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ABSTRACT. Using stochastic finite elements, the response quantity can be written as a series 
expansion which allows an approximation of the limit state function. For computational 
purpose, the series must be truncated in order to retain only a finite number of terms. In the 
context of reliability analysis, we propose a new approach coupling polynomial chaos 
expansions and confidence intervals on the generalized reliability index as truncating 
criterion. 

RÉSUMÉ. La méthode des éléments finis stochastiques permet d’exprimer la réponse d’un 
système sous forme d’une série polynomiale appelée chaos polynomial. Numériquement, cette 
série doit être tronquée pour ne retenir qu’un nombre fini de termes. Dans le cadre de 
l’analyse de fiabilité, nous proposons une méthode adaptative utilisant les intervalles de 
confiance sur l’indice de fiabilité généralisé comme critère de troncature du chaos. 

KEYWORDS: Bootstrap, confidence intervals, reliability analysis, polynomial chaos, fatigue. 

MOTS-CLÉS : Bootstrap, intervalles de confiance, analyse de fiabilité, chaos polynomial, 
fatigue. 

DOI:10.3166/EJCM.19.795-830 © 2010 Lavoisier, Paris 

 



796 European Journal of Computational Mechanics. Volume 19 - No. 8/2010

Main notations

c.o.v Cœfficient of variation

X Physical input random vector

ξ Standard Gaussian independent input vector

T Isoprobabilistic transformation

G Response of the system, performance function in the physical space

G̃ Approximation of G using polynomial chaos

gj Chaos coefficient

g Vector of chaos coefficients

ψj Hermite polynomials

p Chaos order

P - P (k) Chaos number of coefficients - Size of the chaos of order k
M Number of random variables

E[.] Mathematical expectation

ϕM Uncorrelated multinormal probability density function

N Number of mechanical evaluations

ξ(i) Vector of the ith experiments in the Gaussian standard space

G Vector of mechanical evaluations

Pf - P̃f Probability of failure - Probability of failure estimation using Monte

Carlo simulation onto the polynomial chaos

PMC
f Probability of failure estimation using Monte Carlo simulation on

the true mechanical model

β - β̃ Reliability index - Reliability index estimation using Monte Carlo

simulation onto the polynomial chaos

βMC Reliability index estimation using Monte Carlo simulation on the

true mechanical model

Φ Standard Gaussian cumulative density function

N (p) Size of the Design Of Experiments number p
B Number of bootstrap loops

α Confidence level

[β̃k,p
min
, β̃k,p

max
] Confidence interval on the reliability index computed from chaos of

order k on the DOE number p

β̃k,p Punctual estimation of reliability index based on the DOE number p
from chaos of order k
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1. Introduction

Nowadays, it is a common practice in the industry to use the finite element method

in order to predict the structural behavior. Particularly, fatigue lifetime predictions are

primordial. According to the ASTM (American Society for Testing and Materials),

the fatigue life is defined as the number of stress cycles Nf that a specimen sustains

before the failure occurs. The fatigue process of mechanical components under service

loading is random in essence. The randomness comes mainly from the loading process

and the fatigue resistance of material. An appropriate modeling technique is required

to include the variability of both material properties and external loadings. (Liu et

al., 2007) introduced a general methodology for stochastic fatigue lifetime prediction

under variable amplitude loading in the case of uniaxial loading. They combine a

stochastic S-N curve approach with Karhunen-Loève expansion technique. (Sain et

al., 2008) proposed a statistical framework in order to assess the fatigue lifetime of

plain concrete beams (based on a linear elastic fracture mechanics crack propagation

theory) through Monte Carlo simulations with Latin Hypercube Sampling technique.

In the case of fatigue crack growth, (Bigerelle et al., 2006) used Lambda distribu-

tions and Bootstrap techniques to obtain accurate estimations of the PDF (Probability

Density Function) of the coefficients of the Paris-Erdogan relationship. According to

(Walz et al., 2006), the use of confidence bounds provide important information on the

accuracy of failure probability predictions in the light of the uncertainties of the avail-

able data base. This proves that taking randomness into account in fatigue prediction

is critical and of great interest. Besides the authors established a probabilistic fracture

mechanic model for the failure of turbine disks. This model is based on reliability

analysis coupled with Monte Carlo simulations and bootstrap confidence intervals on

the probability of failure.

