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ABSTRACT. This paper presents a short review and new results about the self-excited responses 
under the form of stick-slip regimes. First, the Van-der Pol oscillator with one degree of 
freedom is considered. Then it is shown that it is possible to build semi-analytical and 
numerical (by the FEM.) solutions of stick-slip-separation waves for a brake-like system. 
Then, we present new results concerning the mechanical model composed of a rigid half 
space in frictional sliding with an elastic half-space. The method of solution, based on 
periodic complex Radoks potentials, is novel and differs from those in literature. Besides, in 
contrast with many works, we shall consider the longitudinal elongation which plays a crucial 
rule in the solution procedure. A unique and weakly singular solution is found and satisfies 
all stick-slip conditions except over a narrow zone at transition points which implies a crack-
like behaviour at the stick-slip borders. 

RÉSUMÉ. Cet article présente une étude bibliographique non exhaustive et des résultats 
nouveaux sur les vibrations auto-entretenues sous forme d’ondes stick-slip. On commence par 
établir la réponse stick-slip-separation d’un système mécanique simple à un seul degré de 
liberté puis pour un solide élastique borné formé de deux cylindres coaxiaux. On présente 
ensuite de nouveaux résultats concernant le glissement stationnaire entre un massif rigide sur 
un demi-espace élastique. La méthode de solution est basée sur les potentiels complexes et 
périodiques de Radok. Par ailleurs, contrairement à plusieurs travaux antérieurs, nous 
prenons en compte la déformation longitudinale et nous montrons qu’elle joue un rôle crucial 
dans la formulation et la résolution de problème. Une solution unique et faiblement singulière 
est construite. Elle vérifie toutes les conditions de contact unilatéral frottant sauf sur une 
petite zone extrêmement faible à la transition entre les régions de glissement et d’adhérence. 
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1. Introduction

During the two last decades, an important issue emerges in the area of elasto-

dynamic problems involving frictional contact, namely the friction-induced vibration

resulting from the flutter instability in the spirit of Poincaré-Hopf bifurcation. The

induced vibrations have the form of stick-slip or stick-slip-separation self-sustained

oscillations propagating along the contact interface and generally accompanied with

noise emission. Many examples are common in daily life such as creaking door, noise

of chalk against a table, brake squeal, guitar sound, silo music (sound emission du-

ring the flow of granular materials through silos) are generally associated to stick-slip

propagation. Study of such periodic regimes is relevant for break squeal (Moirot et

al., 2000; Nakai et al., 1996), simulations of earthquakes and seismology analysis

(Andrews et al., 2005; Ben-Zion et al., 1998; Cochard et al., 1994), study of ultra-

sonic motors (Zharii, 1996), granular discharge from silos (Oueslati, 2004; Mukesh

et al., 2006), interpretation of Shallamach waves in sliding of rubber against a rigid

substrate (Schallamach, 1971).

In literature, first studies of stick-slip focused on discrete systems, typically the

Van-der Pol or the Klarbring oscillator composed of springs-mass assemblage in fric-

tional contact with a rigid substrate moving with a constant velocity. For such mecha-

nical systems, the formation of stick-slip motion is attributed to a static coefficient of

friction higher than a kinematic one or to the decay of the kinematic coefficient with

the sliding velocity. The transition toward friction induced vibration is numerically

obtained in many works (Oestreich et al., 1996; Oancea et al., 1997). The construc-

tion of analytical stick-slip solutions for discrete mechanical systems does not present

any particular difficulty (Feeny et al., 1998; Moirot, 1998).

Recent investigations of the steady sliding contact between dissimilar elastic half-

spaces or between a semi-infinite elastic solid and a rigid one showed that the steady

state is dynamically unstable for a constant friction coefficient. For instance, Renardy

(Renardy, 1992) explained the steady sliding contact between a rigid substrate and

an incompressible half-plane within the framework of neo-Hooken constitutive beha-

vior. He found that flutter instability occurs in the limit of elasticity for a coefficient

of friction greater then 1. This same conclusion was established independently by

Martins (Martins et al., 1995a; Martins et al., 1995b) and (Simoes et al., 1998) af-

ter investigation of the dynamic response of an elastic and viscoelastic semi-infinite

solid in contact with a rigid body. Further, they showed that the presence of viscous

dissipation has the effect of increasing the minimum value of coefficient of friction

required for existence of self-excited vibration. In the same spirit, surface instabilities

in a Mooney-Rivlin half-space compressed against a rigid flat surface are studied by

Désoyer and Martins (Désoyer et al., 1998) and it is found that the problem is again

ill-posed for sufficiently large coefficients of friction. In a series of interesting papers,

(Adams, 1995; Adams, 1998; Adams, 2001) showed that the steady sliding between

two dissimilar half-planes is ill-posed for a wide range of coefficient of friction, ma-

terial combinations and relative sliding velocity. (Adams, 1995) suggested that the

dynamic instability of the steady state is related to the destabilization of the so-called
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interfacial slip waves. Such waves exist in frictionless contact and are called also the

"generalized Rayleigh waves" because they propagate with the Rayleigh wave celerity.

