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ABSTRACT. In this paper, we present a fourth-order accurate and a seventh-order accurate,
one-step compact difference methods. These methods can be used to solveinitial or bounday-
value problems which can be modeled by a first-order linear system of differential equations.
It is then shown in detail how these methods can be used to solve vibration problems of one-
dimensiond continuows systems. Natural frequencies of a cartileve beam in transverse
vibrations are computed and the results are compared to andytical ones to prove the high
accuracy and efficiency of both methods. A comparison was also made to a finite element
solution and the results have shown that both compact-difference methods yield more
accurate values even with a reduced number of intervals.

RESUME. Dans cet article nous présentons deux méthodes numériques basées sur les
différences compactes, une prédse au qudriéme ordre et une autre au septiéme ordre. Ces
deux méthodes peuvent servir a la résolution de problémes a valeur initiale ou a valeurs
limites, modélisables par un systéme d'équations différentielles du premier ordre. Nous
montrons en détail comment ces méthodes sont appiquées au calcul des fréquences propres
de systemes unidiredionrels continus. Les résultats obtenus sont confrontés a des valeurs
andytiques et la haue prédsion des deux méthodes est mise en évidence Une deuxiéme
comparaison avec des valeurs obtenues par la méthocde des éléments finis a montré que les
méthodes propaosées sont plus prédses.
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1. Introduction

The study of the vibrations of beams and other continuows one-dimensional
mechanicd systems is of major importance in agonautica engineeing and other
fields. Misdles, aircraft wings, fuselages, propeller blades, rotor blades... are all
examples of so cdled aaospace beams. The complexity of the structure and
geometry of these beams makes it often imposdble to obtain analyticd solutions.
The improvement of existing numericd methods, and the devising of new ones,
remains therefore the concern and objedive of many research efforts.

There exist arealy different methods that can ded with the vibration problems
of continuows one-dimensional systems. The finite dement method, the Rayleigh-
Ritz method and to a lesser extent the finite diff erence method, are among the most
commonly used methods. Fourier transforms have also been used (Karlson,
1985.The differential quadrature method (Bert et al., 1996, the boundry
charaderistic orthogoral paynomials (Liew et al., 1995 and the pseudo spedral
method (Lee et al., 2004 have been used in recent yeas. The Adomian
deaomposition method has also been applied to beam vibration problems (Hsin et
al., 2008. A pure boundry element method has been applied to study the torsional
vibrations of composite bars (Sapourtzakis, 2005).

The compaa difference methods, presented here, have both the acaracy of
integral methods and the relative simpli city of the finite diff erence method They are
cdled compad becaise the approximation of derivatives is made over only two
conseautive nodes. Nevertheless the approximation error is O(h%) for the fourth-
order acarate method and O(h”) for the seventh-order one, h being the interval
separating the two conseautive nodes. To obtain this kind of acaracy when
approximating the first derivative by clasdcd finite difference approac one would
need to use five conseautive equally-spacel nodes for the fourth-order acarate
method and eight for the seventh-order acarrate one. A higher number may be
required if the nodes are not equally spacead (Rubinet al., 1976).

One other charaderistic of the method introduced here is that it caries out a
global seach, yielding a large number of eigenvalues and their correspondng
eigenvedors in one run of the computer code. Thisis an advantage very few other
methods present.

Fourth-order acarrate compad-difference methods have been used by (Malik,
1988 and (Yahiaoui, 1993 for the linea stability studies of boundary layers. In
view of their higher acaracy and relative simplicity, efforts shoud be made to
extend the compad-diff erence approadc to al engineaing science problems where it
can be applied.

In this paper, we introduce two compad-diff erence methods: ore is fourth-order
and the secondis seventh-order acairate. We then show in detail how these methods
can be applied to al types of vibration problems of one-dimensional cortinuows
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systems. A comparison with analyticd solutions and to values obtained by a finite
element solution using ABAQUS has proven the very high acarracy asociated with
the proposed methodks.