However, in all the previous cited references the randomness is simulated through

Monte Carlo simulations. Even if Monte Carlo methods are universal, they are time

computing expansive and sometimes impossible to use. A viable approach to over-

come the computational burden is to substitute the true model for a response surface

or a meta-model. Several kinds of surrogate meta-models have been developed, in-

cluding polynomial response surface (Rajashekhar et al., 1993; Zheng et al., 2000),

Kriging meta-modeling (Kaymaz, 2005; Echard et al., 2009; Echard et al., 2010),

Gaussian meta-models (Marrel et al., 2009), artificial neural networks (Papadrakakis

et al., 1996; Elhewy et al., 2006; Cheng et al., 2008), radial basis functions and support

vector machines (Hurtado, 2007; Li et al., 2010). Polynomial-based response surface

is a widely used surrogate model due to its simplicity and effectiveness. The response

surface method uses least-squares regression analysis to fit low-order polynomials to

a set of experimental data. Besides, the model function is typically chosen to be first-

or second-order polynomials which is likely awkward when it is used for represent-

ing multi-modalities and non-linearity commonly appearing in complex engineering

problem (Giunta et al., 1998). Therefore, in the case of reliability analysis, it requires

the use of techniques such as FORM and SORM to find the reliability index which

implies an iterative procedure (Gayton et al., 2003). To interpolate the limit-state, an-
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other solution is to use the polynomial chaos expansion (Ghanem et al., 1991; Soize

et al., 2004). It corresponds to a response surface in a particular basis (Hermite poly-

nomials for example) which yields an intrinsic representation of the random response

of the model in terms of its polynomial chaos expansion. This approximation on an

explicit functional basis is of great interest and well suited to straightforward post-

processing. The following quantities may be derived from the polynomial chaos

expansion: statistical moment analysis (Malliavin, 1997), global sensitivity analysis

(Sudret, 2008), reliability analysis (Sudret et al., 2002) and the probability density

function of response quantities. Thus, the scope of the present work paper is focus

on such approach. Support Vector Machine (SVM) provides a novel approach to the

two-category classification problem (operating or failed) with connections to the un-

derlying statistical learning theory (Shawe-Taylor et al., 2000). SVM methods have

gained considerations with their great effectiveness for reliability studies especially

when combined with subset simulation (Rocco et al., 2002; Deheeger et al., 2007).

Following this classification approach, (Echard et al., 2009; Echard et al., 2010) pro-

posed to used Kriging in reliability analysis (based on the work by (Kaymaz, 2005)).

The idea is to develop an iterative method in order to optimize the number of experi-

ments adding points in areas with high variance. These classification approaches are

very efficient but if the reliability level is modified then all computations have to be

done again.

More precisely, in the context of structural mechanics (Ghanem et al., 1991) pro-

posed the Spectral Stochastic Finite Element Method. In this setup, the inputs are

represented by Gaussian random fields that are discretized using the Karhunen-Loève

expansion. The model response is expanded onto a particular basis of the probabil-

ity space called the polynomial chaos (Ghanem et al., 1991; Soize et al., 2004). The

solution is computed by a Galerkin minimization scheme in the random dimension

which makes the approach intrusive: modifications of the deterministic model and

of the computer code are required. As the present work is aimed at addressing in-

dustrial problems, we focus our attention on the so-called non intrusive approaches

(Isukapalli, 1999; Puig et al., 2002; Berveiller et al., 2006) which do not required an

adapting of the governing equations. The deterministic model is considered to be a

black-box (see (Keese, 2004) for example). According to (Pellissetti et al., 2006), "the

interaction with third party codes is a key asset" to solve large-scale problems but there

are some limitations such as the consideration of a high number of random variables

and low probability of failure. Applications of the stochastic finite elements method

in structural reliability have been shown in (Sudret et al., 2002; Choi et al., 2004a).