Recall that slip waves are initially observed by (Weertman, 1963) and (Murty, 1975).

Later (Ranjith et al., 2001) demonstrated the connection between the ill-posedness of

the Coulomb friction problem and slip waves. Precisely, it was shown that, for mate-

rial combinations where the generalized Rayleigh wave exists, the steady sliding with

Coulomb friction is dynamically unstable for an arbitrarily small values of the friction

coefficient.

The paper begins by revisiting the elastodynamic of a simple discrete mechanical

system in the presence of the unilateral contact with Coulomb friction. The second sec-

tions is concerned with an elastic and bounded continuum solid modeling a brake-like-

system. For this solid, it is possible to construct analytically and numerically by the

finite element method different families of stick-slip and stick-slip-separation-reverse

slip waves. The last part is devoted to the investigation of stick-slip waves crossing the

contact interface between an elastic half-space and and a rigid one. The contact bet-

ween the solids is governed by unilateral constraints and Coulomb friction law and the

deformable body is loaded by remote uniform stresses τ∗

yy < 0, τ∗

xy > 0 and τ∗

xx. The

method of solution, based on periodic complex Radoks potentials, is novel and dif-

fers from those in literature, namely the series method and the Weertmans dislocation

formulation. Besides, in contrast with many works, we shall consider the longitudinal

elongation which plays a crucial rule in the solution procedure. The considered loa-

ding introduces an additional velocity V ∗ related to the longitudinal elongation ε∗xx

due to both the normal stress τ∗

yy and longitudinal stress τ∗

xx. We demonstrate that if

V ∗ vanishes then there is no solution. If V ∗ 6= O, a unique singular solution is found

and satisfies all stick-slips equations and inequalities, except one : the normal contact

stress exhibits a positive singularity over a small zone which means a separation in a

narrow zone.

2. Stick-slip response of 1-d.o.f system

Let us start by examining the simplest friction oscillator, namely the Van-der Pol

system. It consists of an elastically mounted mass on a driving belt moving at the

speed V as depicted in Figure 1.

The contact force is splitted in a normal component N and a tangential force F
and the coefficient of friction f between the mass and the belt shall be modeled by a

static coefficient fs greater than the dynamical one fd. Furthermore, we assume that

fs > fd. The equation of motion of the mass writes

mẍ + k x = F (ẋ − V ) [1]



170 EJCM - 20/2011. Dynamics of materials, structures and systems
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Figure 1. The friction oscillator of Van-der Pol

and the boundary conditions expressing the Coulomb friction law are given by

|F (0)| ≤ fs N stick [2]

F
(

(V − ẋ) ≥ 0
)

= fd N < fs N positive slip [3]

F
(

(V − ẋ) ≤ 0
)

= −fd N > −fs N negative slip [4]

The Coulomb friction law Eq.(2,3,4) can be reduced to the following

|F | ≤ fs N [5]

(V − ẋ) F − |(V − ẋ)| fd N = 0 [6]

The analytical determination of the trajectories does not raise a particular difficulty.

On one hand, in the half space ẋ ≤ V one gets the positive slip state and the tra-

jectories are complete or truncated ellipses centered in xe =
fd N

k
. On the other

hand, in the half space ẋ ≥ V , the state is a negative slip and the trajectories are

ellipses centered in −xe. The zone of stick state of the mass M is given by the seg-

ment [(−xa, V ), (xa, V )] with xa =
fs N

k
. It is easy to establish that there exists a

unique position of stable equilibrium for any initial conditions in the domain S. It

exists also an attractor limiting cycle for initial conditions outside of S. This cycle is

composed of a stick phase during ∆ta = 2 (fs−fd) N

kV
and positive slip period during

∆tg =
2πArctan(∆taw/2)

w
where w =

√

k
m

. The phase diagram of the mechanical

system is plotted in Figure 2

Notice that there is a discontinuity of friction at the border of stick and slip zones

resulting in a discontinuity of the acceleration.