2. General formulation of a seventh-order accurate method

This method is based on the one-step integration formula (Abramowitz and
Stegun, 1988 p. 897) which we apply for avedor of functions:

Zy = Zn-s+ (ha/2)(Zy + Z}_y) — (h2/10)(Z — Z_,)
+(h3/120)(Zy + Z}L,) + 0(hD) [1]

The“primes’ indicae derivatives of with resped to the independent variable and the
indices refer to node numbers.

The mathematicd problem we consider here is a first-order system of differential
equations of the form:

7'=AZ
where A is a square matrix of order m. It isin general a function of the independent
variable. The domain is an interval [a, b] which is divided into N small, generally
unequal, intervals such that:

Aa=xy<x; < <x,<<xy=b ; h,=x,—Xp_1

We then write the second and third derivatives of the vedor Z as matrix
transformations of the form:

7" =BIZ

7" =cCZ
with:

B=A"+A?

C=B"+BA

=A"+AA+AA + (A + AD)A
=A"+ 24 A+ AA' + A3
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Equation [1] becmes:

h, h2 h3 q
I + 7An_1 + EBn_l + mcn_l ZTL—l
3

2

hy, h2 ERA
—(1-24,+ 2B, ——2C, )2, =0
( 2 At gt T g0 tn )

where I isthe identity matrix of the same order as matrix A.

Let: , ,
Qny =1+ hz_nAn—l + %Bn—l + %Cn—l
hn n A
Rp=—1+="An = 75Bu+ 55 Cn
to obtain the compad form:
Qne1Zp1+RpZ, =0 , 1<n<N [2]

Equation [2] is the basis for the solution to different problems. It certainly can be
used as a time-marching method for initial-value problems just like the methods of
Runge-Kutta, Adams, etc. But marching methods are generally not convenient for
boundry-value problems unlessthey are combined with other methods such as the
shoaing method for example. The advantage of the method developed here, in
addition to its higher acarracy, is that it can diredly handle boundiry condtions at
two ends, and thereby allows for the solution of some types of boundry-value
problems such as the vibrations of continuous one-dimensional mechanicd systems.

3. Application to vibrations of continuous one-dimensional systems

Among boundry-value problems which can be treaed with this compad-
difference method are eigenvalue problems deding with the vibration (axial,
flexural, torsional, couded, etc.) of one-dimensional continuows mechanicd systems
(strings, beams, rods, transmisson shafts, etc.).

For such a problem, Equation [2] along with appropriate boundry condtions
can be cast in the generali zed eigenval ue-problem form:

GZ=AFZ [3]

This more standard form makes it posdble to take advantage of realily available
eigenvalue solvers.
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Since matrices Q,,_, andR,, are linea combinations of matrices |, A, B, and C,
Equation [3] can be obtained by simply writing matrices A, B, and C in the form:

A=A1_/’{A2
B=Bl_ABZ
C=C1_AC2

As we will see later, the decompasition of the system dynamics matrix A is
possble for al vibration problems of one-dimensional mechanica systems that do
not include viscous damping. We will show that this is true in the case of the
flexural vibrations of beams with and withou rotary inertia and shea deformation
effeds. Such a case is representative of all vibration problems of one-dimensional
continuous systems.

We now try to write matrices B and C in the desired form:

B = A, + A2 = (Al - AAz), + (Al - lAz)(Al - AAz)
= Ay + A2 — A(Ay + AjAy + Ay Ay) + 2243

We safely assume that:

A3 =0 [4]
We will seethat this is true in the case of flexural vibration of a beam, where
matrix A, is highly sparse. In fad, this matrix has only ore norzero entry for most
cases of one-dimensional cortinuows systems. This entry comes from the
acceaeration term in the equations of motion. The lateral vibration of a beam
including the effeds of shea deformation and rotary inertia yields two noreero
entries. But even in this case, the condtions onA, still halds. It foll ows that:

By = A} + A2

BZ = A’z + AlAZ + AzAl

As for matrix C, we have:

= B:’l + BlAl - /’{(Bé + BlAZ + BzAl) + AZBZAZ

We also assume that:

B,A, =0 [5]
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Thiswill also turn out to be the case for most, but not all vibration problems of one-
dimensional continuous systems. Asaresult, we get:

C, = A} + 24, A} + AlA, + A3
C, =AY + 2414, + 2A5A; + A AL + AL AL + A2A, + A AL A, + A,A?
We now have a more conveniently linea eigenvalue problem. But even if
condtions [4, 5] are not satisfied, the solution of the nonlinea eigenvalue problem

is gtill posdble as shown in the work (Bridges et al., 1984, who presents different
methods of solving problems where the eigenval ue appeasin anonlinea form.