The reader can find a more detailed discussion on general purpose software for struc-

tural reliability in (Lemaire et al., 2006; Pellissetti et al., 2006; Reh et al., 2006). In

(Heiermann et al., 2005), a strategy for the assessment of uncertainty, through con-

fidence intervals, in the estimation of the failure probability of ceramic components

due to the scatter of material data is presented. Confidence intervals for the failure

probability are obtained by means of stochastic resampling methods and in order to

save computation time, neural networks are used.
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The objective of this paper is to demonstrate the contribution of resampling tech-

niques for reliability analysis with polynomial chaos based approaches. Even if poly-

nomial chaos based approaches are now commonly used, it remains two difficulties:

firstly, the choice of the polynomial approximation order and secondly the selection

of the best design of experiments. The polynomial chaos can be seen as a response

surface. On that account, it is build from a design of experiments containing more or

less data’s (depends on the case study). But, in the industry, new data’s can be very

expensive to obtain. The use of resampling techniques permits to explore and eval-

uate the variability of results without new computations (Efron et al., 1993; Gayton

et al., 2003): taking the initial design of experiments into account, the validity of the

results can be checked. That is the reason why we use bootstrap techniques to com-

pute confidence intervals on the reliability index and pilot polynomial chaos based

approaches to find the best chaos order and the best DOE for the considered problem.

Section 2 deals with literature review on the various methods involved. Then, in

section 3 the principles of the RPCM method are explained and detailed. Finally, some

possibilities of the approach are investigated in sections 4 and 5 through academic and

industrial applications.

2. Literature review

2.1. Stochastic finite elements and reliability

Following the historic work by Wiener (Wiener, 1938) on the Homogeneous

Chaos, the Stochastic Finite Element Method has been developed by (Ghanem et

al., 1991). It is based on the discretization of the input random fields and on

the expansion of the mechanical response onto the polynomial chaos (Ghanem et

al., 1991; Soize et al., 2004). The input random vectorX is transformed into a Gaus-

sian random vector ξ with independent components using an isoprobabilistic trans-

form T : ξ 7→ T (X) (Ditlevsen et al., 2007; Lemaire, 2009). Thus, the interesting

response quantity (performance function in a reliability context) G is approximated

by a truncated series expansion:

G(X) = G
(
T−1(ξ)

)
≈ G̃

(
T−1(ξ)

)
=

P−1∑

j=0

gjψj(ξ) [1]

p is the chaos order, P is the number of chaos coefficients defined byP = (M+p)!
M !p! and

{ψj , j = 0, . . . , P − 1} are multivariate Hermite polynomials (even if other possibil-

ities are available: see (Xiu et al., 2002)) based on the M random variables, whose

degree is less or equal than p (p is fixed a priori). The chaos coefficients gj are eval-

uated either by projection or regression. Recently, a stepwise regression technique

has been proposed by (Blatman et al., 2008) to build up a sparse PC expansion in
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which only a small number of significant basis functions are retained in the response

PC approximation.

The projection method. This method is used by (Puig et al., 2002; Xiu et al.,

2002) and is based on the orthogonality of the Hermite polynomials with respect to

the Gaussian measure. It comes from Equation [1]:

gj =
E[G.ψj ]

E[ψ2
j ]

=
1

E[ψ2
j ]

∫

RM

G
(
T−1(ξ)

)
ψj(ξ)ϕM (ξ)dξ [2]

where ϕM (ξ) is the uncorrelated multinormal probability density function of sizeM .

The integral can be evaluated by simulation (Monte Carlo, Latin Hypercube Sampling)

or by a quadrature scheme (Field, 2002; LeMaître et al., 2002; Keese, 2004). Never-

theless, this projection schemes might lead to prohibitive computational cost because

of:

– a large set of realizations of the output variable G
(
T−1(ξ)

)
is required by sim-

ulation techniques;

– the cost of the quadrature technique strongly increases with the number of input

parameters (for K integrating points and M random variables KM calculations are

required).

Despite, the projection method aims at computing the exact gj coefficients when

the goal of regression techniques is to find the best compromise for a given truncation

order of Equation [1]. In consequence, the regression technique is used.

