Nonlinear dynamics of a bladed dual-shaft
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ABSTRACT. In the industrial context of performance improvement of dual-shaft aircraft engines,
experimental results demonstrate how important it is to consider the influence of the
dynamics of the high pressure (HP) shaft on the response of the bladed disk located on the
low pressure (LP) shaft. Indeed, this coupling seems to play an important role in the design
purposes in rotating machinery industry as it can have a significant impact on the dynamic
behaviour of turbomachines. The model developed here consists of a HP shaft and a LP
bladed shaft connected by an intershaft bearing. Nonlinear features of this intershaft bearing
require the development of specific nonlinear algorithms. Thus, this paper aims at coupling
the two modelling levels in order to grasp the nonlinear vibratory phenomena of a bladed
dual-shaft under unbalances.

RESUME. Dans le contexte actuel d’amélioration des performances des turboréacteurs, des
résultats d’essais montrent qu'il est nécessaire de considérer, des la conception, l'influence de
la dynamique de I’arbre haute pression (HP) sur les aubages de I’arbre basse pression (BP). Le
modele développé est un modéle bi-rotor composé d’un arbre HP et d’un arbre BP, connectés
entre eux par un palier interarbre, avec sur I’arbre BP, un modele simplifié de roue aubagée.
Les caractéristiques hautement non linéaires du palier interarbre vont nécessiter la mise en
place d’algorithmes de résolution non linéaires adaptés. Ainsi, le travail s’appuie sur la
simulation combinée d’'un probléeme de dynamique d’ensemble avec celui plus spécifique des
roues aubagées afin d’évaluer la réponse dynamique non linéaire du systeme couple.
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1. Introduction

Becaise most rotating machines operate more and more & their designlimits, there
isan increase of the dynamic cougings between the diff erent parts of the engine. For
matters of high madcine dficiency, optimized multi-shafts are used in rotating ma-
chinery. This leals to systems where severa unbalances are simultaneously present.
Moreover, in the context of dual-shaft aircraft engine, the interadion between bah
the dynamics of shaftsand that of bladed disks cdlsinto questionthe commonly used
design criteria. Usually, rotordynamics relies on simplified models of propusion a-
gans (Lalanne et al., 1998, while bladed disks are studied with full Finite Element
models in rotating machinery industry. This work offers to couge these two mod-
dlinglevels.

Furthermore, one sourceof norlineaiti esin multi-rotors g/stems concernsthe use
of rolli ng intershaft bearing that involvesradial cleaance and nodinea contad stiff-
ness (Harris et al., 1973. Inded, it is well known that the nonlinea beaing may
drasticdly influencethe dynamic behaviour of rotating systems (Chai et al., 1987 Ti-
wari et al., 2000. One of the most widely used approaches to oltain the nonlinea
resporse of such a system is the numericd integration procedure, like shoating meth-
ods (Suncerargjan et al., 1997). Nevertheless this approach requires large resources
in terms of computational time for systems involving a large number of degrees of
freedom or strong notineaities. Thus, the most popuar alternative methods used
to estimate the nonlinea resporse of the system are the frequency methods, which
provide a norlinea solution approximated by truncated Fourier series. The Har-
monic Balance Method and continuation schemes (Narayanan et al., 1998 Cameron
et al., 1989 Nadvet et al., 2003 have become over the last few decalesthe favourite
toal to study strondy norinea dynamics.

In this paper, our interest will be in the development of our own model couging
a dual-shaft system with a simplified bladed disk model. We dso propose to study
the unbalance resporses of this s/stem with a radia clearance and stiff ness contadt
locaed in the intershaft bearing. For that purpose, the paper is divided into four parts.
The definition o the smplified model of the bladed dual-shaft is firstly described
in the rotating frame by using an energy formulation. Secondy, the basic concept
of the Harmonic Balance Method s introduced with the path foll owing continuation
scheme and the nonlineaities involved in the model are described. The third part
presents sveral numericd results. A linea analysis is investigated to validate the
bladed dual-shaft model and norinea studies are caried ou to asessthe influence
of norlineaities on the resporse of the system. Eventualy, the last part draws ome
conclusions and suggests posshble new developments.
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2. Bladed dual-shaft system
2.1. Description of the system