Matrices Q and R of Equation [2] can now be written:
Qn-1 = (Ql)n—l - A(Qz)n—l

Rn = (Rl)n - A(Rz)n

where:

hy, hs, hs,

(Ql)n—l =1+ 7 (Al)n—l + E (Bl)n—l + m (Cl)n—l
h, h,21 hf;

(Q2)n-1 = 7 (A)n—q + E (B2)n-1 + m (C)n-1
(R = 1+ 40— 22 8, + 2 (),

2 10 120

hy, ha, h;,

(R = > (A)n — 1o (B2 + 120 (Cn

We now have a generalized eigenvalue problem in the form of Equation[3], i.e.:
GZ = AFZ
This represents a system of mN equations inm(N + 1) unknowns, m being the

order of matrix A and N the number of intervals. Matrices G and F, and the global
vedor Zare given by:
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Qo  (Ris 0 0
0 ©)r R - 0
G=| ; :
0 0 0 QIv—2 Ryt
0 0 0 0 (Q)n-1 (Rl)N
|

Q2o (R4 0 0
0 @) R 0

0 0 0 (@2 Ruan
0 0 0 0 (Q@In-1 Ry

)
)

In order to complete the formulation, m boundry condtions are needed. These
are spedfic to the problem to be solved. Each boundry condtion provides an
additional equation and therefore increases the number of rows of matrices G and F
by one. Once al m boundiry condtions are applied, we get a square system of
equations of order Ny = m(N + 1).

3.1. A typical problem: lateral vibrations of a beam

The free transverse vibrations of a homogeneous beam are gowverned by the
equation:

02 P 0%v 0
[ zz(x) ] +—= (x) F - [6]

where p isthe material density and E is Younds moduus. For more generality, we
have all owed for variable quadratic moment I, and crosssedional areas.

Asauming harmonic oscill ations, we write:
v(x, t) = f(x) sin(wt + ¢)

Asaresult, Equation[6] becomes:

d2 2
|0 L2 - st = o 7]
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We then introduce the foll owing nondimensional quantiti es:

L, =1;/1o

Area$S, and quadratic moment I, are reference quantities that will be defined for
eat spedfic problem. For a tapered cantilever bean for instance, we chose the
values at the roct sedion as references. Equation[7] becomes:

1.d? ([ _ 1d*Lf) R
(IOIZZL_ZW> = w? ESOSLf

12 dx?
Or:
2 27 4
(i) =2 ST o
We let:
p=P5
El,

so the frequencies are given by:

_ V2 [El,
2 PSo

and equation [8] becomes:

(L.f") = ASf
which we rewrite in the form:

Fo = a2 f -z gl
IZZ IZZ IZZ
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Wethen let:

A
I

£
o

fi
Zy = | —1,1,

n

£
n

It foll ows that:
0 1 0 0
|[ 0 0 1 0 ]|
Zr=l0 0 0 1 |z,
S I’I 1’
ll/l_— 0 —= —zﬁjl
IZZ Y4 zZZ
Matrices A; and A, and their first derivatives are therefore given by:
01 0 0
|[O 0 1 0 ]|
A,=]|0 0 0 1|
I0 0 —% —Zél
l zzZ IZZJ
0 0 0O
|[ 0 00 0]|
A,=| 0 0 0 O]
l—i 0 0 0I
"1, ]
0 0 0 0
00 0 0
A =10 0 0o 0
0 0 Iézlz” - Izzlz”z, 2 (Iz,z)2 - IZZIZ”Z
i 12 12
Y4 Y4
0 0 0O
0 0 0O
A,=|_ 0 0 0 0
St,—S'l,,
72 0 0O