The regression method. This method is based on a least square minimization

between the exact solution and the solution approximated using the polynomial chaos

(Isukapalli, 1999; Berveiller et al., 2006). Considering N experiments, the regression

method consists in finding the set of coefficients g that minimizes the difference:

∆G =

N∑

i=1

(
G
(
T−1

(
ξ(i)

))
− G̃

(
T−1

(
ξ(i)

)))2

[3]

ξ(i) correspond to the vector of experiments coordinates in the standard space. The

classical solution reads:

g =
(
ΨTΨ

)
−1

ΨTG [4]
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The matrix Ψ is defined as follow:

Ψ =




ψ0(ξ
(1)) · · · ψP−1(ξ

(1))
...

. . .
...

ψ0(ξ
(n)) · · · ψP−1(ξ

(n))


 [5]

and G =
{
G(1), . . . , G(N)

}T
corresponds to N mechanical evaluations. The P × P

matrix ΨTΨ may be evaluated once and for all. The crucial point in this approach is

to properly select the N regression points: N > P is required so that a solution exits

(system well-conditioned) but how many points must be taken into account? Which

polynomial chaos order p must be chosen a priori when the smoothness of the model

or function to approximate is unknown? These two problems are treated through

confidence intervals on the reliability index β.

Reliability analysis. Structural reliability is usually defined in terms of the prob-

ability of failure Pf :

Pf = Prob [G(X) 6 0]

=

∫

G(X)60

fX(x)dx [6]

fX(x) is the joint probability density function of the random variables X and G(X)
defines the performance function:

– G(X) = 0: defines the limit-state function,

– G(X) 6 0: defines the failure domain.

If possible, the reference value of the probability of failure is obtained through crude

Monte Carlo simulation needing a large NMC mechanical evaluations and expressed

as:

PMC
f =

NG60

NMC
[7]

NG60 being the number of time the performance function is lower than zero. As

a stochastic finite element analysis is performed, the function G is replaced by its

approximation G̃ onto the chaos. The approximation P̃f of Pf is given by:

P̃f =
NG̃60

NMC
[8]
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Finally, the general reliability index β̃ is defined as follow:

β̃ = −Φ−1(P̃f ) [9]

where Φ is the standard Gaussian cumulative density function.

2.2. Resampling techniques

One of the goals of resampling techniques is to compute confidence interval on a

statistic. The reliability index β̃ is a statistic which depends on the DOE see (Gayton

et al., 2003). Confidence intervals will be computed on the reliability index β̃.

The bootstrap. The concept of the bootstrap was first introduced by Efron in

1979 (Efron, 1979). It is an improvement of the jackknife procedure. Efron’s boot-

strap has been set to estimate not only the standard error but also the distribution of

a statistic. Let’s consider an original set G = {G1, . . . , GN}T of N evaluations of

a performance function G through mechanical computation. Let β be a real-value

function of the distribution (such as its mean value for example). β̃ is the value of β
estimated from the data G. The bootstrap principle is to create B bootstrap samples

(also called bootstrap resamples)G(k), k = {1, . . . , B} of size NB build by sampling

with replacement from the original data G: bootstrap resampling do not required ex-

tra mechanical computations. For each G(k), the corresponding value β̃ is estimated.

According to Efron and Tibshirani (Efron et al., 1993) the number of resamples B is

often between 30 and 200 for estimating standard errors and 1000 for confidence in-

tervals involving percentiles estimation. However, for accurate percentiles estimations

it could be more than 100000 (Hesterberg, 2007). Compared to the usual simulation

techniques (Monte Carlo and LHS), the Bootstrap avoids to choose a priori a PDF

for the set of data points. This way, there is no need to first identify the data’s PDF

before sampling which makes the Bootstrap suitable for industrial data’s. However,

due to the Bootstrap principle, the Bootstrap dataset is composed of elements from

the original data points appearing zero, one, twice (or more) time which modifies the

level of influence of each data point on the final parameter estimates.

