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ABSTRACT. This article is devoted to the modelling of the movements of an assembly of particles. 
Our aim is to develop a model capable of reproducing the behavior of a crowd of people in 
walking situations (free motion, emergency evacuation, etc.). The final model must be able to 
handle local interactions such as pedestrian-pedestrian and pedestrian-obstacle in order to 
reproduce the global dynamic of pedestrian traffic. Three already existing discrete methods, 
originally proposed to simulate a granular assembly, are first analyzed and compared. These 
methods are able to manage collisions between rigid particles. They are then adapted for 
representing pedestrians together with their willingness to move. Their numerical 
implementation allows for the performance of simulations in various specific configurations. 

RÉSUMÉ. Dans cet article, nous nous intéressons à la modélisation des mouvements d’une 
assemblée de particules. L’objectif est de proposer un modèle d’une foule de piétons dans 
plusieurs situations de marche (libre, évacuation d’urgence, etc.). Ce modèle doit traiter les 
interactions locales piéton-piéton et piéton-obstacle (mur, etc.) afin de mieux comprendre et 
reproduire la dynamique globale d’un trafic piétonnier. Trois approches discrètes existantes, 
permettant de simuler le mouvement d’une assemblée de grains et de gérer les collisions entre 
les particules supposées rigides, sont d’abord analysées et comparées. Nous les avons ensuite 
adaptées en représentant les piétons par des grains circulaires rigides « actifs » ayant une 
volonté de se déplacer vers une destination souhaitée. Des simulations numériques dans 
différentes configurations d’évacuation ont été réalisées. 
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1. Introduction

Over the last fifty years, many studies have been performed to describe the be-
havior of walking pedestrians (Hankin et al., 1958; Helbing, 2002). With the aim
of reproducing particular observed crowd phenomena, models of crowd movements
havebeen developed. These modelsdiffer according to the goals they are intended to
achieve(Blueet al., 2000; Sunget al., 2004; Musseet al., 2007; Venel, 2008) andcan
be classified according to several criteria (seeTable1): the modeof representation of
the crowd with macroscopic models (where the crowd is represented as a whole) or
microscopic models (where the behavior, actions and decisions of each crowd mem-
ber are treated individually); the representation of the areaof displacement by either
continuousor discretized space; the representation of the contact, either by usingreg-
ularizing laws or by solving a local non linear problem; the representation of the
movement of pedestrians by means of rules, data or forces; the target phenomena to
be analyzed, either counterflow lines or evacuation; the typeof crowd walking, either
normal walking velocity or emergency walking; etc.

In this paper, discrete approachesare preferred, i.e. microscopic modelsof crowd
are chosen, in which the movement of each pedestrian is represented in time and in
space. The interactions of one pedestrian with the surrounding environment (other
pedestrians, obstacles) are treated locally.

We propose to model the contact among pedestrians by a granular medium ap-
proach. Most of these approacheswhich are able to deal with multiple simultaneous
colli sions can be classified into two categories according to the way the contact is
treated: theregular (“smooth” ) methods, wherethe contact forcesariseby adirect cal-
culation, andthenonregular (“non-smooth” ) methods(Moreau, 1988; Moreau, 1994),
wherethe calculation of contact forcesisgiven bythesolution of anonlinear problem
(see. Table 2). The modelli ng of grain movements is then adapted and enhanced to
study the movementsof a crowd. Each particle is then treated as a pedestrian with a
willi ngnessto move accordingto agiven target, possibly varying in time.

In addition, to model the pedestrian-structure interaction, a nonlinear differential
equation can be added to the adapted approaches. This equation can be of Kuramoto
type(Strogatz et al., 2005; Bodgi, 2008; Pécol et al., 2010) or of modified Van der Pol
type (Erlicher et al., 2010). An adapted approach has been coupled with a Kuramoto
differential equationand its application to the North Span of the Mill enium Bridge is
presented in (Pécol et al., 2010).

This paper is divided into threeparts. The first part briefly presents three exist-
ing approachesoriginally formulated for studying granular assemblies. The first one,
the Distinct Element Method (DEM) (Cundall , 1971), belongs to the regular meth-
ods class, has inspired many of the subsequent approach of this class. It allows us to
understand the performanceof such approaches. Concerning the non smooth meth-
ods (NSM), we retain two approaches inspired by the work of Moreau that we term
“NSM1” (Maury, 2006) and “NSM2” (Frémond, 1995; Frémond, 2007). In NSM1,
the velocities of particles after colli sion allow only for admissible positions, i.e. ve-
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Table 1. Criteria for the classification of crowd movementsmodels

Mode of repre-
sentation of the
crowd

macroscopic (Henderson, 1971; Bodgi et al., 2007)

microscopic (Reynolds, 1987; Helbing et al., 1995;
Blue et al., 2000; Hoogendoorn et al.,
2001; Teknomo, 2006; Paris et al.,
2007; Venel, 2008; Pécol et al., 2010)

