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ABSTRACT. In the industrial context of performance improvement of dual-shaft aircraft engines, 
experimental results demonstrate how important it is to consider the influence of the 
dynamics of the high pressure (HP) shaft on the response of the bladed disk located on the 
low pressure (LP) shaft. Indeed, this coupling seems to play an important role in the design 
purposes in rotating machinery industry as it can have a significant impact on the dynamic 
behaviour of turbomachines. The model developed here consists of a HP shaft and a LP 
bladed shaft connected by an intershaft bearing. Nonlinear features of this intershaft bearing 
require the development of specific nonlinear algorithms. Thus, this paper aims at coupling 
the two modelling levels in order to grasp the nonlinear vibratory phenomena of a bladed 
dual-shaft under unbalances. 

RÉSUMÉ. Dans le contexte actuel d’amélioration des performances des turboréacteurs, des 
résultats d’essais montrent qu’il est nécessaire de considérer, dès la conception, l’influence de 
la dynamique de l’arbre haute pression (HP) sur les aubages de l’arbre basse pression (BP). Le 
modèle développé est un modèle bi-rotor composé d’un arbre HP et d’un arbre BP, connectés 
entre eux par un palier interarbre, avec sur l’arbre BP, un modèle simplifié de roue aubagée. 
Les caractéristiques hautement non linéaires du palier interarbre vont nécessiter la mise en 
place d’algorithmes de résolution non linéaires adaptés. Ainsi, le travail s’appuie sur la 
simulation combinée d’un problème de dynamique d’ensemble avec celui plus spécifique des 
roues aubagées afin d’évaluer la réponse dynamique non linéaire du système couplé. 
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1. Introduction

Becausemost rotatingmachinesoperatemore andmore at their designlimits, there
isan increaseof thedynamic couplingsbetween thedifferent partsof the engine. For
matters of high machine efficiency, optimized multi -shafts are used in rotating ma-
chinery. This leads to systems where several unbalances are simultaneously present.
Moreover, in the context of dual-shaft aircraft engine, the interaction between both
thedynamicsof shaftsand that of bladed diskscalls into questionthe commonly used
design criteria. Usually, rotordynamics relies on simplified models of propulsion or-
gans (Lalanne et al., 1998), while bladed disks are studied with full Finite Element
models in rotating machinery industry. This work offers to couple these two mod-
elli ng levels.

Furthermore, onesourceof nonlinearities in multi -rotors systemsconcernstheuse
of rolli ng intershaft bearing that involves radial clearance and nonlinear contact stiff-
ness(Harris et al., 1973). Indeed, it is well known that the nonlinear bearing may
drastically influencethedynamic behaviour of rotatingsystems(Choi et al., 1987; Ti-
wari et al., 2000). One of the most widely used approaches to obtain the nonlinear
responseof such a system is thenumerical integration procedure, like shootingmeth-
ods (Sundararajan et al., 1997). Nevertheless, this approach requires large resources
in terms of computational time for systems involving a large number of degrees of
freedom or strong nonlinearities. Thus, the most popular alternative methods used
to estimate the nonlinear response of the system are the frequency methods, which
provide a nonlinear solution approximated by truncated Fourier series. The Har-
monic BalanceMethodand continuation schemes (Narayanan et al., 1998; Cameron
et al., 1989; Nacivet et al., 2003) havebecomeover the last few decadesthe favourite
tool to studystrongly nonlinear dynamics.

In this paper, our interest will be in the development of our own model coupling
a dual-shaft system with a simplified bladed disk model. We also propose to study
the unbalance responses of this system with a radial clearance and stiffnesscontact
located in the intershaft bearing. For that purpose, thepaper isdivided into four parts.
The definition of the simplified model of the bladed dual-shaft is firstly described
in the rotating frame by using an energy formulation. Secondly, the basic concept
of the Harmonic BalanceMethod is introduced with the path following continuation
scheme and the nonlinearities involved in the model are described. The third part
presents several numerical results. A linear analysis is investigated to validate the
bladed dual-shaft model and nonlinear studies are carried out to assessthe influence
of nonlinearities on the response of the system. Eventually, the last part draws some
conclusionsandsuggestspossiblenew developments.
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2. Bladed dual-shaft system