779
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and the norzero entries of matrices AYand A} are:

[(1)? = L2 L, — 2T, — LI,

A(43) =

12,
A”(4 4) =2 (I_ézl_z”z - I_ZZI_Z”Z’)I_ZZ - 2[(1;2)2 - I_zzl_gz]l_éz
. I
A”(4 1) _ [51_2”2 - 5”1_22]1_22 - 2(51_2,2 - S_ﬂl_zz)l_z,z
2 4 - T

3
Izz

It can easily be chedked that the previously set condtions on matrix A, [4] and
onits product with matrix B, [5] hold. This gives the conveniently linea eigenvalue
problem we have hoped for.

We consider in particular the case of a cantilever beam. Our choice here is
arbitrary since we coud have chosen afreefree a clamped-simply suppated or any
other combination of clasicd boundry condtions. Non clasdcd boundry
condtions such as lumped masses somewhere along the beam span or at beam ends
can easily be handed by this method

To be more spedfic, we consider the example of a cantilever beam with a
lumped massat its freeend. The bean is tapered in width and height (Figure 1) and
has aredanguar crosssedion whose width and height are given by:

w(x) =we[1—(1-ay,)x/L]
h(x) = ho[1 — (1 — 0p) x/L]

where g,, and g}, are the taper ratios for the width and height, respedively.

Figure 1. Atapered cantileve beam with a lumped massat itsfreeend
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We let:
w(E) = Wf) —1-(1-0,)%
h(x) = h,(f) =1-(1-0,)%

and define the reference areaand quadratic moment to be:

So = wohy
= woh3
)

Therefore:

S(x) = w@)h(X)
[(%) = w(x)h3(x)
The boundary condtionsonv(x, t) at the clamped end of the beam are:

v(0,t) =0
dv
a(o, t)=0
The correspondng boundiry condtions on f (¥) are:
f =0
fl@@=o0

781

These imply that the only norzero entries in the first two rows of matrices G and F

are.
G(1,1) =1

G2,2) =1
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The boundxry condtions correspondng to a lumped massm,, at the freeend are
obtained by summing forces in the y-diredion and summing moments abou the

center of gravity of the lumped mass

92v(L, t) o

_‘/y(L, t) =my atZ

2

0%v
my F (L, t)

2

9
Jogez (L 1) } )MZ(L, 0

0 V(L t)
d

Figure 2. Feebody diagram of a lumped massat the beam freeend

whereJ, is the moment of inertia of the lumped mass abou its center of gravity
and d isthe distancefrom that point to the bean tip (Figure 2).

Using the fad that the shee force and bending moment are given by:
0%v
Z 0x2

oM, 0l,, 0%v 3v
= _E .0 + ZZ 7.3
Jx 0x2 0x3

M, = EI,

Y ox
and expressng in terms of the previously defined non dimensional quantities,
Equations[9] and [10] can respedively be written:

my -

Ba(DF" () + Lo(DF " (1) = =2 F()

I, dl" 1| Ffa dl‘ Fr1(1) = A Jo F(1
zz()+Zzz() f()+Zzzf ()— pSoL3f()
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It follows that the only noreero entriesin the last two rows of matrices G and F are:
G(Ns -1 NS - 1) = I_z,z(l)

G(Ns -1, NS) = I_zz(l)

my
pSoL

F(Ny—1,N,—3) =
4
G(Ng, Ny —1) =1,, + lez(l)

d_
G(Ns' Ns) = lez(l)

Jo

F(Ng,Ng —2) = —/———
(S S ) pSOL3

N, being the order of the system.

In order to chedk the acarracy our method, we consider the case of a cantilever
beam of constant crosssedion (o, = 0,, = 1) and we set the massand moment of
inertia of the lumped massto zeros. Our choice of this case is motivated by the fad
that analyticd values for w exist and are given by:

2
o=l [

Values of the frequency parameter 8 are solutions to the charaderistic equation:

coshfcosfp+1=0 [11]

and can be obtained by diff erent method of solving nonlinea algebraic equations.