Representation of
the area of dis-
placement

continuous space (Reynolds, 1987; Helbing et al., 1995;
Hoogendoorn et al., 2001; Teknomo,
2006; Paris et al., 2007; Venel, 2008;
Pécol et al., 2010)

discretized space (Blueet al., 2000)
Representation of
the contact

by using regular-
izing laws

(Helbing et al., 1995; Hoogendoorn et
al., 2001; Teknomo, 2006)

by solvinga local
non linear prob-
lem

(Venel, 2008; Pécol et al., 2010)

Representation of
the pedestrians’
movement

rules (Reynolds, 1987; Blue et al., 2000;
Venel, 2008)

data (Pariset al., 2007; Paris, 2007)
forces (Helbing et al., 1995; Hoogendoorn et

al., 2001; Teknomo, 2006; Pécol et al.,
2010)

Target phe-
nomena to be
analyzed

counterflow lines (Helbing et al., 1995; Hoogendoorn et
al., 2001; Teknomo, 2006; Paris et al.,
2007; Venel, 2008; Pécol et al., 2010)

evacuation (Helbing et al., 1995; Hoogendoorn et
al., 2001; Venel, 2008; Pécol et al.,
2010)

Type of crowd
walking

normal walking
velocity

(Helbing et al., 1995; Hoogendoorn et
al., 2001; Teknomo, 2006; Paris et al.,
2007; Paris, 2007; Pécol et al., 2010)

emergency walk-
ing

(Helbing et al., 1995; Hoogendoorn et
al., 2001; Venel, 2008; Pécol et al.,
2010)

locitiesaredetermined so that thereisnever an overlap between particlesby imposing
a constraint on their positioning. Only inelastic colli sions are treated. NSM2 intro-
duces the concept of a pseudopotential of dissipation to handle the reboundinstead
of the concept of a coefficient of restitution used by Moreau. It has been shown that
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Table 2. Classification of somegranular approachesthat are able to deal with multi -
plesimultaneouscolli sions

Smooth (Cundall , 1971; Cundall et al., 1979; Allen et al., 1987;
Kishino, 1988)

Non-smooth (Moreau, 1988; Jean et al., 1992; Moreau, 1994; Frémond,
1995; Radjai et al., 1996; Jean, 1999; Paoli , 2001; Renouf,
2004; Maury, 2006; Saussine et al., 2006; Frémond, 2007;
Radjai et al., 2009)

the use of a restitution coefficient can be appropriate to manage the colli sion of two
particles but its extension to multiple colli sions is questionable (Frémond, 2007): for
this reason, NSM2 hasbeen retained.
In the second part, we focus on the way to adapt the previous approaches to the
crowd by assigning a willi ngness to the particles. DEM has already been adapted
to the crowd modelli ng byHelbing (Helbing et al., 1995; Helbing et al., 2000; Hel-
bing, 2002), using a social forcemodel. NSM1 has been applied to the crowd mod-
elli ng by Venel (Venel, 2008), using a mathematical model based on the notion of
“spontaneous” velocity. An original enhancement of NSM2 is proposed here. So-
cial forces as well as a desired direction/velocity are introduced in order to simulate
the behavior of pedestrians. This adaptation can be eventually extended to other ap-
proaches.
The third part is devoted to numerical simulations. Three applications are studied:
the first allows one to compare the contact treatment of the previousnon-adapted ap-
proaches; the second deals with the evacuation of a room, we compare the average
flow throughadoor between thenumerical simulationsresultsobtained with the three
adapted approachesandan experiment imitatingconditionsof panic; and the last one
concerns the evacuation of a movie theater, and a comparison is made between real
exercise and numerical simulationsresultsobtained with the adapted NSM2.

2. Three approaches for granular media

In this section, the threeretained methods, DEM, NSM1 andNSM2 (in their orig-
inal formulation for granular media) are presented and their numerical aspects are
discussed. A granular medium is by definition a set of particles subjected to gravity,
that interact by contactswith or without frictionandwith or without cohesion. Gener-
ally, it isaccepted to treat them ascircular with amoreor lesslargesize. However, it is
possibleto take into account different shapes(Dal Pont et al., 2006). In the following,
three assumptions are made: the problem is in a plane, particles are circular, and the
rotation of theparticles isneglected.

We consider a system consisting of N circular particles moving in a plane, with

center tq
i
= (qxi , q

y
i ) ∈ R2, radiusri and velocity ui(t) =

dq
i
(t)

dt
for the ith particle.
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Let q0
i
= q

i
(0) andu0

i = ui(0) be respectively the initial positionand velocity of the

ith particle. We assume that the generalized displacement vector q of size2N , tq =
(tq

1
,t q

2
, ...,t q

N
), is sufficiently regular to allow us to write the dynamics equation

for each particle, obtainingthe system:
{

M u̇(t) = f(t) + g(t)
u(t) = q̇(t)

[1]

where M is the 2N × 2N massmatrix of all the particles; q̇ denotes the general-
ized velocity vector of size 2N , tq̇ = (tq̇

1
,t q̇

2
, ...,t q̇

N
); f (resp. g) is the vector

of size 2N of forces without contact (resp. contact forces) applied to the system,
tf = (tf

1
,t f

2
, ...,t f

N
) (resp. tg = (tg

1
,t g

2
, ...,t g

N
)). We also introduce: the rel-

ative deformation velocity between the ith and jth particles, defined by∆ij(u(t)) =
ui(t) − uj(t); and the unit vector directed from particle i to particle j, defined by

eij =
q
j
−q

i

|q
j
−q

i
| where |q

j
− q

i
| =

√

(

qxj − qxi
)2

+
(

q
y
j − q

y
i

)2
.