Confidence intervals. A confidence interval gives an estimated range of values

which is likely to include an unknown population parameter, the estimated range be-

ing calculated from a given set of data. Confidence intervals are usually calculated

so that this confidence level α is 0.95, but other values (0.90, 0.99, 0.999, ...) can be

produced. The size of the confidence interval gives us some idea about how uncertain

we are about the unknown parameter. A very wide interval may indicate that more

data’s should be collected before anything very definite can be said about the param-

eter. We propose to use the Bias Corrected and accelerated (BCa) intervals as rec-

ommended in the literature (DiCiccio et al., 1996; Walz et al., 2006) which corrects



RPCM 803

the percentile interval for bias and skewness. Let’s consider B bootstrap samples

G(k), k = {1, . . . , B} and their corresponding parameter β̃. The confidence limits

[β̃min, β̃max] are the percentiles of the β̃ distribution corresponding to the values of the

normal distribution Φ at points u1 and u2. More precisely, u1 and u2 are the endpoints

that is to say the points of the normal distribution where the percentiles will be com-

puted. The definition of the points u1 and u2 includes the bias-correction uperc as the

acceleration a (DiCiccio et al., 1996):

u1 = uperc +
uperc + uα/2

1− a(uperc + uα/2)

[10]

u2 = uperc +
uperc + u1−α/2

1− a(uperc + u1−α/2)

uperc is the p−percentile of Φ defined from the proportion p of bootstrap values of β̃
less than the value computed on the wholeG sample (which clearly corresponds to the

bias-correction). The parameter a is called acceleration and is linked to the variation’s

rate of the standard error of β̃ when the parameter β varies. According to (DiCiccio

et al., 1996), the acceleration a is defined as follow using a Jackknife procedure:

a =
1

6

n∑

i=1

(
β̃J − β̃(−i)

)3

�

[
n∑

i=1

(
β̃J − β̃(−i)

)2
]3/2

[11]

In this expression, β̃(−i) is the estimation of the parameter β from the initial set of

data’s G removing the ith observation. β̃J is the mean of all the β̃(−i) values.

3. RPCM - Presentation of the proposed method

For computational purpose, the series defined by Equation [1] is truncated to only

retain a finite number of terms. The convergence rate of this truncated PC depends on

the smoothness of the function to approximate. (Field et al., 2004) propose various

metrics for evaluating a posteriori the accuracy of truncated PC expansions. However,

in our context the smoothness of the model is not known a priori and our goal aims

at minimizing the number of model evaluations: such measures cannot be directly

computed. This difficulty is overcame using confidence intervals. The goal is to

answer to the following questions:

– Which chaos order must be chosen?
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– When should we stop to add extra data’s?

These two questions leads to an adaptive procedure with a learning loop and an en-

richment loop. There is one convergence test which is based on the confidence interval

width. For each DOE, all the possible chaos orders are tested: this is the learning loop.

Once all possible orders have been tested, if there is still no convergence then the DOE

does not contain enough information and more data have to be provided: this is the en-

richment loop. In the same way, if for the same chaos order, there is no convergence

when increasing the size of the DOE, then the chaos order must be increased. The

confidence interval are computed using Bootstrap resampling. The general procedure

is detailed Figure 1. A focus is provided on the learning loop Figure 2. Each step is

detailed hereafter.

Figure 1. Resampling Polynomial Chaos Method procedure
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Figure 2. Details on the learning loop (Step 2)

Step 0 - First chaos order

Without any knowledge on the mechanical behavior, a linear chaos p = 1 (the less

expansive chaos order regarding the required number of mechanical evaluations) is

firstly set:

G̃(ξ) = g0 + g1ξ1 + ...+ gMξM [12]

It needs at least M + 1 mechanical computations of G to assess the gi coefficients.
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Step 1 - Design of experiments and mechanical computations

Each Design Of Experiments (DOE) is numbered in relation with the chaos order

it permits to reach. For example, the DOE number p allows the computation of the

chaos expansion of order up to p. The size N (p) of the DOE p is consequently linked

to the number of coefficients P (p) of the chaos of order p. The proposed rule is (M is

the number of random inputs):

N (p) = 2P (p) = 2
(M + p)!

M !p!
[13]

This rule is linked to data’s replication due to the Bootstrap use. In order to be well-

conditioned, the regression system needs P + 1 different terms. Based on numerical

tests, one way to satisfy this condition is to take a DOE of size 2P . For each DOE,

data are created using Latin Hypercube Sampling (McKay et al., 2000). The Latin

Hypercube Sampling (LHS) is a stratified sampling technique which ensures a better

uniformity over [0, 1]
M

. It is recommended by (Novak et al., 2001; Olsson et al.,

2002; Choi et al., 2004b; Blatman et al., 2007) to improve computational efficiency

while reducing simulation cost. For the first DOE, the polynomial chaos order is set

to 1 which implies that DOE number 1 has a sizeN (1) = 2(M + 1).