A FORTRAN code was written to implement the present sixth-order acairate
compad difference scheme. Eigenvalues and eigenvedors were obtained using
subroutine “rg” from the IMSL FORTRAN library.

The results obtained (Table 1) corfirm the very low error associated with the
present compad-difference method The maximum relative error for the first ten
frequenciesis highly minimal (it is about 0.009% for N=25 at the tenth mode). With
100intervals, the results are pradicdly identicd to the analyticd values.
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Table 1. Frequencies of the first ten vibration modes of a prismatic cantileve beam
(Ww=30cm; h =5cm; L=2m; 0=2800Kg/n?; E=72GPa)

w(rad/s)
Seventh-order acarate compad
mode difference method Analyticd solution
N=25 N=100
1 64.3364946 64.3364946 64.3364917
2 4031899295 4031899291 4031899111
3 11289434978 11289434764 11289434259
4 22122789523 22122786370 22122785380
5 36570574446 36570551019 36570549379
6 54630186748 54630070805 54630068334
7 76301942450 76301504495 76301500975
8 101586207557 101584843433 101584838548
9 130483764625 130480088283 130480081514
10 162996090863 162987239413 162987229849

In Table 2 we show the effed of alumped massat the freeend of the cantil ever
beam on its first five frequencies. The lumped masswas taken as a solid circular
cylinder whose length (1,.) is equal to the beam width at the freeend and whose mass
isexpressd in percentage of that of the beam:

my = ByMy

Its radius and moment of inertia are given by:

To =+ mo/(ﬂpclc)
Jo= morOZ/Z

The massdensity of the cylinder (p.) was taken to be the same as that of the beam
and the parameter K,,, was varied from 5 to 100%.

The results show that, as one might intuitively exped, alumped massat the free
end lowers all first five frequencies of a cantilever beam. The relative change in the
first frequency varies from 2.4% whenm, equals 5% of the bean massto 29.6%
when the lumped massis equal to the beam mass
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Table 2. Effed of a lumped massat the freeend on the first five frequencies (m, is
given in % of beam mass N=25)

my(%) | wi(rad/s) | wy(rad/s) | ws(rad/s) | ws(rad/s) | ws(rad/s)
0 64.3365 4031899 | 11289435 | 22122790 | 36570574

5 62.7836 3938370 | 11036321 | 21642955 | 35801669
10 613341 3857498 | 10831201 | 21277059 | 35246023
25 57.5060 3669868 | 10399088 | 20560410 | 34202623
50 524318 3467485 9983105 | 19886940 | 33145495
100 45.2951 3243688 9521189 189443 3107.6979

We now apply the method to seethe effed of taper on the natural frequencies of
the same cantilever beam. Figure 3 shows the separae effeds of width taper and
height taper on the frequencies of the first threemodes.

120 1 1 a 1 ‘ : : :
- A4 \ | | | v  width taper (ow) effect
2 w00y
k | v | | O height taper (o,) effect
g‘ Sotliiiiﬁiiii‘7777Y7777+7777j 77777 1= = = =~ |1—— = - = - = - -
| ﬁ ful A4 | |
I I T = ] E .1 L)
60 L L L L L L L

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S00p——3 | | | | | |
400"‘?‘?‘7‘7;*41.

@ [ [ [ i i |
8 I I I n\ fu [n] |
= annl I n o T o ]
R R s R SRR
SO N N S S SN N S BN
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1500 | | a | | | | |
R v | | | | | | | |
2 y v v v v v v ﬁ o
© 1000F---- J.7777L7777477774777747777¢,777ﬂ, ,,,,,,,, -
= | | | ﬁ o | |
g ‘ ] o ‘ 1 1 1
m I:‘ | | | | | | |
500 | | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

taper ratio

Figure 3. Effed of width taper (a,,) andheight taper (o;,) onthe first threevibration
frequencies
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It is seen that tapering the width by a fador g, causes a much greder increase in
the first frequency than tapering the height by an equal fador. We also note on the
same figure that the effed of tapering the height on the higher modes is reversed.
This is confirmed by Table 3 where it can be observed that tapering the width
increases all ten frequencies whil e tapering the height increases the first frequency
but lowers the other nine.