Two major steps in the modelli ng have to be analyzed in each of the three ap-
proaches: the detection and the treatment of every contact. In the following, we
analyze only particle-particle interactions because particle-obstacle interactions are
treated analogously. Thedetection of a contact is straightforward in the case of circu-
lar particles. We define thedistanceDij between two particles i and j by:

Dij(q) = |q
j
− q

i
| − (ri + rj) [2]

There is a contact between particles i and j when Dij(q) = 0, and an overlap when
Dij(q) < 0. More efficient contact detection methods (Ericson, 2004) can be found
when the number of particles increases in order to reduce the computational time.
Thesemethodsarenot necessary to thesimulationspresented in thisarticle, dueto the
relatively small number of considered pedestrians.

Concerning the contact treatment for the three approaches, g(t) must be deter-
mined in order to find u(t) then q(t). In DEM, the local contact forcebetween two
particles i and j is chosen to be proportional to Dij ; in NSM1, it is determined so
that there is never an overlap between the particles, i.e. there is a constraint on the
position of the particles; in NSM2, it is determined with a constraint on the relative
deformation velocity between particles.

The determination of the movement of particles is done using a time stepping
scheme. Thetime interval [0, T ] isdiscretized intoNint regular intervals [tn, tn+1] of
lengthh = T

Nint
. Knowingqn andun (at timetn), positionsand velocitiesof particles

at time tn+1 aregiven by different numerical schemes, presented in the following.

For DEM, an explicit schemeisused:

un+1 = un + hM−1(fn + gn)
qn+1 = qn + hun+1 [3]
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The expression of the total contact force applied to the ith particle at the instant tn is:

gn
i
=

N
∑

j=1

gn
ij

[4]

where the local contact forcebetween two particles i and j, proportional to Dij , can
be chosen as:

gn
ij
= kmin

(

0, Dij(q
n)
)

enij [5]

with k a constant stiffness, its numerical value chosen by Helbing (Helbing et al.,
2000) for crowd simulation is 1.2 × 105 kg.s−2. So, overlapping is necessary to
control the contact.

For NSM1, an implicit scheme isused:

un+1 =
argmin
v ∈ R2N

[

1
2
‖v − V trial‖

2
M

−
∑

1≤i<j≤N

µn+1
ij (Dij(q

n) + h tGij(q
n)v)

]

with V trial = un + hM−1fn+1(qn)
qn+1 = qn + hun+1

[6]

whereGij(q
n) = ∇Dij(q

n) andµn+1
ij isaLagrangemultiplier and hasthedimension

of a force.

The constrainedminimization problem must besolved in order to calculateun+1, with
µn+1
ij ≥ 0 andDij(q

n+1) = Dij(q
n + hun+1) ≥ Dij(q

n) + h tGij(q
n)un+1 ≥ 0.

The expression of the total contact force at the instant tn+1 is:

gn+1(qn) =
∑

1≤i<j≤N

µn+1
ij Gij(q

n) [7]

The perfectly inelastic colli sion law is implicitly involved in the minimization con-
straint. The constraint affects thepositionsof pedestriansat the end of the considered
timestep andthe final computed velocity is such that thesepositionsare admissible.
The adaptation of the scheme to other types of colli sions is not straightforward
(Maury, 2006).

For NSM2, an implicit scheme isused:

X =
argmin
Y ∈ R

2N

[

tY M Y +Φ(∆(Y ))

− t(2un(θn) +M−1pext(θn))M Y
]

un+1(θn) = un+1(θn+1) = 2X − un(θn)

qn+1 = qn + h
un+1(θn)+un(θn)

2

[8]
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where θn is the middle of the interval [tn, tn+1]. pext representsexterior percussions
applied to the deformable system composed of N rigid particles and has the dimen-
sion of a forcemultiplied by a time. The regular forcef on the interval [tn, tn+1] is
replaced with thepercussionpext exerted at the instant θn (Dimnet, 2002; Dal Pont et
al., 2006; Dal Pont et al., 2008). Φ isapseudopotential of dissipation(convex function
(Moreau, 1970)) defined as: Φ = Φd+Φr whereΦd andΦr aretwo pseudopotentials
which allow us to define the dissipative andreactive interior percussionsrespectively.
Thepseudopotential Φd allowsus to choose an inelastic or elastic colli sion. It is cho-
sen to bequadratic:

Φd(∆(Y )) =
∑

1≤i<j≤N

λn+1
ij

[

1
2KT

(

t∆ij(Y (θn))
⊥enji

)2

+ 1
2
KN

(

t∆ij(Y (θn))e
n
ji

)2 ]
[9]

whereλn+1
ij is0 if there isnocontact between particles i andj, and1 otherwise; KN

andKT arethe coefficientsof dissipationfor thenormal andtangential componentsof
percussions. KN reflects the inelastic nature of colli sions between particles andKT

resultsof atomization of viscous friction. A colli sion between a particle and a wall i s
perfectly elastic for KN → ∞ (Frémond, 2007). Practically, avalueof KN > 104 kg
iswell suited for our analyses.

Thepseudopotential Φr allowsus to correct for overlapping. It isgiven by:

Φr(∆(Y )) =
∑

1≤i<j≤N

µn+1
ij

[

− t∆ij(Y (θn))e
n
ji +

t∆ij(
un(θn)

2
)enji

]

[10]

where µn+1
ij is a Lagrange multiplier and has the dimension of force multiplied by

time. This Lagrange multiplier exerted at the instant θn replaces the contact force
gn+1
ij

on the interval [tn, tn+1] (Dimnet, 2002; Dal Pont et al., 2006; Dal Pont et
al., 2008).

3. Adaptation of granular approaches to the crowd

A pedestrian can be represented as a grain by giving it a willi ngness, i.e. a desire
to movein aparticular directionwith aspecific speed at each time. Several definitions
of thedesired trajectory of onepedestrian arepossible: either (i) themost comfortable
trajectory for him, where he must provide the least effort (e.g. to avoid to take the
stairs), andwherethere arefewest changesof direction, etc.; or (ii ) theshortest path or
(iii ) the fastest path to movefrom oneplaceto another (Hoogendoorn et al., 2001). It
ispossibleto combinetwo strategiesin thesamesimulation, or to changethepreferred
strategy for any reason duringthesimulation.

The strategy of the shortest path to get from one point to another (Kimmel et
al., 1996) isimplementedthroughaFast Marchingalgorithmandcan beused to obtain
the desired direction, ed,i, of an individual i. This direction dependson the evolution



196 EJCM - 20/2011. Dynamics of materials, structures andsystems

space(obstacles, etc.), the time and also the characteristics of the individual (gender,

age, hurried steps or not, etc.). It is defined by: ed,i(t) =
ud,i(t)

‖u
d,i

‖ , whereud,i(t) is the

desired velocity of the ith pedestrian.

The amplitude‖ud,i‖ of thedesired velocity represents the speed at which the ith

pedestrian wantsto moveonthestructureunder consideration. It can beinfluenced by
thenervousnessof pedestrian. Thisvelocity is chosen followinganormal distribution
of average1.34m.s−1 and of standard deviation0.26m.s−1 (Henderson, 1971).

To adapt the granular approaches to the crowd, we introduce an acceleration
force fa(t) (Helbing et al., 1995) that allows to give adesired direction and inten-
sity of the velocity to each pedestrian. The generic component fa

i
(t) of the force:

tfa = (tfa

1
,t fa

2
, ...,t fa

N
) of dimension 2N , is associated with pedestrian i and can

be expressed as:

fa

i
(t) = mi

‖ud,i‖ed,i(t)− ui(t)

τi
[11]

where ui is the actual velocity; τi is a relaxation time, allowing us to recover the
desired velocity after a contact. Smaller values of τi let the pedestrians walk more
aggressively (Helbing et al., 2000). Helbing chose τ = 0.5 s. An example of the
trajectories of two identical pedestrians i and j moving in opposite directions, after
colli sion, is ill ustrated in Figure1 function of different valuesof τ .

The pedestrians’ behavior can be enriched by accounting for other external so-
cial forces (Helbing, 2002; Moussaïd et al., 2010) in order to become more realistic
(socio-psychological force, attractive force, groupforce, etc.). For instance, a socio-
psychological force can reflect the tendency of pedestrians to keep a certain distance
from other pedestrians. The form of this force, applied to the ith pedestrian due to
interactionwith pedestrian j, isgiven by:

f soc

ij
(t) = Ai exp

(

−Dij(q(t))

Bi

)(

Λi + (1− Λi)
1 + cosϕij

2

)

eij [12]

whereAi denotesthe interactionstrength; Bi is the rangeof therepulsiveinteraction;
Λi < 1 allows to consider the anisotropic character of pedestrian interactions, as the
situation in front of a pedestrian has a larger impact on his behavior than what is
happening behind; ϕij is the angle between the direction ed,i(t) of desired motion
andthedirection−eij of thepedestrian exertingtherepulsiveforce. Only this typeof
social forcewill beused in thenext section.