The HP and the LP rotors are both compased of a shaft modelled by an Euler-
Bernouli beam conreded to several rigid disks modell ed by concentrated masseswith
rotational i nertia. These shafts are set on compliant beaings at multi ple locations and
conreded by an intershaft bearing (Guskov et al., 2007). The bladed disk considered
in the model is located on the LP rotor, see Figure 1, where (x,y,z) denotes the
rotating frame. This model is inspired from an existing modd (Sinha, 2004). A full
set of flexible blades also modelled by Euler-Bernouli beams is clamped onthe LP
rigid disk, seeFigure 3.
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Figure 1. Bladed dud-shaft model
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2.2. Dual-shaft model

The developed analyticd model of the dual-shaft relies on an energy formulation.
For the analytica formulation, the energies and the potentials of the shafts haveto be
defined. Thekinetic energy is expressed in the global frame as foll ows:

o
T =1 / Ay [1]
2 Jo

where i denotes either the high presaure (HP) rotor or the low presaure (LP) rotor and
X represents the displacement vedor expressed in the global frame. In the full model,
a bladed disk is introduced onthe LP shaft. The displacements of the LP rotor are
described in its own rotating frame in order to avoid time-dependent terms resulting
from the periodicity of rotating structure. Thus, the L P shaft kinetic energy is defined
by:

L[ 7. o I
Tep =5 / puj, g, dQ + / P,y gy 2+ 5 / pul, QL wyy, dQ - [2]
Q Q Q
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where vy, is the displacement vedor of the LP rotor in its rotating frame and €2;,, is
the transition matrix from the global frameto the LP rotating frame. We assumed that
there ae no Haded disks onthe HP rotor in order to ssimplify the model description.
Consequently, the HP rotor equations can be projeded in the LP rotating frame and
the kinetic energy has the foll owing expresson:

1 T . . .
Tup/Lp = 3 /Q pugpuhp dQ + /Q pu;‘fpﬂzpp up,, dS) + /Q pugpﬂhp up, d2
T olp” 0 1 Ip”™ 0
+ quhpﬂhp Qpp upy, 2+ - 5 puhpﬂhp th hp d [3]

1
+5 / pu, 2, Qg dQ
Q

where uy,, is the HP displacement vedor, €2, the transition matrix from the global
frame to the HP rotating frame and Qﬁf’ the transition matrix from the HP rotating
frame to the LP rotating frame. Therigid disks are charaderized by their inertia data
which are dso expressd in the LP rotating frame.

Besides, the dastic strain of ead rotor is defined by a potential energy associated
with its bending:

Ving, = E:Lu, Tu) dy [4]

with E;, I; and [; being the Younds modtjus, the second moment of area and the
length of ead rotor, respedively.

The beaings and the intershaft beaiing are introduced througha potential associ-
ated with their stiffnessand a function o disspation associated with their damping.
Morepredsely, the potential expressonassociated with theintershaft beaing stiff ness
is defined by:

1
%earing = 5Au(yinter)TKinterAu(yinter) [5]

where Au(yinter) = Upp (yinter) —Upp (yinter ) .

Two diredions of displacement are considered for eat shaft as two orthogoral
tranglations in the disks plane. The transverse displacements «; and w; are defined
using a Rayleigh-Ritz approximation:

Z Uz z
u; (ya t) = mtot [6]

sz z

where y denotesthe ébscissa dongthe shaft, my,; isthe number of Ritz functionscon-
sidered to describe the shaft bending. V!, (y) represents the displacement polynomial
shape function associated with ead rotor.
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2.3. Bladed disk ssmplified model

up, . (s,t)

17 it blade

W(Ydisk, t)
u(Ydisk, 1)

Rigid disk

Figure 2. Bladed disk Figure 3. Bladed disk model

Since an energy formulationis used to developthis model inthe L P rotating frame,
the kinetic energy 7}/ of the j'" blade can be defined as foll ows:

Lb Lb
) 1 1
Tg = /§PbSbV§/RO(G)VS/Ro(G)d5+/gw:SF/ROI‘*’S/RodS [7]
0 0

where vg/r, (G) and wg/ r, are the speed and the rotation o the mass center of a
blade aoss ®dion, respedively. | is the blade inertia matrix defined in its inertial
frame. Ry denotesthe global frame, s the asciss dongthe blade, p, and S;, are the
density andthe aeaof ablade aoss ®dion, respedively.