2.1. Description of the system

The HP and the LP rotors are both composed of a shaft modelled by an Euler-
Bernoulli beam connected to several rigid disksmodelled byconcentratedmasseswith
rotational inertia. Theseshaftsareset oncompliant bearingsat multiple locationsand
connected byan intershaft bearing(Guskov et al., 2007). The bladed disk considered
in the model is located on the LP rotor, see Figure 1, where (x,y, z) denotes the
rotating frame. This model is inspired from an existing model (Sinha, 2004). A full
set of flexible blades also modelled by Euler-Bernoulli beams is clamped on the LP
rigid disk, seeFigure3.

y

z

Bladed disk

HProtor

LP rotor

Figure 1. Bladed dual-shaft model

2.2. Dual-shaft model

The developed analytical model of the dual-shaft relieson an energy formulation.
For the analytical formulation, the energiesand the potentialsof the shaftshave to be
defined. Thekinetic energy isexpressed in theglobal frame as follows:

Ti =
1

2

∫

Ω

ρẋT
i ẋidΩ [1]

where i denoteseither the high pressure(HP) rotor or the low pressure(LP) rotor and
x represents thedisplacement vector expressed in the global frame. In the full model,
a bladed disk is introduced on the LP shaft. The displacements of the LP rotor are
described in its own rotating frame in order to avoid time-dependent terms resulting
from the periodicity of rotatingstructure. Thus, the LP shaft kinetic energy isdefined
by:

TLP =
1

2

∫

Ω

ρu̇T
lpu̇lp dΩ +

∫

Ω

ρu̇T
lpΩlp ulp dΩ +

1

2

∫

Ω

ρuT
lpΩ

T
lpΩlp ulp dΩ [2]
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where ulp is the displacement vector of the LP rotor in its rotating frame and Ωlp is
the transitionmatrix from theglobal frameto theLProtatingframe. We assumed that
there are no bladed disks on the HP rotor in order to simpli fy the model description.
Consequently, the HP rotor equations can be projected in the LP rotating frame and
thekinetic energy has the followingexpression:

THP/LP =
1

2

∫

Ω

ρu̇T
hpu̇hp dΩ +

∫

Ω

ρu̇T
hpΩ

lp
hp uhp dΩ +

∫

Ω

ρu̇T
hpΩhp uhp dΩ

+

∫

Ω

ρuT
hpΩ

lpT

hp Ωhp uhp dΩ +
1

2

∫

Ω

ρuT
hpΩ

lpT

hp Ω
lp
hpuhp dΩ

+
1

2

∫

Ω

ρuT
hpΩ

T
hp Ωhp uhp dΩ

[3]

where uhp is the HP displacement vector, Ωhp the transition matrix from the global
frame to the HP rotating frame and Ω

lp
hp the transition matrix from the HP rotating

frame to the LP rotating frame. The rigid disks are characterized by their inertia data
which are also expressed in the LProtating frame.

Besides, the elastic strain of each rotor is defined by a potential energy associated
with its bending:

Vinti
=

1

2

li
∫

0

EiIiu
′′T
i u

′′

i dy [4]

with Ei, Ii and li being the Young’s modulus, the second moment of area and the
length of each rotor, respectively.

The bearingsand the intershaft bearingare introduced througha potential associ-
ated with their stiffnessand a function of dissipation associated with their damping.
Moreprecisely, thepotential expressionassociated with theintershaft bearingstiffness
isdefined by:

Vbearing =
1

2
∆u(yinter)

T Kinter∆u(yinter) [5]

where∆u(yinter) = uhp(yinter) − ulp(yinter).