4. Simulations

In this section, simulationsgenerated with the previousapproaches, implemented
in a MATLAB code, are presented. In a first subsection, we compare the contact
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Figure 1. Representation of the trajectoriesof two identical pedestrians i andj mov-
ing in opposite directions with different values of τ . After colli sion, for each pedes-
trian, the external acceleration forceallows the pedestrian to gradually switch from
the actual velocity after shock to the desired velocity, depending onthe values of τi
andτj . In thisexample, τi = τj = τ

treatment for the threenonadapted approaches in the same configuration. Then in a
secondsubsection, we study the evacuation of a room and compare the average flow
througha door of 82 cm width, between the numerical simulations results obtained
with the three adapted approaches and an experiment imitating conditions of panic
(Helbing et al., 2005). Finally, we study the evacuation time of a movie theatre and
compare the real egress situation results with numerical simulations results obtained
with the adapted NSM2.

4.1. Contact treatment

In this subsection, we compare the threenon adapted approaches in the way of
managing the contact. We consider a particle of radius r = 0.3 m, initial position
q = t(0.6, 0) and initial velocity u = t(−2,−1). An obstacle is positioned at x = 0
and the timestep chosen for thenumerical simulation ish = 0.1 s.

In Figure 2, the evolution of the position and the velocity of a particle before and
after a shock against an obstacle is shown. With DEM, we can achieve aperfectly
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elastic colli sionwith a goodchoiceof k (Figure2a). Thevelocity of theparticle after
the contact isufinal =

t(2,−1).

Figure 2. Shock of a particle against a rigid obstacle. Comparison of the threenon
adapted approaches: a. DEM: perfectly elastic colli sion; b. NSM1: perfectly inelastic
colli sion, theavoided position of theparticleduringthe contact is thelight-grey circle
with circlemarkers; c. NSM2: perfectly elastic colli sion; d. NSM2: perfectly inelastic
colli sion. At x = 0, the vertical black line representsan obstacle, thesituation before
contact is black, the situation during the contact is light-greyand the situation after
contact isdark-grey

With NSM1, we obtain a perfectly inelastic colli sion. The particle’s position is
alwaysadmissible(thereisnever any overlap), at each timestep thevelocity ischosen
in order to obtain an admissible geometric configuration. Figure 2b shows the avoid-
anceof overlapping between the particle and the obstacle. At t = 0.2 s, the avoided
position of the particle is the light-grey circle with circle markers, and the final po-
sition of the particle is the light-grey circle. The “geometric” velocity of the particle
after the contact, at t = 0.4 s, is t(0,−1).

With NSM2, elastic or inelastic colli sions can be obtained, functionsof the value
of the parameter KN (Frémond, 2007; Dimnet, 2002; Dal Pont et al., 2008). Figure
2c shows a perfectly elastic colli sion. The velocity after contact is t(2,−1), but the
position of the particle after contact containsa numerical error. The smaller the time
step is, the more accurate the position of the particle after colli sion will be. Figure
2d shows a perfectly inelastic colli sion. If we compare the treatment of the contact
between NSM1 and NSM2, we find the same velocities at the end of the simulation
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for the two approaches: t(0,−1). Only the positionsaredifferent because for NSM2,
an overlap can exist numerically. If we choose asmaller time step, we will find the
sameposition for thisparticlewith both approaches.

It can be noted that with DEM, when the value of k is fixed, the choice of the
time step h is essential. We consider a particle of radius r = 0.3 m, initial position
q = t(0.6, 0) and initial velocity u = t(−2,−1). A wall i s positioned at x = 0.
Table3 gives thevelocity of the particle after contact asa function of the timestep h,
when k is chosen equal to 1.2× 105 kg.s−2 (Helbinget al., 2000).

Table 3. Velocity of theparticleafter contact ufinal function of the time step h

h (s) ufinal

10−1 t(12.14710605261293,−1)
10−2 t(2.03066571837719,−1)
10−3 t(2.00035320567159,−1)
10−4 t(2.00000264342070,−1)
10−5 t(2.00000003535854,−1)

When the chosen time step h is increasing, the value of the velocity after con-
tact becomes more and more inaccurate. Thus, the smaller the time step is, the more
accurate the velocity of the particle after colli sion will be. DEM is well adapted to
quasi-static modelli ng. This approach needs to use asmall ti me step, which can in-
crease the computationtime.

4.2. Evacuation of a room

The aim of this subsection is to compare an evacuation situation for the three
adapted approaches, considering only the way of treating the local pedestrian-
pedestrian contact and the local pedestrian-obstacle contact. So, only the acceleration
forceintroduced in equation [11] is used in order to give thedesired velocity to each
pedestrian.

We consider a square room of side 5 m, where 20 pedestrians want to escape
by a door of 82 cm width. The parameters used in simulations are given in Table
4. For each adapted approach, 50 simulations are performed (Figure 3). The initial
conditionsof these runsare thesamefor each approach.