As for shafts, a potential energy associated with the dastic strain of bladesis de-
fined by:

Ly

1 /" 2
Vint, = 5 /EbIb (Ub (SJ)) ds [8]
0

where [, is the Younds moduus of elasticity of the blade, I, is the blade second
moment of areafor flexure and v, the displacement vedor of ablade.

Moreover, a pre-stresspatential has been defined in order to take the cantrifugal
effedsinto acoun in the model:

2 _ 2 ,
‘/cenb — l/prleQp <(T + Lb) (S+T) ) 'LLbQ(S,t)dS [9]
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with €, the rotation speed of the LP rotor and r the bladed disk radius.

Yy

B
up(s,t
Chod ¥ | (5%)

s \‘ N .

7" blade

Figure 4. Topview of the bladed rigid disk

Only ore diredion o displacement for ead blade is considered to represent its
defledtion uj (s, ). It is assuumed that the minor principal moment of inertia of the
blade aoss ®dion coincides with the chord diredion. Thus, the blade lateral deflec
tion (s, t) under pure bending moment takes placein the diredion namal to the
chord. The interested reader can refer to (Sinha, 2004 for details. This defledionis
defined using a Rayleigh-Ritz agpproximation as foll ows:

Ntot

ul(s,t) =Y X} (1)Y](s) [10]

where n;,; denotes the number of functions considered for the bending d the ;"
blade. Y7 (s) represents the displacenent shape function which satisfy the damping
condtionat the blade atachment and its expressonis:

Y, (s) = sin(ans) + bps + ¢, 8 [11]
~ (@n-D)r
n = 57—

with ¢ by, = —ay, [12]

b2
Cp = (E”) sin(by, Lp).
Then, the Lagrange equations of the full dynamic system of the bladed dual -shaft
take the foll owing matrix form:
Mg+ D+G)g+(K+N+P)g=0 [13]

Inthisexpresson, M, D, G, K, N and P are the massmatrix, the damping matrix, the
gyroscopic matrix, the stiff nessmatrix, the spin softening matrix, and the drculatory
matrix, respedively.
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The generalized vedor q(t) isthe combination o al degrees of freedom and can
be written as:
alt) = |Up™ (&) Wo™(t) - UY

Mtot

() WP (8) Ug (1) WeP(t) -

Mtot

L 14

Ut () Wit () XE@) - X2 (1) - X0 o XD (0)]

Mtot Mtot Ntot Ntot

where N, represents the total number of blades.

3. Nonlinear dynamics
3.1. Equation governing the system and definition of nonlinearities

Thefull model (cf. Sedion 2) consistsin two shaftsconreded byalinea intershaft
beaing with a bladed disk rigidly linked to the LP shaft; this model is linea at this
stage. In order to grasp the complex dynamicsof such asystem, nonlineaitiescoming
from beaings have to be considered. In this gudy, the norlineaity is introduced on
the intershaft bearingwhich conredsthe L P and the HP shaft dynamics. The equation
governingthe dynamic behaviour of the system with the unbaelance ecitationsandthe
norlinea forces can be formulated as:

MG+Cq+Kqg+Fulq) =F, [15]

whereC = D+ G andK = K + N + P are the generali zed damping and stiff nessma-
trices, respedively. F,;(q) represents the norlinea force vedor and F,, the external
forcevedor (HP or LP unkalance).

The model used to definethe nonlineaity located onthe intershaft beaing consists
in a deaance and a contad nonlinea iff nessinvolving four generalized degrees of
freedom.