Two directions of displacement are considered for each shaft as two orthogonal
translations in the disks plane. The transverse displacements ui and wi are defined
usingaRayleigh-Ritz approximation:

ui(y, t) =



















ui(y, t) =

mtot
∑

m=0

U i
m(t)V i

m(y)

wi(y, t) =

mtot
∑

m=0

W i
m(t)V i

m(y)

[6]

wherey denotesthe abscissa alongtheshaft, mtot is thenumber of Ritz functionscon-
sidered to describe the shaft bending. V i

m(y) represents the displacement polynomial
shape functionassociated with each rotor.
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2.3. Bladed disk simplified model

β

Lb

r

y

Figure 2. Bladed disk

x

z

Rigid disk

ubx,z
(s, t)

αj = 2πj
Nb

r

u(ydisk, t)

w(ydisk, t)

jth blade

Figure 3. Bladed disk model

Since an energy formulationisused to developthismodel in theLProtatingframe,
thekinetic energy T

j
b of the jth blade can bedefined as follows:

T
j
b =

Lb
∫

0

1

2
ρbSbv

T
S/R0

(G)vS/R0
(G)ds +

Lb
∫

0

1

2
ω

T
S/R0

IωS/R0
ds [7]

where vS/R0
(G) and ωS/R0

are the speed and the rotation of the masscenter of a
blade cross section, respectively. I is the blade inertia matrix defined in its inertial
frame. R0 denotes the global frame, s the abscissa alongthe blade, ρb andSb are the
density and the areaof a blade cross section, respectively.

As for shafts, a potential energy associated with the elastic strain of blades is de-
fined by:

Vintb
=

1

2

Lb
∫

0

EbIb

(

u
′′

b (s, t)
)2

ds [8]

where Eb is the Young’s modulus of elasticity of the blade, Ib is the blade second
moment of areafor flexure andub thedisplacement vector of ablade.

Moreover, a pre-stresspotential has been defined in order to take the centrifugal
effects into account in themodel:

Vcenb
=

1

2

Lb
∫

0

ρbSbΩ
2
lp

(

(r + Lb)
2 − (s + r)2

2

)

u
′
2

b (s, t)ds [9]
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with Ωlp the rotationspeed of theLP rotor andr thebladed disk radius.

x

y

Disk

ub(s, t)

β

Chord

jth blade

Figure 4. Topview of thebladed rigid disk

Only one direction of displacement for each blade is considered to represent its
deflection u

j
b(s, t). It is assumed that the minor principal moment of inertia of the

blade cross section coincides with the chord direction. Thus, the blade lateral deflec-
tion ub(s, t) under pure bending moment takes placein the direction normal to the
chord. The interested reader can refer to (Sinha, 2004) for details. This deflection is
defined usingaRayleigh-Ritz approximationas follows:

u
j
b(s, t) =

ntot
∑

n=1

Xj
n(t)Y j

n (s) [10]

where ntot denotes the number of functions considered for the bending of the jth

blade. Y j
n (s) represents the displacement shape function which satisfy the clamping

conditionat theblade attachment and itsexpression is:

Yn(s) = sin(ans) + bns + cns2 [11]

with























an =
(2n − 1)π

2Lb
,

bn = −an,

cn =

(

b2
n

2

)

sin(bnLb).

[12]

Then, the Lagrange equationsof the full dynamic system of the bladed dual-shaft
take the followingmatrix form:

M q̈ + (D + G) q̇ + (K + N + P) q = 0 [13]

In thisexpression, M, D, G, K, N and P are themassmatrix, the dampingmatrix, the
gyroscopic matrix, the stiffnessmatrix, the spin softeningmatrix, and the circulatory
matrix, respectively.
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The generalized vector q(t) is the combination of all degreesof freedom and can
bewritten as:

q(t) =
[

U
hp
0 (t) W

hp
0 (t) · · · Uhp

mtot
(t) Whp

mtot
(t) U

lp
0 (t) W

lp
0 (t) · · ·

U lp
mtot

(t) W lp
mtot

(t) X1
1 (t) · · · X1

ntot
(t) · · · XNb

1 (t) · · · XNb

ntot
(t)

]T
[14]

whereNb represents the total number of blades.