Similar analysis may be derived for the same problem but by assuming that the

dynamical friction coefficient is not constant but it decreases linearly with the relative

velocity between the mass and the moving belt.
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Figure 2. The phase diagram of the stick-slip regime

Equation governing the motion of the mass is also given by (1) while the Coulomb

friction conditions write now as follows

|F (0)| ≤ fd N stick [7]

F
(

(V − ẋ) ≥ 0
)

= fd

(

1 − τ(V − ẋ)
)

N positive slip [8]

F
(

(V − ẋ) ≤ 0
)

= −fd

(

1 − τ(V − ẋ)
)

N negative slip [9]

In the half space ẋ ≤ V we have a positive slip and the trajectories are divergent

spirals centered in x+
e = fd(1−τV )N

k
(it is supposed that (1 >> τV )). In the half

space ẋ ≥ V there is a negative slip and the trajectories are still divergent spirals

centered in x−

e = fd(1+τV )N
k

. The stick zone zone is the segment [(−xa, V ), (xa, V )]

with xa =
fs N

k
. A unique equilibrium position xe is found. It easy to show that this

equilibrium is unstable by flutter in the spirit of the Hopf bifurcation. Observe that the

decrease of the coefficient of friction with respect to the relative velocity is equivalent

to introduce a negative damping in the equation of motion (mẍ − fdτNẋ + kx =
fd(1 − τV )N). Besides, there exists a limiting cycle which for any initial condition

as shown in Figure 3.

3. Stick-slip waves for a brake-like system

Consider a brake-like system composed of an elastic annular tube with internal

radius R and external radius R∗ in frictional contact with a rotating rigid shaft of
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Figure 3. The phase diagram of the mass

radius R + d, (d ≥ 0) and of angular velocity Ω, figure 4. The elastic cylinder is

fixed at its outer surface and the frictional model is the Coulomb’s law with a constant

coefficient f . The mismatch d is considered as a load parameter controlling the normal

contact pressure.

Within the framework of linear small elastic plane strain, the dynamic equations

of the motion with the corresponding boundary and unilateral frictional contact read :

u =
u

R
, σ =

σ

E
, r =

r

R
, γ =

ρR2Ω2

E
, ξ =

R∗

R
, δ =

d

R
, t = Ωt, u̇ =

du

dt







































divσ = γü

E σ = λtr(ǫ)I + 2µǫ
ǫ = gradsu

u(ξ, θ, t) = v(ξ, θ, t) = 0
σrr(1, θ, t) = −p(θ, t), σrθ(1, θ, t) = −q(θ, t)
u ≥ δ, p ≥ 0, p(u − δ) = 0
|q| ≤ fp, q(1 − v̇) − fp|1 − v̇| = 0

[10]

The steady sliding solution is given by :

{

ue = δ 1
ξ2

−1 ( ξ2

r
− r), ve = δf 1

ξ2
−1 ( ξ2

r
− r)(1 + 1

ξ2(1−2µ) )

pe = δ 1
1−ξ2

1
1+µ

(ξ2 + 1
1−2µ

), qe = fpe

[11]
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Figure 4. The problem of coaxial cylinders in frictional contact

It is shown in (Moirot, 1998; Moirot et al., 2002) that this steady state is unstable

which results in the apparition of stick and/or separation zones on the contact interface.

An interesting simplification of the problem is obtained when the displacement is

sought in the form

u(r, θ, t) = X(r)U(θ, t), v(r, θ, t) = X(r)V (θ, t), X(r) =
1

ξ2 − 1
(
ξ2

r
− r)

In this approximation, the following local equations are obtained from the virtual work

equation when admissible displacements are restricted to the considered expressions















Ü − bV ′′ − DV ′ + gU = P,

V̈ − aU ′′ + DU ′ + hV = Q,
P ≥ 0, U − δ ≥ 0, P (u − δ) = 0,

|Q| ≤ fP, Q(1 − V̇ ) − fP |1 − V̇ | = 0

[12]

where ′ denotes the derivative with respect θ and























a = ãA
γB

, b = b̃A
γB

, g = 2ã+2(ξ2
−1)b̃

γB
, h = 2ξ2b̃

γB
,

ã = 1−ν
(1+ν)(1−2ν) , b̃ = 1

2(1+ν) ,

A = −2ξ2lnξ
ξ2

−1 + 1+ξ2

2 > 0, B = ξ4lnξ
ξ2

−1 + 1−3ξ2

4 > 0,

D = aC1−bC2

A
, C1 = 2ξ2lnξ

ξ2
−1 − 1 > 0, C2 = −2ξ2lnξ

ξ2
−1 − 1 + 2ξ2 > 0

[13]

