m̄ij sin2 (ωt) i, j = 1, 2 [5]

Vl =
1

2
yiyjkij

=
1

2
aiaj k̄ij cos2 (ωt) i, j = 1, 2 [6]

Vnl =
1

2
yiyjykylbijkl

=
1

2
aiajakalb̄ijkl cos4 (ωt) i, j, k, l = 1, 2 [7]

where mij , kij and bijkl are respectively the general terms of the mass, the linear rigi-

dity and the nonlinear rigidity tensors in DB, and m̄ij , k̄ij , and b̄ijkl are respectively

the general terms of the mass, the linear rigidity and the nonlinear rigidity tensors in

MB. The relationships between the expressions for these tensors in DB and MB can

be obtained as in (Benamar et al., 1993) :

m̄ij = ϕsiϕtjmst

k̄ij = ϕsiϕtjkst

b̄ijkl = ϕsiϕtjϕpkϕqlbstpq

f̄i = ϕsifs i, j, k, l, s, t, p, q = 1, 2 [8]
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The kinetic energy of the 2-dof system, exhibiting a harmonic motion, can be writ-

ten as :

T =
1

2
m1ẏ

2

1
+

1

2
m2ẏ

2

2

=
1

2
ω2

(

m1A
2

1
+ m2A

2

2

)

sin2 (ωt) [9]

Identifying Equations [5] and [9] leads to the following expressions for the mass

tensor term in DB :

m11 = m1

m22 = m2

m12 = m21 = 0 [10]

For relatively small displacements, compared to the length of the bars, of the dis-

crete system shown in Figure 2, an approximate expression for sin θi can be written

as follows :

sin θi =
yi − yi−1

l
≈ θi i = 1, 3 [11]

with y0 = y3 = 0, so that the linear potential energy of the 2-dof system can be

expressed as :

Vl =
1

2

4
∑

i=1

Cl
i(θi − θi−1)

2

=
1

2l2

[

4
∑

i=1

Cl
i (yi − 2yi−1 + yi−2)

2

]

[12]

with y
−1 = y0 = y3 = y4 = 0 and θ0 = θ4 = 0.

The generalized linear elastic forces can be obtained by the Equation [13] :

F l
i = −

∂Vl

∂yi

i = 1, 2 [13]

Applying Equation [13] to the expression for Vl given in Equation [12], we get :

F l
1

= −
1

l2
[

y1C
l
1
− 2 (y2 − 2y1)Cl

2
+ (−2y2 + y1) Cl

3

]

F l
2

= −
1

l2
[

(y2 − 2y1)Cl
2
− 2 (−2y2 + y1)Cl

3
+ y2C

l
4

]

[14]
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On the other hand, by applying Equation [13] to the expression for Vl given in

Equation [6], we get :

F l
r = −

1

2

[

yjkrj + yikir

]

= −yikir i, j, r = 1, 2 [15]

in which the classical symmetry relation, i.e. ki j = kj i, is supposed to be satisfied.

The Equations [14] and [15] permits one to obtain the linear rigidity tensor ki j as

follows :

k11 =
1

l2
(Cl

1
+ 4Cl

2
+ Cl

3
)

k22 =
1

l2
(Cl

2
+ 4Cl

3
+ Cl

4
)

k12 = k21 = −
2

l2
(Cl

2
+ Cl

3
) [16]

The nonlinear potential energy of the 2-dof system can be expressed as :

Vnl =
1

4

4
∑

i=1

Cnl
i (θi − θi−1)

4

=
1

4l4

[

4
∑

i=1

Cnl
i (yi − 2yi−1 + yi−2)

4

]

[17]

with y
−1 = y0 = y3 = y4 = 0 and θ0 = θ4 = 0.

The generalized nonlinear elastic forces can be obtained by Equation [18] :

Fnl
i = −

∂Vnl

∂yi

i = 1, 2 [18]

Applying Equation [18] to the expression for Vnl given in Equation [17], we get :

Fnl
1

= −
1

l4

[

y3

1
Cnl

1
− 2 (y2 − 2y1)

3
Cnl

2
+ (−2y2 + y1)

3
Cnl

3

]

Fnl
2

= −
1

l4

[

(y2 − 2y1)
3
Cnl

2
− 2 (−2y2 + y1)

3
Cnl

3
+ y3

2
Cnl

4

]

[19]

On the other hand, by applying Equation [18] to the expression for Vnl given in

Equation [7], we get :

Fnl
r = −2yiyjykbijkr i, j, k, r = 1, 2 [20]
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in which the symmetry relation ships usually obtained for continuous structures i.e.

bijkl = bijlk

bijkl = bklij

bijkl = bikjl i, j, k, l = 1, 2 [21]

are assumed to be satisfied in the present model.