3. Nonlinear dynamics

3.1. Equation governing the system and definition of nonlinearities

Thefull model (cf. Section 2) consistsin two shaftsconnected byalinear intershaft
bearing with a bladed disk rigidly linked to the LP shaft; this model is linear at this
stage. In order to grasp the complex dynamicsof such asystem, nonlinearitiescoming
from bearings have to be considered. In this study, the nonlinearity is introduced on
theintershaft bearingwhich connectstheLPandtheHPshaft dynamics. The equation
governingthedynamicbehaviour of thesystem with theunbalance excitationsandthe
nonlinear forcescan be formulated as:

M q̈ + C̃ q̇ + K̃ q + Fnl(q) = Fu [15]

whereC̃ = D + G andK̃ = K + N + P are thegeneralized dampingandstiffnessma-
trices, respectively. Fnl(q) represents the nonlinear forcevector and Fu the external
forcevector (HP or LPunbalance).

Themodel used to definethenonlinearity located ontheintershaft bearingconsists
in a clearance and a contact nonlinear stiffnessinvolving four generalized degreesof
freedom.

Let usconsider the relativedisplacement vector of the intershaft bearing:

∆u =

(

uhp − ulp

whp − wlp

)

[16]

where the displacement values are taken at the intershaft bearing abscissa. Then, the
nonlinear forcevector definingthe contact forceis described by:

Fnl(∆u) = knl (‖∆u‖ − δ)H (‖∆u‖ − δ)
∆u

‖∆u‖ [17]

whereknl andδ arethenonlinear stiffnessandtheradial clearancevalue, respectively.
H(.) represents theHeaviside’s functionand‖∆u‖ =

√
∆u2 + ∆w2. Thisnonlinear

force defines a bilateral clearance in the intershaft bearing. Its projection on the
x axis is ill ustrated in Figure 5. In order to obtain the periodic solution of the
nonlinear bladed dual-shaft system, theHarmonic BalanceMethodisoneof themost
widespread methodsthanksto itsaffordable computational cost.
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Fnlx

0

knl

δ−δ

∆u

Figure 5. Representation of the nonlinear force

3.2. Numerical methods for the nonlinear resolution

3.2.1. The harmonic balancemethod

The main ideaof this method consists in assuming that the solution q(t) of the
motionequation [15] is searched asa periodic functionwith thesameperiodT as the
excitation. Indeed, the solution can be approximated by truncated Fourier series of
order N , with ω = 2π

T the fundamental frequency:

q(t) ≈ a0 +
N

∑

k=1

(ak cos(kωt) + bk sin(kωt)) [18]

wherea0, ak andbk definetheFourier coefficientswhich arethenew unknownsof the
system. As the solution is assumed to be aperiodic functionwith the same periodas
the unbalanceforces, the nonlinear forcevector can also be approximated by Fourier
series truncated in thesameorder N , that reads:

Fnl ≈ c0 +

N
∑

k=1

(ck cos(kωt) + dk sin(kωt)) [19]

The calculation of the harmonic nonlinear coefficients c0, ck, dk will be described
in section 3.2.3. Once the approximations [18] and [19] have been substituted in
the motion equation [15], a Galerkin projection of this motion equation over the
trigonometric basis (1, cos(ωt), sin(ωt), · · · , cos(Nωt), sin(Nωt)) leads to a system
of (2N + 1)ndof nonlinear algebraic equations(wherendof is thenumber of degrees
of freedom for thebladed dual-shaft system):

Axh + Fnlh(xh) = Fuh
[20]
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where Fuh
and Fnlh are the projections of the excitation and the nonlinear terms

over the trigonometric basis, respectively. A represents the dynamic stiffness
correspondingto each harmonic component:

A =











A0 0 · · · 0

0 A1 · · · 0
...

...
...

...
0 0 · · · AN











[21]

with







A0 = K̃;

Ak =

[

K̃ − (kω)2M (kω)C̃
−(kω)C̃ K̃ − (kω)2M

]

, for k = 1, · · · , N.
[22]

Eventually, the nonlinear algebraic system [20] can be solved by a Newton-like
method.

3.2.2. The path followingcontinuation

TheHarmonicBalanceMethodiscoupledwith apath followingcontinuationtech-
nique. This approach allows to follow the evolution of the system with respect to a
chosen control parameter denoted by µ. In that case, this parameter is the rotation
speed Ωlp of theLP rotor as thedynamic response is sought in a rotationspeed range
of theLP rotor which isknown.