Table 3. Effead of 50% width and height taper on the first ten frequencies of a
cartileve beam (N=100

Mode No taper o, = 0.5 o, = 0.5
1 64.3364946 78.9595345 69.9681013
2 4031899291 4303583484 3351715714
3 11289434764 11564269332 864.8578225
4 22122786370 22403809436 16550743579
5 36570551019 36854948060 27081547749
6 54630070805 54916698541 40241913879
7 76301504495 76589708607 56032785078
8 101584843433 101874220586 74454551134
9 130480088283 130770372148 95507418726
10 162987239413 16327824500 119191506089

3.2. Extension to other one-dimensional continuous systems

Most vibration problems of one-dimensional continuous systems are governed
by equations similar to Equation [6] but with lower order spatial derivatives. Axial
vibrations of arod of variable crosssedion are governed by the equation:

d ( au) _ pSd*u
ax\"ax/ E ot?
where u isthe axial displacenent andS isthe variable crosssedionarea

The torsional vibrations of a rod of variable crosssedion are gowverned by a
similar equation:

6( 69)_p1p629
ax\Poax) G ot?
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Where 6 isthe torsion andle, I, is the polar moment of inertia of the cross-sediorél
areaand G is shea moduus.

These equations have one accéeration term only. Matrix A, will have one
norzero entry, just like in the case of transverse vibrations of a beam. These
equations can also be solved using our seventh-order acarate compad difference
method

4. A fourth-order accurate method

Althoughcondtion [4] can be satisfied for most, if not all, vibration problems
one-dimensional cortinuots systems, that on the product of B2 and A2 [5] is hot
valid for some spedfic problems. We will see that this is true in the example of
lateral beam vibrations including rotary inertia and shea deformation effeds. For
this problem there are two accéeration terms in the couped equations of motion,
resulting in two noreero entries in matrix A,. The product of A, with matrix B, will
not be zero and we canna apply the seventh-order acairate method

For such problems we propose the following fourth-order acarate compad
difference method, which is based on the Euler-Madaurin summation formula
(Isaasonet al., 1966:

n-1 1 [xtnh 1
D+ = [GEEE RO

3

h h
+E [f'(x+nh) — f'(x)] - 120 "'(x +nh) — f""(x)] + 0(h°) [12]

We set n = 1 andtake the derivative of Equation [12] with resped to x:
14 _ 1 eh ! d 1 I h I
e =g @31 - )

fO@+h - fP@]+ 0k

h 3
F UG ) = ] = 56

This can be written in the foll owing form:

h
fOth)=f0)+3[f (x+h)+f (0]

2

h 4
—p ) = U]+ 0(hY)
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This truncaed series, applied to a vedor of variables, gives an equation similar to
Equation [1] but with a truncation error that is of the order of h} instead of k7. The
resulting discretized equationis:

= =

hy 2, 5 R s s
Zy=Zny +— (T + Zna) — 15 (21 = Z30) + 0(h)

Which can be put in the same form as Equation[2], i.e.:

h, h2 S h, h2 -
I +7An_1 +EBn_1 Z‘n—l + —1 +7An - EBTL Zn = 0
The generalized eigenvalue problem remains of the same form as in the

previously implemented seventh-order acairate method, with the following changes
in the basic matrices:

2

h, ha
(Ql)n—l =1+ 7(A1)n—1 + E(Bl)n—l

2

_hy hn
(Qz)n—l - 7 (Az)n—l + E (Bz)n—l

2

h, hn
(Rl)n =-I+ T(Al)n - E(Bl)n

hy, H
(Rz)n = 7 (Az)n - E (Bz)n

Sincethere is no matrix C as in the seventh-order acairate method, condtion [5]
is no longer needed and the method is lessrestrictive on the type of problems that
can be solved.