Figure 3 shows the linear regression of the50 simulations for the adapted NSM2.
The slope allows us to obtain the average flow throughthe door. The values of the
average flow througha door of 82 cm width, for the simulations obtained with the
three adapted approachesandcompared to that an experiment imitatingconditionsof
panic (Helbinget al., 2005), are collected in Table5.

Averageflow obtained with the adapted NSM2 is similar to theoneobtained in the
experiment imitating conditions of panic. Pedestrians escape faster with the adapted
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Table 4. Parameters used in simulations of the evacuation (∗ uniformly distributed
within their range)

Parameter Symbol Value Unit
walkingspeed ∗ ‖ud,i‖ [1.2, 2] m.s−1

radiusof each pedestrian ∗ ri [0.2, 0.25] m

massof each pedestrian ∗ mi [60, 100] kg

relaxationtime ∗ τi [0.1, 0.5] s

constant stiffness k 1.2× 105 kg.s−2

normal coefficientsof dissipation KN 105 kg

tangential coefficientsof dissipation KT 0 kg

time step h 0.01 s

Figure 3. Simulated evacuationtimefor a roomwith a door of 82 cm width. Shown is
thetotal number of pedestriansout vs. timefor theadaptedNSM2. The50simulations
are the light-colored curves. The linear regression of the 50 simulations (black line)
allowsus to obtain the averageflow throughthedoor

Table 5. Averageflow (pedestrian/s) through a door of 82 cm
Simulationsor experiment averageflow (pedestrian/s)

Simulationswith the adapted DEM 3.04
Simulationswith the adapted NSM1 4.65
Simulationswith the adapted NSM2 2.60

Experiment imitatingconditionsof panic 2.67
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NSM1 than with thetwo othersadapted approaches. Theseresultsareprobably dueto
the way the contact is treated: perfectly inelastic in the adapted NSM1 and perfectly
elastic in the adapted DEM and NSM2. The difference between the average flow
obtained with the adapted DEM and the one obtained with the adapted NSM2 could
be due to the overlapping effect which is needed in order to treat the contact for the
adapted DEM. Takinginto account elastic colli sions seemsto benecessary to consider
pedestrianswhostart pushing.

4.3. Evacuation of a movie theatre

We conduct a comparison between real exercise and numerical simulationsfor the
evacuation of amovietheatre. The evacuationexerciseisdonein (Klüpfel, 2003). 101
students are in a movie theatre which contained 174seats, their initial positions are
fixed. There are two escape routesavailable, route A and B (Figure 4). Everyone are
urged to act carefully in order to avoid injuries. When the alarm is triggered, people
start evacuating.

The real exercise results comprise egresstimes of each individual pedestrian. In
accordancewith the observations in the exercise, parameters used in simulations are
chosen andsummarized in Table6.

Table 6. Parameters used in simulations of the evacuation (∗ uniformly distributed
within their range)

Parameter Symbol Value Unit
walkingspeed ∗ ‖ud,i‖ [1.2, 2] m.s−1

walkingspeed in stairs ‖ud,i‖ 0.5 m.s−1

response time ∗ [0, 4] s

radiusof each student ∗ ri [0.2, 0.25] m

massof each student ∗ mi [60, 100] kg

interactionstrength Ai 2000 N

rangeof the repulsive interaction Bi 0, 08 m

anisotropic character of pedestrian interactions Λi 0
anglebetween ed,i(t) and−eij ϕij 90 degree

relaxationtime ∗ τi [0.1, 0.5] s

normal coefficientsof dissipation KN 105 kg

tangential coefficientsof dissipation KT 0 kg

time step h 0.01 s

Numerical simulations are performed with the adapted NSM2 that contained the
socio-psychological force introduced in the Section 3. Pedestrians choose the short-
est path to evacuate. Some "control rules" are added to make their movement more
realistic (Figure 4). If the number of pedestrians is at least 5 in the first or second
rectangle, or at least 15 in the third rectangle, other pedestriansmove in the direction
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Figure 4. Snapshotsof numerical simulations; seats, walls, screen, stairs, and doors
are represented; escaperoutesare the routeA at the top androuteB bottom; depend-
ing onthe number of students in the rectangles (number 1, 2 or 3), students movein
thedirection of thedark-colored arrow instead of the light-colored one

of the dark-colored arrow, corresponding to its considered rectangle, instead of the
light-colored one. Theserulesprevent the emergenceof uselesscongested areas.

An exampleof progression of onenumerical simulation is shown in Figure5. The

Figure 5. Snapshotsof numerical simulationsat different times. Studentsare the cir-
cles

resultsof both thereal exercise andthenumerical simulationsaresummarized in Table
7. According to this Table, there is basically no differencebetween the results of the
real exercise and numerical simulations. We can seein Figure 6 that the egresscurve
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Table 7. Comparison between real exercise and numerical simulationsfor the evacu-
ation of themovie theatre

Real exercise Numerical simulations
Number of students 101 101

Number of Seats 174 174
Number of runs 1 100

RouteA
Time(last person) 45s 49.4 s
Mean egresstime 31.1 s 30.7 s

RouteB
Time(last person) 66s 62s
Mean egresstime 53.1 s 48.6 s

Overall
Time(last person) 66s 62s
Mean egresstime 44s 41.9 s

obtained from thereal exerciseisrather similar to egresscurvesobtained by numerical
simulations.