A predictor-corrector algorithmisused to determinethesolution pair (xh, µ). Here
we assume that one solution point (xi

h, µi) of the response curve is already known,
where xi

h is the solution vector of the Fourier coefficients andµi denotes the chosen
control parameter. The predictor algorithm considered in this study is the tangent
predictor which providesan estimation of thefollowingsolution point calculated from
the previous solution (xi

h, µi). Then, this estimation is used as a starting point for the
correction algorithm. A Newton-Raphson algorithm is employed to determine the
solution pair (xi+1

h , µi+1). By using the arc-length continuation procedure (Nayfeh
et al., 1995; Kim et al., 2005), the estimated solution has to verify the hypersphere
equation of radius∆s:

∆si+1 =

√

∥

∥xi+1

h − xi
h

∥

∥

2
+ (µi+1 − µi)

2 [23]

Finally, the Newton-like correction algorithm employed to solve the augmented sys-
tem of nonlinear equations [20] and [23] leads to the solution pair (xi+1

h , µi+1). The
step size∆s is adjusted accordingto the convergenceof previous steps.

3.2.3. Determination of theharmonic nonlinear coefficients

The nonlinearity defined in Section 3.1 is strong and non-smooth. In order to
establish the implicit relation Fnl(∆u) between the nonlinear force and the relative
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displacement vector and its projection Fnlh(xh) into the frequency space, an Alter-
nating Frequency/Time domain strategy (AFT) is employed (Cameron et al., 1989).
Thisone can berepresented by the followingscheme:

xh =



















a0

a1

b1

...
aN

bN



















FFT−1

−−−−−→ q(t) −→ Fnl(q)
FFT−−−→ Fnlh =



















c0

c1

d1

...
cN

dN



















[24]

Thestarting point of thismethodisan estimation of Fourier coefficientsvector xh.
Then, an inverse Fast Fourier Transform (FFT) procedure is employed to determine
the approximated temporal displacement q(t) which is used to evaluate the nonlinear
forces in the time domain. Finally, an FFT procedure is applied on these forces in
order to obtain theharmonic coefficientsc0, ck anddk of thenonlinear contribution.

4. Numerical simulations

Asexplained previously, thebladed dual-shaft system studied hereiscomposed of
two rotors supported by a set of bearings and an intershaft bearing. These shafts are
connected to several rigid disks and to a simplified bladed disk model located onthe
LPshaft. All theparametric valuesfor the completemodel aregiven in Table1. In this
section, linear and nonlinear studies of the bladed dual-shaft will be presented. First,
a linear analysis is carried out. This analysis details the balanced rotorsbehaviour to
extract the modal elements. Unbalanced linear behaviour is then exposed for future
comparison with unbalanced nonlinear behaviour. In a second time, the nonlinear
intershaft bearing model is used. Unbalanced responses are then built and compared
to the linear ones.

4.1. Linear analysisof the model

4.1.1. Modal analysis

Thelinear analysisof thebladed dual-shaft system without any unbalancesallows
to get mode shapes and classical Campbell diagram. The mode shapes are studied at
null speed andrepresented in Figure6. Theintershaft bearingis located in the abscissa
y = 0, theposition of theHProtor isdisplayed in thenegative abscissas, whereasthat
of the LP rotor is spotted in the positive abscissas. The frequency of the first mode
is f1 = 27 Hz, it is mainly a dual-shaft mode with a low participation of blades.
The second mode at f2 = 41 Hz is mainly a LP rotor mode especially at the rigid
disk location. Thebladesdynamics is negligibleon this modeshape. The third mode
is identified as a pure blades mode and all the blades vibrate at the same frequency
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Table 1. Parametric valuesof thebladed dual-shaft system
Notation Description Value
lhp Length of the HP shaft 1 m
dhp Diameter of the HPshaft 0, 05 m
ydiskhp