Let us consider the relative displacenent vedor of the intershaft beaing:

Au= (v~ “lp) 1
e S 116
where the displacanent values are taken at the intershaft beaiing abscissa. Then, the
norlinea forcevedor definingthe mntad forceis described by:.

Au
Tau] 117

where k,,; and § arethe nonlinea stiff nessandtheradial clearancevalue, respedively.
H(.) representsthe Heaviside'sfunctionand || Au|| = v Au? + Aw?. Thisnoninea
force defines a hilateral clearance in the intershaft beaing. Its projedion onthe
x axis is illustrated in Figure 5. In order to oltain the periodic solution o the
nonlinea bladed dual-shaft system, the Harmonic Balance Methodis one of the most
widespread methods thanks to its aff ordable computational cost.

Fr(Au) = ki ([|Aull = 0) H (|| Aul] - 6)
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Fnlz

Figure5. Representation d the nonlinear force

3.2. Numerical methods for the nonlinear resolution

3.2.1. The harmonic balancemethod

The main ideaof this method consists in asuuming that the solution q(¢) of the
motion equation[15] is sarched as a periodic functionwith the same period 7" as the
excitation. Indedl, the solution can be gpproximated by truncated Fourier series of
order N, withw = 2 the fundamental frequency:

q(t) =~ ag + (&, cos(kwt) + by, sin(kwt)) [18]

WE

k=1

where ay, a;. andb;, definethe Fourier coefficientswhich are the new unknavns of the
system. Asthe solutionis assumed to be aperiodic function with the same period as
the unbalanceforces, the nonlinea forcevedor can also be goproximated by Fourier
seriestruncated in the same order N, that reads:

N
Fo ~co+ Z (C cos(kwt) + dy sin(kwt)) [19
k=1

The cdculation o the harmonic nonlinea coefficients c;, ¢, d; will be described
in sedion 32.3. Once the gproximations [18] and [19] have been substituted in
the motion equation [15], a Galerkin projedion o this motion equation ower the
trigonametric basis (1, cos(wt), sin(wt), - - - , cos(Nwt), sin(Nwt)) leadsto asystem
of (2N + 1)ng.s norlinea algebraic equations (wheren, s isthe number of degrees
of freedom for the bladed dual-shaft system):

AXp, + Frp, (Xn) = Fy, [20]
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where F,,, and F,,;, are the projedions of the excitation and the norlinea terms
over the trigonametric basis, respedively. A represents the dynamic stiffness
correspondngto ead harmonic comporent:

A° 0 0
0o A' ... 0
A= . . . . -
A’ =K;
with K — (kw)*M kw)C [22]
Ak: |: _((kw))é R_((kzd)QM s fOfk:l,... ,N.

Eventually, the norlinea algebraic system [20] can be solved by a Newton-like
method

3.2.2. The path following continuaion

TheHarmonic BalanceMethodis coup ed with apath foll owingcontinuationtech-
nique. This approach allows to follow the evolution o the system with resped to a
chosen control parameter denoted by 1. In that case, this parameter is the rotation
speed €, of the LP rotor as the dynamic resporse is sougtt in a rotation speed range
of the LP rotor which isknown.

A predictor-corredor algorithmisused to determinethe solution pair (X, ). Here
we asume that one solution pdnt (X, 1) of the resporse airve is already known,
where X} is the solution vedor of the Fourier coefficients and 1i* denotes the chosen
control parameter. The predictor algorithm considered in this dudy is the tangent
predictor which providesan estimation o the foll owing solution pant cd culated from
the previous lution (x; , 1%). Then, this estimation is used as a starting pdnt for the
corredion algorithm. A Newton-Raphson algorithm is employed to determine the
solution pair (xi™, ui*1). By using the ac-length continuation procedure (Nayfeh
et al., 1995 Kim et al., 2009, the estimated solution has to verify the hypersphere
equation dof radius As:

A = It x|+ - p)? 23

Finaly, the Newton-like corredion algorithm employed to solve the augmented sys-
tem of norlinea equations [20] and [23] leads to the solution pair (x}"*, ui*1). The
step size As is adjusted acordingto the cnvergenceof previous geps.