A periodic solution is sought in the form of a wave propagating at constant velocity :

U = U(Φ), V = V (Φ), où Φ = θ − ct [14]



174 EJCM - 20/2011. Dynamics of materials, structures and systems

The governing equations of such a wave follow from [12] is therefore given by















(c2 − b)U ′′ − DV ′ + gU = P
(c2 − a)V ′′ + DU ′ + hV = Q
P ≥, U ≥ δ, P (U − δ) = 0

|Q| ≤ fP, Q(1 − V̇ ) − fP |1 − V̇ | = 0

[15]

The steady state is given by

{

Ue = δ, Ve = δfg
h

,
P = Pe, Qe = fPe.

[16]

The boundary conditions correspondent to different conditions of the dry friction

are given as follows :

– in the stick zone

U = δ, V̇ = 1, P > 0, |Q| < f P [17]

– in the positive slip zone

U = δ, V̇ < 1, P > 0, Q = f P [18]

– in the negative slip zone

U = δ, V̇ > 1, P > 0, Q = −f P [19]

– in the separation zone

U > δ, P = Q = 0 [20]

The reduced Equation [12] combined with the boundary conditions listed in [17,18,19]

and [20] enable one to construct different families of stick-slip and stick-slip-

separation waves. For example, Figure 5 represents the phase diagrams for stick-slip

waves for different normal contact pressure and Figure 6 shows some phase diagrams

for stick-slip-separation wave in the plane of the normal velocity and normal displa-

cement.

3.1. Numerical results by the FEM

In order to have a better idea on the validity of the reduced equations and on the

repartition of different stick, slip and separation zones, a numerical solution of the

initial equations by the finite element method and by direct time-integration is now

considered in complement to the semi-analytical approach.
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Figure 6. The phase diagram (V, V ′) for the stick-slip regime for different angular

velocity Ω

An explicit scheme using Lagrange multipliers, as proposed in (Carpenter et al.,

1991) for frictional contact, is applied. The discretized equations are written as
{

Müm + Kum + C
T
m+1λm = Fm

Cm+1 (um+1 + X) = 0
[21]

where Fm denotes the given forces, Gm+1 are the contact constraints and λm are asso-

ciated Lagrange multipliers representing normal and tangential reactions. At any time

step, the velocity and acceleration vectors, u̇m and üm, are related to displacements

and time-increment h following the well known β-method,

{

u̇m = 1
1+2β1

{u̇m−1 + ∆t(1 − β1)üm−1 + 2β1

∆t
(um+1 − um)}

üm+1 = 2
∆t2

(um+1 − um − ∆tu̇m)
[22]

with 0.5 ≤ β2 ≤ 1. The new coordinates are given byX +u of a boundary nodal point

of the deformable solid are first computed under the assumption of null reactions. This
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prediction step is followed by a correction step when the non-penetration condition is

not satisfied. This correction step consists of re-evaluating the nodal reactions in order

to ensure the contact unilateral condition and of re-writing the new constraints Gm+1 :







λm = [∆t2Cm+1M
−1

C
T
m+1]

−1
Cm+1(u

∗

m+1 + X)
u

c
m+1 = −∆t2M−1

C
T
m+1λm

um+1 = u
∗

m+1 + u
c
m+1

[23]

Internal iterations are then performed in order to satisfy Coulomb’s law. A contact

node is in stick regime if λmn > 0 and if |λmt| < f λmt while it is in slip regime if

λmn > 0 and |λmt| = f λmt.

Numerical simulations have been performed with β2 = 0.9. The numerical dam-

ping induced by this value of β2 is not a nuisance in the computation of the limiting

cycle since the energy loss of the system is compensed continuously by the rotating

cylinder. However, this damping accelerates artificially the convergence rate to the li-

mit response. It has been checked that the convergence rate is practically the same for

0.6 ≤ β2 ≤ 0.9 and slower for 0.5 ≤ β2 ≤ 0.6 (Oueslati et al., 2003).