Abscissa of the HP disk -0, 2 m
y1

bearinghp
Abscissa of the HP bearing 1 -1 m

y2

bearinghp
Abscissa of the HP bearing 2 -0, 9 m

K1

bearinghp
HP flexible coupling stiffness 4, 3.104 N/m

K2

bearinghp
HProlli ng bearing stiffness 3.106 N/m

llp Length of the LPshaft 1, 7 m
dlp Diameter of the LPshaft 0, 04 m
y1

disklp
Abscissa of the LPdisk 1 0, 1 m

y2

disklp
Abscissa of the LPdisk 2 1, 5 m

y1

bearinglp
Abscissa of the LPbearing 1 0, 2 m

y2

bearinglp
Abscissa of the LPbearing 2 1, 2 m

y3

bearinglp
Abscissa of the LPbearing 3 1, 4 m

y4

bearinglp
Abscissa of the LPbearing 4 1, 7 m

K1

bearinglp
LProlli ng bearing stiffness1 1, 5.107 N/m

K2

bearinglp
LProlli ng bearing stiffness2 1.109 N/m

K3

bearinglp
LProlli ng bearing stiffness3 1.107 N/m

K4

bearinglp
LP flexible coupling stiffness 4, 3.104 N/m

Ehp,lp Young’s modulus of rotors 210.109 N/m2

ρhp,lp Density of rotors 7800 kg/m3

mtothp,lp
Number of Ritz functions for rotors 6

yinter Abscissa of the intershaft bearing 0 m
Kinter Intershaft bearing stiffness 1.109 N/m
Nb Total number of blades 4
Lb Length of blades 0, 17 m
Eb Young’s modulus of blades 114.109 N/m2

ρb Density of blades 4500 kg/m3

β Incidence angle of blades 60◦

ntot Number of Ritz functions for blades 2

f3 = 51 Hz. Finally, the last studied mode at f4 = 78 Hz is a strongly coupled mode
between the dual-shaft and theblades.

The evolution of the eigen frequenciesof the system as a function of the rotation
speed of the LP rotor give us a Campbell diagram, seeFigure 7. This one is repre-
sented in therotatingframein LPprecession. Thebladed dual-shaft is fully axisymet-
ric implying that the eigen frequenciesare double at null speed. On theone hand, the
eigen frequenciesf1, f2 andf4 open with respect to the rotationspeed which is char-
acteristic of gyroscopic effectsof rotors. On the other hand, the frequenciesof blades
modes (f3) increase with respect to the rotationspeed. This feature is due to the cen-
trifugal effects which have been introduced in the model, see equation [9]. Besides,
equations being written in the rotating frame the negative slope curves are forward
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Figure 6. Mode shapes of the system - (—) HP rotor, (—) LP rotor with blades and
(•) bearings location

modes, whereas the positive slope curvesare backward modes. The frequency of the
synchronousexcitation of theLProtor can beread onthe abscissa axisf = 0 because
the system is observed in the LP rotating frame. The intersections of forward modes
with the abscissa axis define the critical speeds for LP unbalance. The dashed line
representsthe frequency of thesynchronousexcitation of theHProtor f = Ωhp−Ωlp

in the LP rotating frame. In the same way, the intersections of this line with forward
modes define critical speeds for HP unbalance. The critical speeds of the forward
modes are summarized in Table 2. The ratio of the rotation speed of the HP rotor to
that of theLP rotor is Ωhp

Ωlp
= 2.8.

4.1.2. Linear unbalanceresponses

As the rotordynamical system model is axisymetric, only the forward modes are
supposed to respondto the unbalance excitation (Lalanne et al., 1998). In the speed
rangeΩlp = [0; 2200] rpm, thelinear forcedresponse curveswith respect to unbalance
forcesareshown in Figure8 for therelativedisplacement of theintershaft bearing. On
theonehand, theLPunbalance excitationisa constant forcein theLProtatingframe.
Thedashed curverepresentstheLPunbalanceresponseof theintershaft bearing. One
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Figure 7. Campbell diagram - Evolution of (—) dual-shaft and (—) blades natural
frequencies according to the LP rotation speed, (- - -) Synchronous excitation of the
HP rotor in the LP frame

Table 2. Critical speedsof thebladed dual-shaft
Critical speeds (rpm)

Modes LPunbalance HPunbalance
1 1850 610
2 — 960
3 — 2110
4 — 1870

can observe that only the first mode is excited by the LP unbalance in the studied
speed range. On the other hand, the HP unbalance excitation is a harmonic force in
the LP frame. Furthermore, it is important to notice that the first four modes are all
excited in this speed range. The blade tip displacement is also ill ustrated in Figure 9
with respect to theHP andtheLP unbalances.