3.2.3. Determination o the harmonic norinear coefficients

The nonlineaity defined in Sedion 31 is drong and norrsmocth. In order to
establish the implicit relation F,,;(Au) between the nonlinea force and the relative
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displacement vedor and its projedion F,,;, (X;,) into the frequency space an Alter-
nating Frequency/Time domain strategy (AFT) is employed (Cameron et al., 1989.
Thisone can be represented by the foll owing scheme:

ap Co
aj C1
b1 —1 dl
xp=| . | == a(t) > Fula) = Fu, = | . [24]
ay CN
bN dN

The starting pant of this methodis an estimation o Fourier coefficientsvedor x;,.
Then, an inverse Fast Fourier Transform (FFT) procedure is employed to determine
the gpproximated temporal displacement q(¢) which is used to evaluate the norlinea
forces in the time domain. Finally, an FFT procedure is applied on these forces in
order to ohtain the harmonic coefficients ¢y, ¢, andd;, of the nonlinea contribution.

4. Numerical ssimulations

Asexplained previously, the bladed dual-shaft system studied hereis composed of
two rotors suppated by a set of beaings and an intershaft beaing. These shafts are
conreded to several rigid disks andto a simplified bladed disk model |ocaed onthe
LP shaft. All the parametric valuesfor the complete model are givenin Table 1. Inthis
sedion, linea and norinea studies of the bladed dual-shaft will be presented. First,
alinea analysisis caried ou. This analysis detail s the balanced rotors behaviour to
extrad the modal elements. Unbalanced linea behaviour is then expaosed for future
comparison with unkalanced norinea behaviour. In a second time, the nonlinea
intershaft beaing model is used. Unbalanced responses are then built and compared
to the linea ones.

4.1. Linear analysis of the model

4.1.1. Modd andysis

Thelinea analysis of the bladed dual-shaft system withou any unkelances al ows
to get mode shapes and classcd Campbell diagram. The mode shapes are studied at
null speed andrepresentedin Figure 6. Theintershaft beaiingislocaed inthe ebscissa
y = 0, the position o the HP rotor is displayed in the negative abscissas, whereas that
of the LP rotor is gotted in the pasitive abscissas. The frequency of the first mode
is f1 = 27 Hz, it is mainly a dual-shaft mode with a low participation of blades.
The semond mode & fo = 41 Hz is mainly a LP rotor mode espedally at the rigid
disk locaion. The blades dynamicsis negligible on this mode shape. The third mode
isidentified as a pure blades mode and all the blades vibrate & the same frequency
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Table 1. Parametric values of the bladed dud-shaft system

Notation Description Value
lhp Length of the HP shaft 1m
dhp Diameter of the HP shaft 0,05m
Ydiskn,, Abscissa of the HP disk -0,2m
Ybearingn, Abscissaof the HP beaing 1 -1m

Ybearingn, Abscissa of the HP beaing 2 -0,9m
Kiearingy, HP flexible couging stiffness 4,3.10* N/m
Kiearingn, HP rolling beaing stiffness 3.10° N/m
lip Length of the LP shaft 1,7m

dip Diameter of the L P shaft 0,04 m
Ydisky, Abscissaof the LP disk 1 0,1m
Yaisky, Abscissaof the LP disk 2 1,5m
Ybearing,, Abscissaof the LP beaing 1 0,2m
Yoearing, Abscissa of the LP beaing 2 1,2m
Ybearingy, Abscissaof the LP beaing 3 1,4m
Ybearing, Abscissaof the LP beaing 4 1,7m
Kiearing, LProlling bearing stiffness1 1,5.107 N/m
Kiearing, LProlling beaing stiffness2 1.10° N/m
Kiearing, LProlling beaing stiffness3 1.10” N/m
Khearing, LP flexible couping stiffness 4,3.10* N/m
Enp,ip Youngds moduus of rotors 210.10° N/m?
Php.ip Density of rotors 7800 kg/m®
Moty 1, Number of Ritz functions for rotors 6

Yinter Abscissa of the intershaft beaing 0m

Kinter Intershaft bearing stiffness 1.10° N/m
Ny Total number of blades 4

Ly Length of blades 0,17m

By Younds moduus of blades 114.10° N/m?
Db Density of blades 4500 kg/m?
8 Incidence andle of blades 60°

Ntot Number of Ritz functions for blades 2

f3 = 51 Hz. Finadly, the last studied mode & f, = 78 Hz isastrondy couped mode
between the dual-shaft and the blades.