To ched for acarracy, the first ten frequencies of the same uniform cantil ever
beam are recdculated using the fourth-order acarate method As seenintable 4, the
values obtained are highly acarate. The relative difference at the tenth mode
between the frequency given by this method and the one given by the analyticd
solution is abou 0.5% when the number of intervals is equal to 25 and down to
0.002%6 when taking 100intervals.
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Table 4. Comparison of the frequencies given by the fourth-order accurate method
to andytical ones

mode | Fourth-order method | Fourth-order method | Analyticd solution
N=25 N=100
1 64.3365002 64. 3364946 64.3364917
2 4031913182 403 1899346 4031899111
3 11289738584 1128 9435957 11289434259
4 22125060088 2212 2795345 22122785380
5 36580748824 36570591542 36570549379
6 54663771012 5463 0205800 54630068334
7 76392403303 7630 1872015 76301500975
8 101796942462 10158 5709938 101584838548
9 130924035199 13048 1922560 130480081514
10 163841215861 16299 0810378 162987229849

4.1. Beam vibration including shear deformation and rotary inertia effects

We will now apply the fourth-order acarate method to the lateral vibration

problem of a bean including the effed of shea deformation and rotary inertia
(Figure 4).

Let J be the rotary moment of inertia per unit length of the beam. The equations
of motionare:
oV /ox = pS d%v/ot? [13]

oV /dx +V =] 320 /dt? [14]

Tangent to center line

A 2]

Figure 4. Element of beam subjed to shear deformationandrotary inertia effeds
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The shea forceVcan be related to the shea deformation angley through the
fundamental relations:

V = kSG (617 9) 15
- ax [ ]
where G is the shea moddus, v is the defledion of the center ling, 9 is the angle
due to bending and k is a factor depending on the shape of the cross sedion (k =
2/3 for aredanguar crosssedion, for example).

Bending moment M is given by:

a0
M = El, [16]

Z ox

Substituting Equations [15] and [16] into [13] and [14], we get the final couped
equations of motion:

9 (EI 60) ksc(av 9)— 0% 17
gx \Elez g ) T RSG5 = 0) = 5 [17]
g kSG(av 9) _ s 18
ax ax 0) T PS a2 18]

Again assuming harmonic motion, Equations [17] and [18] can be written in the
form of a system of first-order differential equations:

0 0 ! 0
( B, \| 6
1

= R
| 1 0 kSG | (M

0
\—]wz 0 0 1 / 14
0 pSw? O 0

Matrices A; and A, and heir first derivatives are:

6
d|v
dx |M

V

o
o

=S
N
Il
cococo
cooo

SO B
o o
oo O
[EnN

o

©

9]
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Iz,
00 ~gz O 0O 0 0 0
, s | . [0 0 00
tTloo 0 g P RTL 0 000
\00 0 0/ 0 ps" 00
00 0 0

It can be easily chedked that condtion [4] on matrix A, is satisfied. Matrices B,
and B, can now be cdculated and thereof matrices G and F of the generalized
eigenvalue problem can be constructed.

The first ten frequencies of the same uniform cantilever beam are recdculated
using the fourth-order acarrate method and taking into consideration shea
deformation and rotary inertia effeds. The frequencies obtained are plotted below
(Figure 5). It is foundthat omitting these eff eds causes a 3% overestimation of the
fifth frequency and 11.5% of the tenth one. As it generaly the case, these effeds of
are negligible for the lower frequencies of slender beams but not for thick ones
(Ferreiraet al., 20086.

4

x 10
2 T T T T T ;
O Simple Euler beam theory :
VvV  Shear deformation and rotary inertia effects ! o
15 ,,,,, L - L L __ 1 __1____d____ | — { |
| | | | | | | | A 4
| | | | | | | |
| | | | | | | [n]
1 1 1 1 1 1 1 Y
[ (S A . I o]
A A R A A
1 1 1 1 1 g 1 1
| | | | | | | |
05F- - SN S A S ]
1 1 1 ] 1 1 1
1 ; L] 1 1 1 1 1
o ] ‘ 1 , 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Figure 5. Effed of shear deformation and rotary inertia onthe first ten frequencies
of a cantilever uniform beamwith a redanguar crosssedion