4.2. Nonlinear studies

Here, the nonlinear unbalance responses due to the nonlinear intershaft bearing
will be investigated. Various cases of excitation will be considered, namely the LP
unbalance, theHP unbalance and both unbalances.
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Figure 8. Linear responsesof theintershaft bearing- (—) HP and(- - -) LP unbalance
excitation
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Figure 9. Linear responsesof the bladetip - (—) HP and(- - -) LP unbalance excita-
tion
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4.2.1. LP unbalanceresponseof thenonlinear system

Now, let us consider the nonlinear dynamicsof the bladed dual-shaft subjected to
aLPunbalance. Theunbalanceis located onthebladed disk at thedistanced = rdisk

and the unbalancemassvalue is mu = 50 g. Only the first mode is observed in this
case because only this one is excited in the studied rotation speed range. The radial
clearancevalue introduced in the model is δ = 10 µm correspondingto a worn bear-
ing. Figure 10 shows a zoom of the nonlinear LP unbalanceresponse curve around
thefirst peak which is located at Ωlp = 1850 rpm. Thenumber of theharmonic com-
ponents retained in the solution for all the nonlinear results is equal to one because
the harmonic components become less significant for upper orders. First, the evolu-
tion of the relative intershaft displacement with respect to the rotation speed Ωlp is
described onFigure 10(a) and highlights the nonlinear behaviour of the bladed dual-
shaft. Indeed, for displacement values which are inferior to the clearancevalue, the
nonlinear and linear response curves merge. When the clearance value is reached,
one can observe that the contribution of the nonlinear terms of the intershaft bearing
changes the behaviour of the system. In the same way, the blade tip response shown
in Figure 10(b) has been studied. This analysis also highlights the sensitivity of its
behaviour to thenonlinear intershaft bearing. Thisphenomenon observed onthepeak
indicates the “hardeningeffect” of the nonlinearity. Thiseffect impliesan increaseof
the frequency and, consequently, an increaseof the critical speed.
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Figure 10. (- · -) Linear and(—) nonlinear LP unbalanceresponses of mode 1 with
the nonlinear intershaft bearing - (a) Relativedisplacement of the intershaft bearing
and(b) Bladetip displacement

4.2.2. HP unbalanceresponseof thenonlinear system

The nonlinear dynamics of the system subjected to an HP unbalance excitation
has also been analysed. The unbalance is located on the HP disk at d = rdisk and
the unbalancemassvalue is also mu = 50 g. In order to compare the HP unbalance
responseto theprevious study, thefirst modeisobservedandthe clearanceintroduced
in themodel hasthesamevalueδ = 10µm. Figure11 displaysa zoomof thenonlinear
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HP unbalance response curve aroundthe first peak which is located at Ωlp = 610
rpm. The same kind of observationscan be drawn with respect to the previous case.
The relative intershaft displacement curve shown in Figure 11(a) indicates that the
behaviour is modified when the clearance is consumed. Moreover, an analysis of
the blade tip response, seeFigure 11(b), has been carried out and tends to show the
influenceof the “hardeningeffect” of thenonlinearity on thepeak. Consequently, the
frequency and the critical speed values increase.
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Figure 11. (- · -) Linear and(—) nonlinear HP unbalanceresponses of mode 1 with
the nonlinear intershaft bearing - (a) Relativedisplacement of the intershaft bearing
and(b) Bladetip displacement

It is important to note that the HP unbalance response of mode 2 has not been
analysed in thepresent work becausethe intershaft bearing displacement isnegligible
on this mode shape, seeFigure 6. Similarly, the coupled mode (mode 4) has been
investigated with thesameparametersfor theunbalancemassandthe clearancevalue.
A zoom of the nonlinear response of both the intershaft relative displacement and
the blade tip displacement aroundthe rotation speed Ωlp = 1870 rpm is represented
in Figure 12(a) and Figure 12(b), respectively. One can observe the nonlinear
behaviour when the amplitude reaches the clearancevalue δ = 10 µm. Indeed, the
peak of the nonlinear response curve is located at a higher frequency than that of
the linear response curve. Thus, the response of the bladed dual-shaft system has
been performed on the one hand for the LP unbalance and onthe other hand for the
HP unbalance in the rotation speed range Ωlp = [0; 2200] rpm. These last remarks
emphasisethe interaction between thedynamicsof both thedual-shaft andtheblades.