The evolution o the d@gen frequencies of the system as a function o the rotation
spedal of the LP rotor give us a Campbell diagram, seeFigure 7. This oneis repre-
sented in therotatingframein LP precesson. The bladed dual-shaft isfull y axisymet-
ric implying that the @gen frequencies are doule & null speed. On the one hand, the
eigen frequencies f1, fo and f4 open with resped to the rotation speed which is char-
aderistic of gyroscopic efeds of rotors. On the other hand, the frequencies of blades
modes (f3) increase with resped to the rotation speed. Thisfedureis dueto the cen-
trifugal effeds which have been introduced in the model, see euation [9]. Besides,
equations being written in the rotating frame the negative dope aurves are forward
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Mode1: 27Hz Mode2: 41Hz

y (m) y (m)
Mode 3: 51 Hz Mode 4 : 78 Hz
0.6 -1
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E o2
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-0.2
-1 0 1 2
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Figure 6. Mode shapes of the system - (—) HP rotor, (—) LP rotor with blades and
(o) bearingslocation

modes, whereas the positive slope aurves are backward modes. The frequency of the
synchronousexcitation o the LP rotor can bereal onthe abscisa ais f = 0 because
the system is observed in the LP rotating frame. The intersedions of forward modes
with the abscissa ais define the aiticad speeds for LP unbalance. The dashed line
represents the frequency of the synchronows excitation o the HP rotor f = ), — €y,
in the LP rotating frame. In the same way, the intersedions of this line with forward
modes define aiticd speeds for HP unbelance The aiticd speeds of the forward
modes are summarized in Table 2. The ratio of the rotation speed of the HP rotor to

that of the LP rotor is %% =2.8.

4.1.2. Linear unbdanceresponses

As the rotordynamica system model is axisymetric, only the forward modes are
suppased to respondto the unbalance eccitation (Lalanne et al., 1998. In the speed
range Y, = [0; 2200] rpm, thelinea forced resporse aurveswith resped to untelance
forcesare shownin Figure 8 for the relative displacament of the intershaft beaiing. On
the one hand, the L P unbalance ecitationis a constant forcein the LP rotating frame.
The dashed curve representsthe L P unbalanceresponse of theintershaft bearing. One
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Figure 7. Campbell diagram - Evolution o (—) dud-shaft and (—) blades natural
frequencies according to the LP rotation sped, (- - -) Synchronous exdtation o the
HP rotor in the LP frame

Table 2. Critical speeds of the bladed dud-shaft
Criticd speeds (rpm)

Modes LP unbalance HP unkelance
1 1850 610

2 — 960

3 — 2110

4 — 1870

can observe that only the first mode is excited by the LP unbalance in the studied
spedal range. On the other hand, the HP unbalance ecitationis a harmonic forcein
the LP frame. Furthermore, it is important to naticethat the first four modes are dl
excited in this geal range. The blade tip displacement is also ill ustrated in Figure 9
with resped to the HP and the L P unbalances.

4.2. Nonlinear studies

Here, the norlinea unbelance resporses due to the norlinea intershaft beaing
will be investigated. Various cases of excitation will be considered, namely the LP
unbelance, the HP unbalance and bah untalances.
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Qup (rpm)

Figure8. Linear responses of theintershaft bearing- (—) HP and(- - -) LP unbdance
exdtation
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Figure9. Linear responses of the bladetip - (—) HP and(- - -) LP unbdance exda-
tion
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4.2.1. LP unbdanceresporse of the norlinear system