Numerical simulations with various initial data have been performed in order to

study the transition to a limit regime which can be a stick-slip or stick-slip-separation

wave. It has been found that the limit regime may be different for two different initial

conditions. The stick-slip regime occurs if the the normal contact pressure is hight

enough or for a small coefficient of friction. For example, choosing f = 0.2, δ =
0.004 and Ω = 1rd/sec the limit cycle results as a stick-slip wave with 4 modes as

plotted in Figure 7. Furthermore, it is found that the stick-slip-separation wave may

be obtained when the mismatch is small enough or when the friction is high enough.

For example, a stickslipseparation wave with 8 modes is obtained for Ω = 50 rad/s,

δ = 0.001 and f = 0.7, cf. Figure 10. The result for radial displacement is shown in

Figure 10 where the propagation phenomenon is clearly seen. It is worth noting that

for a very hight coefficient of friction (f > 1.5), a hight angular velocity Ω and small

mismatch δ, we may obtain a regime of stick-separation wave. Figure 8 presents an

example of stick-separation wave with 2 modes obtained with f = 2, δ = 0.004 and

Ω = 80rd/sec.

3.2. Stick-slip-separation-reverse slip waves

It is worth noting that another type of self-excited regime, namely a stick-slip-

separation-reverse slip response were pointed out for a simple friction oscillator with

a more complicated dry friction law in (Teufel et al., 2005).

We notice that this regime was not obtained by using the finite element method.

However, by solving numerically the nonlinear system [12] by the program Boundsco

based on the multiple shooting method (Oberle et al., 1989), this new regime is obtai-

ned. It is worth noting that the used algorithm is able to compute the switching points
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Figure 10. Normal contact pressure for

stick-slip-separation wave

between different regions automatically. For instance, at the borders between different

zones appropriate switching conditions must be satisfied, e.g. P = 0 at the start of the

separation zone and U = δ and U ′ jumps back to 0 at the end. For example, Figure 11,

shows the radial displacement for different values of d and the loci of the switching

points. Observe that if the mismatch d becomes very small, the switching points and

coalesce and the slip region right of the separation zone vanishes and one obtains the

stick-slip-separation state (Nguyen et al., 2008). In Figure 12 a phase plane plot for

the traveling wave in mode-8 with reverse slip (overshooting) is depicted.
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Figure 11. Radial displacement showing small separation for small contact pressure

Figure 12. Phase plane plot of the tangential displacement of a traveling wave with

reverse slip (overshooting)
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4. Stick-slip waves between an elastic half-space and a rigid block

4.1. Description of the problem

Consider an elastic solid, with shear modulus G and waves velocities c1, c2 occu-

pying the lower half space Ω− and sliding against the upper rigid half-space Ω+ which

moves to the right with velocity V , as shown in Figure 13, in plane strain conditions.

Unilateral contact and Coulomb friction with constant friction coefficient µ are assu-

med. It is emphasized that the interfacial or local coefficient of friction µ is the ratio

of shear to normal contact pressure at the interface which would cause local slipping

to occur (Adams, 2001). The elastic body is subjected to remote constant stresses

τ∗

yy < 0, τ∗

xy > 0 such that τ∗

xy = −µ∗ τ∗

yy , with µ∗ < µ.

xxxxx xxxx xxxxxxxxxxxxxxxx xx
   slip

b−k −k ak bk
a

y

E , ν

stick

P

0
a

, ρ

b0

V
undeformable body

elastic solid

( )

Figure 13. A rigid body sliding on an elastic half-space

We investigate here the possibility of relative motion of the two bodies, due to the

existence of periodic stick and slip regions which propagate along the interface with

some wave speed c. In this case the quantity µ∗ may be interpreted as the apparent

coefficient of friction, since sliding occurs with that ratio of applied shear to normal

traction (Adams, 1995).

We assume that the periodic stick-slip wave consists in a stick region plus a slip

one indefinitely repeated as shown in Figure 13. Let us denote by SL the set of the

slip segments

SL = · · · [a−k, b−k]
⋃

· · · [a0, b0]
⋃

· · · [ak, bk]
⋃

· · · , k ∈ N
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The remainder part of contact interface is the stick zone and will be refereed by ST .

The infinite axis y = 0 is oriented in the direction of increasing x and the following

notation will be frequently used : SL+ = limy→0+SL and SL− = limy→0−SL. In

the same way, one defines ST+ and ST−.

If we fix the origin of coordinate frame at b−1 = 0, we can simply denote any

particular slip zone [ai, bi] by its generic segment [a ≡ a0, b ≡ b0] and any stick zone

[bk−1, ak] by its generic segment [b−1 = 0, a ≡ a0].