4.2.3. Responseof thenonlinear system with both unbalances

In this section, the LP and HP unbalance responses of the system are analysed
considering both excitations at the same time. The analytical formulation has been
fully developed in the LP rotating frame (cf. Section 2). In this specific frame, the
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Figure 12. (- · -) Linear and(—) nonlinear HP unbalanceresponses of mode 4 with
the nonlinear intershaft bearing - (a) Relativedisplacement of the intershaft bearing
and(b) Bladetip displacement

LP unbalance excitation can be seen as a constant force whereas the HP unbalance
is considered as a harmonic forcewith ω = Ωhp − Ωlp the fundamental frequency.
During the Galerkin projection procedure, these unbalanceforces are projected over
the trigonometric basis (cf. Section 3). Therefore, the LP unbalance excitation is the
constant part of the vector Fuh

and the HP unbalance excitation is developed on the
harmonic componentsof thesame vector Fuh

.
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Figure 13. (- · -) Linear and(—) nonlinear unbalances responses with the nonlinear
intershaft bearing - (a) Relativedisplacement of the intershaft bearing and(b) Blade
tip displacement

On the linear forced response shown in Figure 8, the contribution of both excita-
tionsisobserved in thespeed rangeΩlp = [1800; 1900] rpm. Then, Figure13showsa
zoom of thenonlinear responseof thebladed dual-shaft system. Thesameparameters
have been chosen for the unbalancemasses mulp

= muhp
= 50 g and the clearance
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value δ = 10 µm. The global response has the same behaviour as the LP unbalance
response(seeFigure10) for thefirst peak andthesamebehaviour astheHPunbalance
response of the mode 4 (seeFigure 12) for the second peak. Therefore, one can con-
clude that the basic Harmonic Balance Method is well -suited to study the nonlinear
responseof thesystem under both unbalance excitations.

5. Conclusions

A full bladed dual-shaft model has been developed in the rotating frame. The gy-
roscopic effects, the spin softeningeffectsand the centrifugal effectshave been taken
into account, leading to a complete system from a phenomenological and physical
point of view. This model allows to assessthe interaction between blades dynamics
and dual-shaft dynamicsthroughmode couplingswhich havebeen observed.

Besides, thestudy of thedynamicbehaviour of thiscomplex system involving non-
linearitieshasbeen carried out. Thenonlinearity hasbeen introduced in the intershaft
bearingwhich is a crucial organ connecting the dynamicsof both rotors. The nonlin-
ear forcemodel includesa contact nonlinear stiffnessand a clearance. The Harmonic
Balance Methodcoupled with an arc-length continuation technique has been imple-
mented in order to analyse the bladed dual-shaft system with a nonlinear intershaft
bearing. As the considered nonlinearity is strongand non-smooth, an AFT procedure
has been developed to obtain the nonlinear forced response. On the response curves,
the influenceof the nonlinearity hasbeen identified througha hardeningeffect on the
response aroundthe peak. The introduction of a nonlinear intershaft bearing has al-
lowed to investigate the excitabilit y of theblades located ontheLP rotor subjected to
HP unbalance excitations.

It would be interesting to investigate more harmonic components in the Fourier
decomposition in order to study the influenceof the approximation onthe global re-
sponse of such a system. Avenues for future research work would consist in taking
more realistic blades models into account. At first, an extension of this work would
be to replacethe simplified bladed disk model by a full Finite Element model more
representative of the blades geometry. Eventually, the multi -stage cyclic symmetry
techniques (Laxalde et al., 2007) may also be examined in order to consider several
bladed diskson the dual-shaft model.
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