Figure 6. Number of persons out vs. time (egresscurves), comparison between real
exercise result and numerical simulations results: the 100 numerical simulations are
the light-colored curves, themean of thesesimulationscurves is theblackbold dotted
curve, andthe real exercise curveis theblackbold one
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5. Conclusion

This paper presents three existing discrete approaches (DEM, NSM1 and
NSM2), originally proposed to simulate a granular assembly, and that we adapted
for representing pedestrians with their willi ngness to move. Social forces as well
as a desired direction/velocity are introduced in order to simulate the behavior of
pedestrians. The three adapted approaches are then numerically implemented. They
are applied to two real cases of evacuation (room and movie theatre). The obtained
results are compared to the experimental ones. The adapted NSM2 allows one to
consider pedestrians who start pushing by using elastic colli sions, which seems to
be non-negligible for evacuation problems. Numerical simulations with the adapted
NSM2 for the evacuation of a room or a movie theatre show that this approach is
capableof reproducinga real evacuationexercise in asatisfactory way.

Acknowledgements

The authors would like to thank Michel Frémond, Professor at Roma II Uni-
versity, for his fruitful suggestionsand pertinent remarksabout thismanuscript. They
would also like to thank Maria Aristova of Princeton University for help in editing
thisarticle.

6. References

Allen M., Tildesley D., Computer simulation of liquids, Oxford University Press, 1987.

BlueV., Adler J., “ Cellular automatamicrosimulation of bi-directional pedestrian flows” , Jour-
nal of the Transportation Research Board, vol. 1678, p. 135-141, 2000.

Bodgi J., Synchronisation piétons-structure: Applicationaux vibrationsdespasserelles souples,
PhD thesis, Ecole Nationale des Ponts et Chaussées, 2008.

Bodgi J., Erli cher S., Argoul P., “ Lateral vibration of footbridges under crowd - loading :
continuous crowd modelli ng approach” , KeyEngineering Materials, vol. 347, p. 685-690,
2007.

Cundall P., “ A computer model for simulating progressive large scale movements of blocky
rock systems”, Proc. of thesymposiumof theinternational society of rockmechanics, vol. 1,
p. 132-150, 1971.

Cundall P., Strack O., “ A discrete numerical model for granular assemblies” , Geotechnique,
vol. 29, n˚ 1, p. 47-65, 1979.

Dal Pont S., Dimnet E., “ A theory for multiple colli sions of rigid solids and numerical simula-
tion of granular flow”, Int.J.Solids and Structures, vol. 43, n˚ 20, p. 6100-6114, 2006.

Dal Pont S., Dimnet E., “ Theoretical approach to instantaneous colli sions and numerical sim-
ulation of granular media using the A-CD2 method” , Communications in Applied Mathe-
matics andComputational Science-Berkeley, vol. 3, n˚ 1, p. 1-24, 2008.

Dimnet E., Mouvement et colli sions de solides rigides ou déformables, PhD thesis, Ecole Na-
tionale des Ponts et Chaussées, 2002.



Crowd movement modelli ng 205

EricsonC., Real TimeColli sionDetection, Morgan Haufmann Publishers, 2004.

Erlicher S., Trovato A., Argoul P., “ Modeling the lateral pedestrian force on a rigid floor by
a self-sustained oscill ator” , Mechanical Systems and Signal Processing, vol. 24, p. 1579-
1604, 2010. doi:10.1016/j.ymssp.2009.11.006.

FrémondM., “ Rigid bodies colli sions” , Physics Letters A, vol. 204, p. 33-41, 1995.

Frémond M., Colli sions, Edizioni del Dipartimento di Ingegneria Civile dell ’ Università di
Roma Tor Vergata, 2007.

Hankin B., Wright R., “ Passenger flow in subways” , Oper. Res., vol. 9, p. 81-88, 1958.

Helbing D., “ Traffic and related self-driven many-particle systems”, Reviews of Modern
Physics, vol. 73, p. 1067-1141, 2002.

HelbingD., Buzna L., Johansson A., Werner T., “ Self-Organized Pedestrian Crowd Dynamics:
Experiments, Simulations, and Design Solutions” , Transportation Science, vol. 39, n˚ 1,
p. 1-24, 2005.

Helbing D., Farkas I., Vicsek T., “ Simulating dynamic features of escape panic”, Nature, vol.
407, p. 487-490, 2000.

Helbing D., Molnar P., “ Social forcemodel for pedestrian dynamics” , Physical Review E, vol.
51, n˚ 5, p. 4282-4286, 1995.

Henderson L., “ The statisticsof crowd fluids” , Nature, vol. 229, p. 381-383, 1971.