4.2. Comparison to a finite element solution

By al means, the purpose of this article was nat to study the effed of taper or
that of shea deformation and rotary inertia on beams but to show how the highly
acarate compad difference methods can be applied to the solution of vibration
problems of one-dimensional continuos systems.
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To further demonstrate the predsion of the proposed methods, we condict a
solution of the same cantilever beam vibration prodem by a finite element method
using ABAQUS. The B22 beam type element was used in the analysis. It is a
quadratic threenode element that can hande bending, stretching and shea
deformation.

In Table 5 we present the frequencies and the correspondng relative errors (with
reference to the analyticd values given previoudy) obtained by the compad-
difference methods and the finite element method solution. It is clea that error
asciated with the compad-diff erence approadh is much lower than that assciated
with the FEM solution. The CPU time for the tabulated values was 500ms for the
FEM solution, 156ms for the fourth-order method and 187ms for the sixth-order
method

Table 5. Comparison of the compact-difference methods with an FEM solution

FEM solution using
mode | fourth-order method Sixth-order method ABAQUS

(N=25) (N=25) (100B22 elements)
o (rad/s) | % error o (rad/ls) | %error | o (rad/ls) | % error

1 64.3365| 0.000 64.3365| 0.000 64.305| 0.049
2 4031913| 0.000 4031899| 0.000 40182 | 0.340
3 11289739 0.003 11289435| 0.000 11198 | 0.610
4 22125060| 0.010 22122790| 0.000 21797 | 1.473
5 36580749 | 0.028 3657.0574| 0.000 35725 | 2312
6 54663771| 0.062 54630187 | 0.000 52827 | 3.301
7 76392403 | 0.119 76301942 | 0.001 72901 | 4.457
8 101796942 | 0.209 101586208 | 0.001 95773 | 5721
9 130924035| 0.340 130483765| 0.003 12123 | 7.089
10 163841216| 0.524 162996091 | 0.005 14907| 8.539

5. Conclusions

In this work, we have introduced two compad diff erence methods, one is fourth-
order and the other is seventh-order acarrate. These methods are suitable for the
solution of initial and boundiry-value problems that can modeled by a first-order
system of linea differential equations. Their main advantage is that they can handle,
in adired manner, some important boundiry-value problems such as the vibrations
of one-dimensional continuows mechanicd systems. This has been shown by
considering the typicd problem of free lateral vibrations of a tapered cantilever
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beam, with and withou the effeds of shea deformation and rotary inertia effeds.
The case of alumped massat the free end of the beam was also treaded We note
here that the method is one of global eigenvalue seach, yielding an important
number of frequencies and mode shapes in one run of the FORTRAN code
implementing these methodk.

The first ten frequencies of a cantilever prismatic beam have been computed
using both methods. Their high acairacy has been demonstrated by comparing the
obtained results to their analyticd courterparts. For the seventh-order method, the
relative error did not exceal 0.005% at the tenth mode when taking only 25
intervals. As for the fourth-order method, the error was about 0.5% at the tenth
mode when taking 25 intervals and down to 0.002% when the number of intervalsis
increased to 100.

We then applied the seventh-order method to study the effed of tapering the
width and height on the natural frequencies of a cantilever bean. The results show
that tapering the width increases al ten frequencies while tapering the height
increases the first frequency but lowers the other nine.

We have also shown that, whenever the seventh-order method canna be applied
to some particular problems (mainly problems with more than one acceeration term
in the governing equations of motion), the fourth-order acairate method, being less
restrictive, can be used. The transverse vibration of a beam including shea
deformation and rotary inertia effeds is such a problem. The frequencies obtained
by the fourth-order method confirm that negleding these eff eds has minimal impac
onthe values of the lower frequencies of slender beams.

Finally, we have made a comparison of the values of the frequencies obtained by
the compad-difference methods to those obtained by a finite element method
solution using ABAQUS. The results have strondy confirmed the higher acaracy
of the compad-difference solutions.
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