The equality of the nonlinear forces, written in Equations [19] and [20] permits

one to obtain the nonlinear rigidity tensor bijkl as follows :

b1111 =
1

2l4
(Cnl

1
+ 16Cnl

2
+ Cnl

3
)

b2222 =
1

2l4
(Cnl

2
+ 16Cnl

3
+ Cnl

4
)

b1122 = b2211 = b1212 = b2121 = b1221 = b2112 =
2

l4
(Cnl

2
+ Cnl

3
)

b1112 = b1121 = b1211 = b2111 = −
1

l4
(4Cnl

2
+ Cnl

3
)

b2221 = b2212 = b2122 = b1222 = −
1

l4
(Cnl

2
+ 4Cnl

3
) [22]

4. Amplitude equation for the nonlinear vibration problem

4.1. General equations

The dynamic behaviour of the system may be obtained by Lagrange’s equations

for a conservative system :

−
d

dt

(

∂T

∂q̇r

)

+
∂T

∂qr

−
∂V

∂qr

= Fr r = 1 , 2 [23]

Replacing T and V (V = Vl + Vnl) in this equation by their expressions given

above, i.e. Equations [5] to [7], expanding the trigonometric function and applying the

harmonic balance method we get the following set of nonlinear algebraic equations :

3

2
aiajak b̄ijkr + aik̄ir − aiω

2m̄ir = f̄r i, j, k, r = 1, 2 [24]

which can be written in matrix form as :

3

2

[

B̄ (a)
]

{a} +
[

K̄
]

{a} − ω2
[

M̄
]

{a} =
{

f̄
}

[25]
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4.2. The linear solution

If the nonlinear term 3

2

[

B̄ (a)
]

{a} is neglected in Equation [25], the classical

eigen value problem, very well known for linear systems is obtained i.e.

[

K̄
]

{a} − ω2
[

M̄
]

{a} =
{

f̄
}

[26]

The above equation leads to the classical linear response as follows :

{y(a
1
)}l =

f̄1

k̄
11

− ω2m̄11

~φ1 +
f̄2

k
22

− ω2m̄22

~φ2 [27]

Particularly, if the excitation force is chosen in such a manner that the first mode

is exclusively excited, i.e. f̄2 = 0, the response is reduced to :

{y(a
1
)}l =

f̄1

k̄
11

− ω2m̄11

~φ1 [28]

for any amplitude of excitation.

It will be shown below that the situation may be different from this scheme, if the

nonlinear effects are taken into account, i.e. the nonlinear term 3

2

[

B̄ (a)
]

{a} is not

neglected in Equation [25].

4.3. The nonlinear solution

Considering now the nonlinear algebraic system (24), it has to be solved for de-

termination of the nonlinear frequency response function of the 2-dof systems treated.

This system is solved here using the explicit procedure (First formulation) presented

for the first time in (El Kadiri et al., 2002b).

4.3.1. Solution in the neighbourhood of the first mode

The 2-dof system is supposed here to be excited in such manner that the first mode

is predominant in the response. The so-called first formulation is based on an approxi-

mation which consists on assuming, when developping the solution in the neighbou-

rhood of the first nonlinear mode, that the contribution vector {a}
T

= [a1 a2] can

be written as {a}
T

= [a1 ε2] stating that the second contribution ε2 is very small

compared to a1. This permits one to simplify the nonlinear algebraic system (24) by

neglecting all of the nonlinear terms involving ε2, which leads to :

3

2
a3

1
b̄
1111

+ a1k̄11
− a1ω

2m̄
11

= f̄1 [29]

(

k̄22 − ω2m̄22

)

ε2 +
3

2
a3

1
b̄1112 = f̄2 [30]
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Equation [29] allows the following analytical expression for the first contribution

a1 to be obtained :

a1 =
f̄1 −

3

2
a3

1
b̄
1111

k̄
11

− ω2m̄11

[31]

Equation [30] allows an analytical expression for ε2 to be derived, in terms of a1

and of the linear and nonlinear dynamic characteristics of the system, i.e.