Hoogendoorn S., Bovy P., Daamen W., “ Microscopic pedestrian wayfinding and dynamics
modelli ng” , Pedestrian andEvacuation Dynamics,, vol. , p. 123-154, 2001.

Jean M., “ The NonSmooth Contact Dynamics Method” , Compt. Methods Appl. Math. Engrg.,
vol. 177, p. 235-257, 1999.

Jean M., Moreau J., “ Unilaterality and dry friction in the dynamics of rigid bodies collection” ,
Contact Mechanics International Symposium,, vol. , p. 31-48, 1992.

Kimmel R., Sethian J., “ Fast marching methods for computing distance maps and shortest
paths” , Technical Report 669, CPAM, University of California, Berkeley, 1996.

KishinoY., “ Disk model analysisof granular media”, Micromechanics of Granular Materials,,
vol. , p. 143-152, 1988.

Klüpfel H., A Cellular Automaton Model for Crowd Movement and EgressSimulation, PhD
thesis, Université Duisburg-Essen de Standort Duisburg, 2003.

Maury B., “ A time-stepping scheme for inelastic colli sions” , Numerische Mathematik, vol.
102, n˚ 4, p. 649-679, 2006.

Moreau J., “ Sur les lois du frottement, de la viscosité et de la plasticité”, Comptes rendus de
l’Académie des Sciences de Paris, vol. 271, p. 608-611, 1970.

Moreau J., “ Unilateral contact and dry friction in finite freedom dynamics” , in J. Moreau,
W. N. Y. P.-D. Panagiotopoulos, eds. Springer-Verlag (eds), Non Smooth Mechanics and
Applications, CISM Courses andLectures, vol. 302, p. 1-82, 1988.

Moreau J., “ Some numerical methods in multibody dynamics: Application to granular materi-
als” , Eur.J.Mech.A/Solids, vol. 13, p. 93-114, 1994.

Moussaïd M., Perozo N., Garnier S., Helbing D., Theraulaz G., “ The Walking Behaviour of
Pedestrian Social Groups and Its Impact onCrowd Dynamics.”, PLoSONE, 2010. e10047.
doi:10.1371/journal.pone.0010047.



206 EJCM - 20/2011. Dynamics of materials, structures andsystems

Musse S., JungC., Jr. J. J., BraunA., “ Usingcomputer visionto simulate themotion of virtual
agents” , Computer Animation andVirtual Worlds, vol. 18, p. 83-93, 2007.

Paoli L., “ Timediscretization of vibro-impact” , Phil . Trans. R. Soc. A, vol. 359, p. 2405-2428,
2001.

ParisS., Characterisation of levelsof servicesandmodelli ng of flowsof people inside exchange
areas, PhD thesis, Université de Rennes1, 2007.

Paris S., Pettré J., Donikian S., “ Pedestrian Reactive Navigation for Crowd Simulation: a
Predictive Approach” , Computer Graphics Forum, vol. 26, n˚ 3, p. 665-674, 2007.

Pécol P., Dal Pont S., Erli cher S., Argoul P., “ Modelli ng crowd-structure interac-
tion” , Mécanique & Industries, EDP Sciences, vol. 11, n˚ 6, p. 495-504, 2010.
doi:10.1051/meca/2010057.

Radjai F., Jean M., Moreau J., RouxS., “ ForceDistributionsin DenseTwo-Dimensional Gran-
ular Systems”, Phys. Rev. Lett., vol. 77, n˚ 2, p. 264-277, 1996.

Radjai F., Richefeu V., “ Contact dynamicsasanonsmooth discrete element method” , Mechan-
ics of Materials 41, vol. 41, p. 715-728, 2009.

Renouf M., Optimisation numérique et calcul parallèle pour l’étude des mili eux divisés bi- et
tridimensionnels, PhD thesis, UniversitéMontpelli er II - Scienceset TechniquesduLangue-
doc -, 2004.

Reynolds C., “ Flocks, herds, and schools: A distributed behavioral model” , Computer Graph-
ics, vol. 21, p. 25-34, 1987.

Saussine G., Cholet C., Gautier P., Dubois F., Bohatier C., Moreau J., “ Modelli ng ballast be-
haviour under dynamic loading. Part 1: a2D polygonal discrete element methodapproach” ,
Comput. Methods Appl. Mech. Engrg, vol. 195, p. 2841-2859, 2006.

Strogatz S., Abrams D., McRobie A., Eckhardt B., Ott E., “ Theoretical mechanics: Crowd
synchrony onthe Mill enium bridge”, Nature, vol. 438, p. 43-44, 2005.

SungM., Gleicher M., Chenney S., “ Scalable behaviors for crowd simulation” , Eurographics,
vol. 23, p. 519-528, 2004.

Teknomo K., “ Application of microscopic pedestrian simulation model” , Transportation Re-
search Part F, vol. 9, p. 15-27, 2006.

Venel J., Modélisation mathématique des mouvements de foule, PhD thesis, Laboratoire de
Mathématiques, Université ParisXI, Orsay, France, 2008.