Now, let us consider the nonlinea dynamics of the bladed dual-shaft subjeded to
aLPunbalance Theunbalanceislocaed onthe bladed disk at the distanced = 74
and the unbelance massvalue ism,, = 50 g. Only the first mode is observed in this
case because only this one is excited in the studied rotation speed range. The radia
clearancevalue introduced in the model isd = 10 um correspondngto aworn bea-
ing. Figure 10 shows a zoom of the norlinea LP unkalance response aurve aound
thefirst pesk which islocated at €2;, = 1850 rpm. The number of the harmonic com-
porents retained in the solution for all the nonlinea results is equal to ore because
the harmonic comporents become less sgnificant for upper orders. First, the evolu-
tion o the relative intershaft displacement with resped to the rotation speed €2y, is
described onFigure 10(a) and highlights the nonlinea behaviour of the bladed dual-
shaft. Indeed, for displacement values which are inferior to the deaance value, the
norlinea and linea resporse aurves merge. When the deaance value is readed,
one can observe that the contribution o the norlinea terms of the intershaft beaing
changes the behaviour of the system. In the same way, the blade tip resporse shown
in Figure 10(b) has been studied. This analysis aso highlights the sensitivity of its
behaviour to the nonlinea intershaft beaing. This phenomenon olserved onthe pegk
indicates the “hardening effed” of the nonlineaity. Thiseffed implies an increase of
the frequency and, consequently, an increase of the aiticd speed.

8\
Blade tip displacement (m)

Intershaft rel ative displacement (m)

1846 18465 1847 1847.5 1848 1848.5 1849 18495 1850 1846 1846.5 1847 1847.5 1848 1848.5 1849 18495 1850 1850.5
Sllp (rpm) ”lp (rpm)

@ (b)

Figure 10. (- - -) Linear and (—) norinear LP unbdance responses of mode 1 with
the nonlinear intershaft bearing - (a) Relative displacement of the intershaft bearing
and(b) Bladetip displacement

4.2.2. HP unbdanceresponse of the norlinear system

The norlinea dynamics of the system subjeded to an HP unhkaelance ecitation
has also been analysed. The unbalanceis located onthe HP disk at d = ry;4, and
the unbalance massvalue is also m,, = 50 g. In order to compare the HP unbalance
resporseto the previous gudy, the first modeis observed andthe deaanceintroduced
inthemodel hasthesamevalued§ = 10um. Figure11 dsplaysa zoomof thenorlinea
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HP unbalance resporse aurve aoundthe first peek which is locaed at €, = 610
rpm. The same kind o observations can be drawn with resped to the previous case.
The relative intershaft displacement curve shown in Figure 11(a) indicates that the
behaviour is modified when the deaance is consumed. Moreover, an analysis of
the blade tip resporse, seeFigure 11(b), has been carried ou and tends to show the
influence of the “hardening effed” of the nonlineaity onthe peak. Consequently, the
frequency and the aiticd speed valuesincrease.

Blade tip displacement (m)

Intershaft rel ative displacement (m)
-
5,

=
S,

6102 6104 6106 6108 611 6112 6114 6116 610.4 610.6 610.8 611 611.2 611.4
lep (rpm) le (rpm)

(@ (b)

Figure 11. (- - -) Linear and (—) norlinear HP unbdanceresporses of mode 1 with
the nonlinear intershaft bearing - (a) Relative displacement of the intershaft bearing
and(b) Bladetip displacement

It is important to nate that the HP unbalance response of mode 2 has naot been
analysed in the present work because the intershaft beaiing dsplacement is negligible
on this mode shape, see Figure 6. Similarly, the couged mode (mode 4) has been
investigated with the same parametersfor the unbalancemassand the deaancevalue.
A zoom of the norlinea resporse of both the intershaft relative displacament and
the blade tip displacement aroundthe rotation speed €2, = 1870 rpm is represented
in Figure 12(Q) and Figure 12(b), respedively. One can observe the norlinea
behaviour when the amplitude readies the deaancevalue § = 10 um. Indeed, the
pe&k of the norlinea resporse aurve is locaed at a higher frequency than that of
the linea resporse aurve. Thus, the resporse of the bladed dual-shaft system has
been performed onthe one hand for the LP unkalance and onthe other hand for the
HP unbalancein the rotation speed range €2;, = [0;2200] rpm. These last remarks
emphasise the interadion between the dynamics of both the dual-shaft and the blades.