ε2 =
f̄2 −

3

2
a3

1
b
1112

k
22

− ω2m̄22

[32]

The nonlinear response of the 2-dof system {y(a
1
)} defined in Equation [2] can

then be expressed as :

{y(a
1
)} =

f̄1 −
3

2
a3

1
b̄
1111

k̄
11

− ω2m̄11

~φ1 +
f̄2 −

3

2
a3

1
b
2111

k
22

− ω2m̄22

~φ2 [33]

The total nonlinear response given by Equation [33] appears as the sum of the

linear response given by Equation [27] and the nonlinear term given by the Equation

[34] :

{y(a
1
)}nl = −

3

2
a 3

1

(

b̄
1111

k̄
11

− ω2m̄11

~φ 1 +
b
1112

k
22

− ω2m̄22

~φ 2

)

[34]

The cubic nonlinear term a3

1
may be obtained for a given value of the excitation

frequency parameter ω and a given value of the excitation force parameter f̄1 via

Equation [35] :

(

ω

ω1L

)2

= 1 +
3

2
a2

1

b̄1111

k̄11

−
f̄1

a1k̄11

[35]

in which ω1L is the first linear frequency parameter given by Equation [36] :

ω1L =

√

k̄11

m̄11

[36]

4.3.2. Solution in the neighbourhood of the second mode

Similar steps are used for determination of the response in the neighbourhood

of the second nonlinear mode shape as a function of the contribution a2. The 2-dof
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system is supposed here to be excited in such manner that the second mode is predo-

minant in the response. The so-called first formulation is based on an approximation

which consists on assuming, when developping the solution in the neighbourhood of

the second nonlinear mode, that the contribution vector {a}
T

= [a1 a2] can be written

as {a}
T

= [ε1 a2] stating that the first contribution ε1 is very small compared to a2.

This permits one to simplify the nonlinear algebraic system (24) by neglecting all of

the nonlinear terms involving ε1, which leads to :

(

k̄11 − ω2m̄11

)

ε1 +
3

2
a3

2
b̄1222 = f̄1 [37]

3

2
a3

2
b̄
2222

+ a2k̄22
− a2ω

2m̄
22

= f̄2 [38]

Equation [37] allows the following analytical expression for the first contribution

a2 to be obtained :

a2 =
f̄2 −

3

2
a3

2
b̄
2222

k̄
22

− ω2m̄22

[39]

Equation [38] allows an analytical expression for ε1 to be derived, in terms of a2

and of the linear and nonlinear dynamic characteristics of the system, i.e.

ε1 =
f̄1 −

3

2
a3

2
b
2221

k
11

− ω2m̄11

[40]

The nonlinear response of the 2-dof system {y(a
2
)} defined in Equation [2] can

then be expressed as :

{y(a
2
)} =

f̄1 −
3

2
a3

2
b
1222

k
11

− ω2m̄11

~φ1 +
f̄2 −

3

2
a3

2
b̄
2222

k̄
22

− ω2m̄22

~φ2 [41]

The total nonlinear response given by Equation [41] appears as the sum of the

linear response given by Equation [27] and the nonlinear term given by the Equation

[42] :

{y(a
2
)}nl = −

3

2
a 3

2

(

b̄
1222

k̄
11

− ω2m̄11

~φ 1 +
b
2222

k
22

− ω2m̄22

~φ 2

)

[42]

The cubic nonlinear term a3

2
may be obtained for a given value of the excitation

frequency parameter ω and a given value of the excitation force parameter f̄2 via

Equation [43] :

(

ω

ω2L

)2

= 1 +
3

2
a2

2

b̄2222

k̄22

−
f̄2

a2k̄22

[43]



2-dof forced nonlinear transverse vibration 157

in which ω2L is the second linear frequency parameter given by Equation (44) :

ω2L =

√

k̄22

m̄22

[44]

5. Applications

In this section, some application of the theory presented above are given in order to

illustrate the kind of results one can obtain by the present model for various geometries

and excitation cases of 2-dof systems, constituted by two masses, and four nonlinear

spiral springs.