Together with a fixed frame coordinates (X, Y ), we shall use also moving coordi-

nates x = X − c t, Y = y where c is the wave velocity. Material derivative in steady

state case is denoted by a dot,
dg

dt
≡ ġ = −c g,x.

Let the material velocity in the elastic body at interface be decomposed into the

sum

U̇ = V ∗ + u̇ = V ∗ − c ux,x [24]

where V ∗ is some velocity defined hereafter. From elastic law, the elongation in the

x-direction is

ε∗xx = u∗

x,x = −ν(1 + ν)

E
τ∗

yy > 0 [25]

The velocity V ∗ is defined hereafter by

V ∗ = −c u∗

x,x = c
ν(1 + ν)

E
τ∗

yy [26]

Note that the velocity V ∗ is positive because c < 0 as it will be shown hereafter.

Equation [26] establishes a link between τ∗

yy , c and V ∗ so that the unknowns reduced

to c and b, for prescribed stresses and V ∗. The additional stresses correspondent to the

perturbed stick-slip motion are denoted by σxy, σyy and σxx.

Let us now recall the steady elastodynamic equations within the framework of

homogenous and isotropic elasticity under the plane strain hypothesis. In the moving

frame (Oxy) attached to the propagating stick-slip wave (x = X − ct , y = Y ), one

introduces the Radok complex variables

z1 = x + iβ1y ; z2 = x + iβ2y

where β1 =

√

1 − c2

c2
1

, β2 =

√

1 − c2

c2
2

, i =
√
−1 is the imaginary unit number and

c1, c2 stand for the celerity of longitudinal and shear waves defined respectively by

c1 =

√

λ + 2G

ρ
, c2 =

√

G

ρ
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G is the shear modulus, λ denotes the Lamé’s coefficient and ρ is the mass density.

The displacement and stress fields are given in terms of two complex potentials φ1

and φ2 as follows (Radok, 1956)

ux = − 1

G
ℜe

(

φ1(z1) +
1 + β2

2

2
φ2(z2)

)

[27]

uy =
1

G
ℑm

(

β1φ1(z1) +
1 + β2

2

2β2
φ2(z2)

)

[28]

σxx = −2 ℜe
(2β2

1 − β2
2 + 1

2
φ′

1(z1) +
1 + β2

2

2
φ′

2(z1)
)

[29]

σyy = (1 + β2
2) ℜe

(

φ′

1(z1) + φ′

2(z2)
)

[30]

σxy = 2 ℑm
(

β1φ
′

1(z1) +
(1 + β2

2)2

4β2
φ′

2(z2)
)

[31]

where ℜe(Z) and ℑm(Z) represent respectively the real and the imaginary part of the

complex number Z.

Here we focus our attention on the subsonic waves i.e. c < c2. Hence, β1 > 0 and

β2 > 0.

4.2. Method of solution

Following Bui (2006), the construction method of the solution is based on the

displacement continuation. From the condition uy = 0 along the contact interface

(real axis where z1 = z2 = z = x + i0) and Equation [28] one obtains

β1 φ1(z) +
(1 + β2

2)

2β2
φ2(z) = 0 [32]

This equation suggests the following definition for the function φ2

φ2(z2) := − 2β1β2

(1 + β2
2)

φ1(z2) [33]

Substitution of [33] into [27-31] results in the following equations on the interface

ux = − (1 − β1β2)

G
ℜe

(

φ1(z)
)

[34]

σyy = (1 + β2
2 − 2β1β2) ℜe

(

φ′

1(z)
)

[35]

σxx =
(

(−1 + β2
2) + 2β1(β2 − β1)

)

ℜe
(

φ′

1(z)
)

[36]

σxy = β1(1 − β2
2) ℑm

(

φ′

1(z)
)

[37]
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Hence, all mechanical fields are determined through the knowledge of the function φ1

and its derivative φ′

1.

In the sequel, unless stated otherwise, the notation Φ(z) := φ′

1(z) will be used.

We shall search for a complex solution under the form of a Cauchy integral with a

distribution f(t)

Φ(z) =
1

2iπ

∫ b

a

f(t)

t − z
dt [38]

It is useful to underline that if f(t) is real then the conjugate function of Φ is given

by

Φ(z) = − 1

2iπ

∫ b

a

f(t)

t − z
dt = −Φ(z) [39]

Note that [39] may remains valid for some complex functions f(t).