4.2.3. Resporee of the norlinear systemwith bah unbdances

In this ®dion, the LP and HP unhalance resporses of the system are analysed
considering bah excitations at the same time. The analyticd formulation has been
fully developed in the LP rotating frame (cf. Sedion 2). In this edfic frame, the
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Figure 12. (- - -) Linear and (—) norlinear HP unbdanceresporses of mode 4 with
the nonlinear intershaft bearing - (a) Relative displacement of the intershaft bearing
and(b) Bladetip displacement

LP unbelance ecitation can be seen as a constant force whereas the HP unbalance
is considered as a harmonic force with w = Qj, — £, the fundamental frequency.
During the Galerkin projedion procedure, these unbalanceforces are projeded over
the trigonametric basis (cf. Sedion 3). Therefore, the LP unbalance eccitationis the
constant part of the vedor F,,, and the HP unbalance ecitation is developed onthe
harmonic comporents of the same vedor F,,,, .

,a
S

N
S,
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Blade tip displacement (m)

Intershaft rel ative displacement (m)

1845 1850 1855 1860 1865 1870 1875 1845 1850 1855 1860 1865 1870 1875
lep (rpm) le (rpm)

(@ (b)

Figure 13. (- - -) Linear and(—) norlinear unbdances responses with the nonlinear
intershaft bearing - (a) Relative displacement of the intershaft bearing and(b) Blade
tip displacement

On the linea forced resporse shown in Figure 8, the contribution of both excita-
tionsis observedin the speed range €2, = [1800; 1900] rpm. Then, Figure 13showsa
zoom of the norlinea response of the bladed dual-shaft system. The same parameters
have been chosen for the unbalance masss m,,,, = m,,,, = 50 g andthe deaance
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value 6 = 10 um. The global response has the same behaviour as the LP unbalance
resporse (seeFigure 10) for thefirst peak and the same behaviour asthe HP unbalance
resporse of the mode 4 (seeFigure 12) for the second peek. Therefore, one can con
clude that the basic Harmonic Balance Method is well-suited to study the norlinea
resporse of the system under both unkelance ecitations.

5. Conclusions

A full bladed dual-shaft model has been developed in the rotating frame. The gy-
roscopic €feds, the spin softening effeds and the cantrifugal eff eds have been taken
into acount, leading to a complete system from a phenomenadlogicd and physicd
point of view. This model alows to asessthe interadion between blades dynamics
and dual-shaft dynamics throughmode cougingswhich have been observed.

Besides, the study o the dynamic behaviour of thiscomplex system invalving non
lineaiti es has been carried out. The nonlineaity has been introduced in the intershaft
beaingwhichisa aucial organ conredingthe dynamics of both rotors. The nonlin-
ea forcemodel includesa mntad noninea stiffnessand a deaance The Harmonic
Balance Method cougded with an arc-length continuation technique has been imple-
mented in order to analyse the bladed dual-shaft system with a nonlinea intershaft
beaing. Asthe mnsidered norineaity is grongand norrsmoath, an AFT procedure
has been developed to ohtain the norlinea forced resporse. On the resporse aurves,
the influence of the nonlineaity has been identified througha hardening effed onthe
resporse aoundthe pe&. The introduction df a norlinea intershaft beaing hes al-
lowed to investigate the excitability of the blades located onthe LP rotor subjeded to
HP unbelance ecitations.

It would be interesting to investigate more harmonic comporents in the Fourier
decmmpositionin order to study the influence of the gpproximation onthe global re-
sporse of such a system. Avenues for future reseach work would consist in taking
more redistic blades models into acourt. At first, an extension o this work would
be to replacethe simplified bladed disk model by a full Finite Element model more
representative of the blades geometry. Eventually, the multi-stage oyclic symmetry
techniques (Laxalde et al., 2007) may also be examined in order to consider several
bladed disks on the dual-shaft model.
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