5.1. Application 1 : a linear symmetric system (System 1)

In the first application, a linear symmetric system called system 1, was examined

in order to test the model. A symmetric distribution of masses and linear rigidities was

adopted. The characteristics of this system are (Figure 3) :

m
1

= m
2

= 1Kg,

Cl
1

= Cl
2

= Cl
3

= Cl
4

= 10Nm,

Cnl
1

= Cnl
2

= Cnl
3

= Cnl
4

= 0Nm,

l = 1m.

The excitation amplitude is choosen as follows :f1 = 1N and f2 = 0N .

Figure 3. Forced linear symmetric system (System1)

For this first application, the numerical results obtained are plotted in Figure 4(a)

in which the displacement amplitudes A1 and A2 of the masses m1 and M2 are plotted

versus the frequency parameter ω/ω1L. In Figure 4(b), the linear frequency response

curves are given in terms of the amplitudes of the contributions and versus the fre-

quency parameter in MB. The results corresponding to this excitation corresponds

to the classical response in the forced linear model. The curves obtained correspond

exactly to the classical response predicted in linear theory (Thompson et al., 1998).
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(a) (b)

Figure 4. Linear forced response of system 1 in DB (a) and MB (b)

5.2. Application 2 : a nonlinear symmetric system (System 2)

In the second application, a nonlinear symmetric system called system 2, was exa-

mined for which a distribution of nonlinear rigidities is adopted. The characteristics

of this system are (Figure 5) :

m
1

= m
2

= 1Kg,

Cl
1

= Cl
2

= Cl
3

= Cl
4

= 10Nm,

Cnl
1

= Cnl
2

= Cnl
3

= Cnl
4

= 150Nm,

l = 1m.

the excitation distribution and amplitude was choosen so that : f1 = 1N and f2 = 0N .

Figure 5. Forced nonlinear symmetric system (System 2)

For the second system shown in Figure 5, calculations have been performed to ob-

tain the nonlinear response in the neighbourhood of the first and second linear mode

shapes using Equations [33] to [35] and Equations [41] to [43] in the non dimensio-

nal frequency ranges [0; 1, 7] and [1, 7; 5] respectively. The numerical results obtained

are presented in Figure 6(a) in which the displacement amplitudes A1 and A2 of the

masses m1 and m2 are plotted versus the frequency parameter ω/ω1L. In Figure 6(b),
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the amplitude of the contributions a1 and a2 in MB are plotted versus the frequency

parameter ω/ω1L. The frequency response curve obtained here exhibits qualitatively

a classical nonlinear behaviour with multivalued regions in which the jump phenome-

non could occur. Also, the results corresponding to this excitation show that the nonli-

nearity observed is of the hardening type with a more accentuated nonlinear behaviour

for the second mode, which is the type of behaviour usually observed in geometrically

non linear problems (See for example reference (El Kadiri et al., 1999)). Figure 6(c)

gives the variation of the displacement amplitude A1 as a function of A2 and confirms

that the two masses are vibrating in phase in the first mode. Figure 6(d) gives the va-

riation of the displacement amplitude A1 as a function of A2 and confirms that the

two masses are vibrating in opposition of phase in the neighbourhood of the second

mode.
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Figure 6. Nonlinear forced response of system 2 in DB (a) and MB (b). Amplitude A1

versus A2 of the two masses in the fist mode (c) and second mode (d)
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5.3. Application 3 : a nonlinear non symmetric system (System 3)

In this third application, a nonlinear non symmetric system called system 3 is

examined, the characteristics of this system are (Figure 7) :

m
1

= m
2

= 1Kg,

Cl
1

= Cl
2

= Cl
3

= Cl
4

= 10Nm,

Cnl
1

= Cnl
2

= Cnl
4

= 150Nm and Cnl
3

= 300Nm,

l = 1m

The excitation distribution is choosen in the two cases considered in order to excite

respectively the first mode and the second mode exclusively i.e.