Stick-slip solution

The sliding state may be written as

σxy + τ∗

xy = −µ(σyy + τ∗

yy) ⇒ σxy + µσyy = −τ∗

xy − µτ∗

yy := T ∗ [40]

By setting γ1 = β1(1 − β2
2) > 0 and γ2 = 1 + β2

2 − 2β1β2, Eq.(40) becomes

−gΦ(z−) + Φ(z+) =
2iT ∗

γ1 − iµγ2
:= f2(t) [41]

where

g = −γ1 + iµγ2

γ1 − iµγ2
[42]

Following Mushkhelishvili (Muskhelishvili, 1953), the appropriate solution of[ 41]

has the form

Φslip(z) =
f2

2iπ
X(z)

{

∫

SL+

1

X(t+)

dt

t − z
+ C2

}

[43]

where C2 is an arbitrary constant.

Now, equating the slip velocity of stick zone to V − V ∗,

ux,x =
∂ux

∂x
= −

(

V − V ∗
)

c
we obtain the density function f1(t) by

f1(t) = Φ(t+) − Φ(t−) = −2G(V − V ∗)

c(1 − β1β2)
[44]



Friction-induced vibration 183

Thus, the expression of complex potential in the stick zone is given by

Φstick(z) =
f1

2iπ
X(z)

{

∫

ST+

dt

X(t+)(t − z)
+ C1

}

[45]

where C1 is constant.

The stick-slip potential is obtained by sum the two complex solutions Φstick and

Φslip. We obtain the following Cauchy integral with discontinuous density

Φ(z) =
1

2iπ
X(z)

{

f1

∫

ST+

dt

X(t+)(t − z)
+ f2

∫

SL+

dt

X(t+)(t − z)
+ C0

}

[46]

where C0 is an arbitrary constant. Moreover, since the stress field vanishes at infinity

then C0 = 0.

Explicit calculation gives the following analytic expression of the stick-slip poten-

tial splitted in its real and imaginary parts

Φ(z ∈ SL) =
{

− f1

2

(

1 − |X(z)|
)

+
T ∗

γ1
cos(πα) |X(z)|

}

+

i
{

− f1

2
µ

γ2

γ1
(|X(z)| − 1) +

T ∗

γ1

(

1 − |X(z)|sin(πα)
)

}

[47]

and

Φ(z ∈ ST ) = −f1

2
− i

{

− f1

2
µ

γ2

γ1
+

f1

2 cos(πα)
|X(z)|+ T ∗

γ1

(

1− |X(z)|
)

}

[48]

Complex functions given by (47) and (48) are weakly singular (i.e. square in-

tegrable) which avoids the problem of unbounded energy sources or sinks (Freund,

1978) at switching boundaries between stick and slip segments.

Moreover, since Φ must behave as O(1/z2) at infinity then terms of order O(1/z)
must be canceled. After some cumbersome calculus this condition writes

f1(γ1 + iµγ2)e
−iπα − 2T ∗(δ − 1) = 0 [49]

where δ = b/a.

Equation (49) is apparently a complex one in the form F1(δ, c) + iF2(δ, c) =
0, where F1 and F2 are real, so that it should be splitted into two real equations.

However, exact calculus shows that F2 ≡ f1(−γ1 sin(απ) + µ γ2 cos(απ) = 0
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because tan(απ) = 0. Equation (49) is thus reduced to F1(δ, c) = 0 which provides

the first relation between the wave velocity c and δ

G(V − V ∗)

c(1 − β1β2)
(γ1 cos(απ) + µ γ2 sin(απ)) + T ∗(δ − 1) = 0 [50]

The second relation between c and δ, which enables complete determination of

these unknowns will be set further by examining the continuity of the tangential dis-

placement (the normal component uy = 0 along the contact interface). After some

cumbersome calculus one gets

−V

c
δ+

{ (V − V ∗)

c
−(1−β1β2) cos(πα)

T ∗

2Gγ1

}

π(
1

2
−α)

(δ − 1)

cos(πα)
= 0 [51]

In conclusion, the unknowns of this stick-slip problem (c, δ) for given loading condi-

tions (T ∗, V, V ∗) are completely determined by the set of the two equations (50) and

(51). Physical quantities involved in the problem may be scaled as follows

a = 1, δ =
b

a
→ b > 1,

T ∗

G
→ T,

V

c2
→ v,

V ∗

c2
→ v∗,

c1

c2
→ c1,

c

c2
→ c

We obtain the following final equations

−v

c
b +

{ (v − v∗)

c
− (1 − β1β2) cos(πα)

T

2γ1

}

π(
1

2
− α)