– For the first case : f1 = f2 = 1N

– For the second case : f1 = −f2 = 1N

Figure 7. Forced nonlinear non symmetric system (System 3)

5.3.1. Excitation of system 3 in the neighbourhood of the first mode

The numerical results obtained when system 3 is excited in neighbourhood of the

first mode are presented in Figure 8(a) in which the displacement amplitudes A1 and

A2 of the masses m1 and m2 are plotted versus the frequency parameter ω/ω1L.the

result schow a accentuated nonlinear behaviour of the mass 2. In Figure 8(b),and Fi-

gure 8(c) the nonlinear frequency response curves are given in terms of the amplitudes

of the contributions a1 and ε2 respectively versus the frequency parameter ω/ω1L in

MB. The results corresponding to this excitation show that the nonlinearity obser-

ved is of the hardening type and exhibits qualitatively a classical nonlinear behaviour

with multivalued regions in which the jump phenomenon could occur. The Figure 8(d)

shows that the ratio of the displacement of the two masses is not constant when the

amplitude of vibration increases. The variation of the contributions of the two modes

with the frequency, shows that the contribution of the second linear mode to the non-

linear response in the neighbourhood of the first mode can be non negligible. The

nonlinear response is not proportional to the first mode but involve a contribution of

the second mode, due to the nonlinearity.
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(a) (b)

(c) (d)

Figure 8. Magnitude of A1 and A2 in DB (Mode 1)(a), contribution a1 in MB (Mode

1) (b), Contributions ε2, in MB (Mode 1)(c), Amplitudes A2 versus A1 of the two

masses in the fist mode (d)

5.3.2. Excitation of system 3 in neighbourhood of the second mode

The numerical results obtained when system 3 is excited in the neighbourhood of

the second mode are plotted in Figure 9(a) in which the displacement amplitudes A1

and A2 of the masses m1 and m2 are plotted versus the frequency parameter ω/ω1L.

The results schow a much more accentuated nonlinear behaviour of mass 2. In Fi-

gure 9(b), and Figure 9(c). the nonlinear frequency response curves are given in terms

of the amplitudes of the contributions a2 and ε1 respectively versus the frequency

parameter ω/ω1L in MB. A classical nonlinear behaviour, similar to that mentioned

above, is observed with multivalued regions in which the jump phenomenon could oc-

cur. Also, the results corresponding to this excitation show that the nonlinearity obser-

ved is of the hardening type and is more accentuated for the second mode, compared to
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that obtained for the first mode in the above subsection. This type of behaviour agrees

qualitatively with that usually observed in geometrically nonlinear vibration problems

(See for example reference (El Kadiri et al., 1999)). The Figure 9(d) shows also that

the ratio of the displacement of the two masses is not constant when the amplitude of

vibration increases. The variation of the contributions of the two modes with the fre-

quency, shows that the contribution of the first linear mode to the nonlinear response

in the neighbourhood of the second mode can be non negligible. The nonlinear res-

ponse is not proportional to the first mode but involve a contribution of the first mode,

due to the nonlinearity.
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Figure 9. Magnitude of A1 and A2 in DB (Mode 2)(a), contribution a2 in MB (Mode

2) (b), Contributions ε1, in MB (Mode 2)(c), Amplitudes A2 versus A1 of the two

masses in the second mode(d)
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6. Conclusion

The semi-analytical approach to the nonlinear dynamic response of 2 dof systems

based on multi-mode analysis has been developed. The applicability of this method to

the nonlinear forced vibration of discrete systems with various types of excitations is

established. This enabled the nonlinear effect to be taken into account via the fourth

order tensor, and the nonlinear frequency dependence on the amplitude to be establi-

shed. Various types of excitations have been examined. Using the explicit method of

solution, the nonlinear amplitude equation of motion has been solved. The nonlinear

frequencies and response curves in the neighbourhood of the first and second reso-

nances have been obtained for various types of excitation distributions. The results

have shown that the nonlinear response in the neighbourhood of the two linear modes

of the 2 dof system considered remains proportional to the corresponding mode in the

case of a complete symmetry of the problem. If a non symmetry of nonlinear rigi-

dity is introduced, a clear nonlinear coupling between the two modes appears in the

amplitude of vibration. The present formulation and solution is general and simple. It

provides a useful tool for studying the nonlinear forced vibration of discrete systems.

The method can be readily applied in the study of the large amplitude vibration indu-

cing large curvatures of physically discretized beams. Extensions can be easily made

to N dof systems which may allow an easy treatment of nonlinear forced vibrations of

systems exhibiting a localised nonlinearity.
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