(b − 1)

cos(πα)
= 0 [52]

and

(v − v∗)

c(1 − β1β2)
(γ1 cos(απ) + µ γ2 sin(απ)) + T (b − 1) = 0 [53]

5. Results and discussion

The stick-slip problem (c, b), for given loading conditions (T, v, v∗) is solved by

the set of the two equations (52) and (53). This problem is highly nonlinear in the

wave velocity c and the uniqueness of the solution cannot be easily proved. Moreover

its numerical solution by Newton’s method for example, is inaccurate and fails because

of singularities. Let us propose a simpler method to solve it. Instead of finding (c, b)
for a given loading condition (v, v∗, T ) (or (v, v∗, τ∗

xy)), we search the solution of the

following inverse problem :

Find (v, T ) for any given pair (c, b) and given v∗.

Therefore, one obtains a linear algebric system

[

π(
1

2
− α)

(b − 1)

cos(πα)
− b

]v

c
−

[

π(
1

2
− α)(b − 1)

(1 − β1β2)

2γ1

]

T =

(
1

2
− α)

π(b − 1)

cos(πα)

v∗

c
[54]
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and

[

2
(γ1 cos(απ) + µ γ2 sin(απ))

(1 − β1β2)

]v

c
+ [b − 1]T =

2
(γ1 cos(απ) + µ γ2 sin(απ))

(1 − β1β2)

v∗

c
[55]

The system (54-55) is mathematically well-posed in the sense that we have two

equations for two unknowns (v, T ). Note that once T is known the stresses τ∗

yy and

τ∗

xy are easily obtained.

The solution is straightforward and depends on the determinant of the linear system

D(b, c) =
(b − 1)

γ1 c
H(b, c) [56]

where

H(b, c) = −γ1b+γ1π(
1

2
−α)

(b − 1)

cos(πα)
+π(

1

2
−α)

(

γ1 cos(απ)+µ γ2 sin(απ)
)

[57]

It is easy to establish that H(b, c) > 0 ∀b > 1 and ∀c ∈]− 1, 0[. Thus the determinant

D(b, c) is strictly negative ∀b > 1 and ∀c ∈] − 1, 0[.

Notice that if v∗ = 0 then Equations [54-55] are reduced to a homogenous algebric

system. The later have non trivial solutions if and only if the determinant D(b, c)
vanishes. However, we have checked that D(b, c) < 0 in the domain −1 < c < 0 and

b > 1. Therefore, only the trivial solution v = 0 (statics) and T = 0 (the loading at

the Coulomb limit) exists.

We conclude that no solution exists in the case v∗ = 0.

For the case v∗ 6= 0 the solution is straightforward for v and T

v =
v∗

1 + A(b, c)
[58]

where

A(b, c) =
4bγ1cos(απ)

π(−1 + 2α)
(

µγ2sin(2πα) + γ1(−1 + 2b + cos(2πα))
)

and

T = −4bγ1(γ1 + γ1cos(2απ) + µγ2sin(2απ))

(b − 1)(−1 + β1β2)
×

v∗

c
(

4bγ1cos(απ) + π(−1 + 2α)
(

µγ2sin(πα) + γ1(−1 + 2b + cos(πα)
)

)
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Note that the solution pair (v, T ) exists and is unique for any wave velocity such

that −1 < c < 0, any b > 1 and for a given v∗.

As can be noted in Equations [34] and [35], the gradient ux,x and the stress σyy are

of opposite signs. It is easy to observe that the slip velocity has a negative singularity

at x = b. Therefore, the normal stress shows a positive singularity as seen in Figure

14 (where Σyy/G is plotted) which implies a separation near the singular transition.

-2 -1 1 2 3 4
x

-0.102

-0.101

-0.100

-0.099

-0.098

-0.097

-0.096

Syy �G

Figure 14. The normalized stress Σyy/G (with E = 2.1 1011Pa, ρ = 7850Kg/m3,

ν = 0.3, µ = 0.5, µ∗ = 0.4, v∗ = 0.001 and c = −0.7) over stick-slip segments

exhibits a positive singularity at the transition points SL → ST

6. Conclusion

In this paper we attempt to give insight into the mechanism of the stick-slip waves

induced by the flutter instability of the dry friction. A discrete system of friction

oscillator and a bounded solid with a constant coefficient of friction have been revisi-

ted. New results concerning the possibility of existence of stick-slip waves along the

interface between an elastic half-space and a rigid one have been presented. Further

research are needed since a global stability analysis of these travelling waves and

the general question of transition to a limit cyclic response still remain open problems.
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