Step 2 - Learning loop

The details of the learning loop are given in figure 2. All the possible chaos orders

are tested; that is to say that for the DOE number p, chaos order k for k = 1 to

k = p is tested. For each chaos order k, a bootstrap resample of 2P (k) experiments

is randomly chosen among the 2P (p) available experiments with replacement. The

use of Bootstrap implies data’s replication which modifies the level of influence of the

data points. In a stochastic FEM scheme, this could modify the conditioning of the

least square regression system. The use of weighted least squares regression (Carroll

et al., 1988; Ryan, 1997; Gayton et al., 2003) ensures that each data point has an

appropriate level of influence. Equation [3] is modified as follow:

∆G =

n∑

i=1

ωi

(
G
(
T−1

(
ξ(i)

))
− G̃

(
T−1

(
ξ(i)

)))2

[14]

ωi is the weight of the ith experiment and Equation [4] reads:

g =
[
(WΨ)

T
(WΨ)

]
−1

(WΨ)
T
(WG) [15]

which is equivalent to replace Ψ by WΨ and the vector G by WG. W is a diagonal

matrix of weights ωi for the regression problem. All weights are positive. A weight
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of k is equivalent to have replicated that data point k times during the bootstrap step.

From the generated chaos, the probability of failure is calculated by sampling the

polynomial chaos expansion using crude Monte Carlo simulations. However, in order

to avoid the Monte Carlo bias, the same sample is used to evaluate each probability

Pf . The size of the sample is chosen a priori: for a probability of order 10−n, 10n+3

samples are used. Finally, the reliability index is deduced from Equation [9]. By gen-

erating B = 1000 bootstrap resamples, a sample of B reliability indexes is generated

and a 95% confidence interval [β̃k,p
min
, β̃k,p

max
] is obtained. This confidence interval is the

confidence interval on the reliability index computed on a chaos of order k from the

DOE number p. At the end of the learning loop, p reliability index confidence intervals

are obtained from the DOE number p with all the possible chaos orders. The middle

value β̃k,p = 1
2 (β̃

k,p
min

+ β̃k,p
max

) of each confidence interval is used as a point estimation

of the reliability index.

Step 3 - Convergence test

The convergence test is based on the confidence interval length. It is an indicator of

the quality of the meta-model; the smallest the interval is, the best is the quality of the

approximation onto the polynomial chaos. It is defined as follow:

|β̃k,p
max

− β̃k,p
min

|

β̃k,p
6 ǫβ [16]

ǫβ is defined a priori according to the level of accuracy (1% for example).

Step 4 - DOE enrichment

When k = p, the maximum chaos order for DOE number p has been reached.

If there is still no convergence, the DOE needs enrichment. It is done using LHS.

N (p+1) − N (p) data points are added in order to guarantee that the chaos of order

p+ 1 can be computed.

Step 5 - Final conclusions

If the convergence test is successful the procedure stops. In the context of reliability

analysis, according to the RPCM procedure, the best chaos order has been reached.

Finally, the RPCM procedure provides the following information:

1) The best chaos order to reach the reliability objective with the required confi-

dence interval,

2) The minimal DOE to build the chaos approximation and to reach the reliability

objective,

3) The 95% reliability index confidence interval,

4) An estimation of the reliability index.
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REMARK. — An increase of the coefficient of variation will increase the impact of the

non linearity of the limit-state on the width of the confidence interval and on the final

reliability index. This effect could mean an increase of the PCE order to fit properly

the limit-state in the domain of variation of the random variables.

4. Academic examples for validation

The method has been implemented in Matlab. The accuracy of the method is first

assessed with three academic examples: two analytical limit-state functions and one

finite element model. Then, an industrial example is considered. Except for the two

finite element models, the numerical results are compared to a reference solution based

on MC simulation due to the study of the ratio β̃k,p/βMC . Indeed, we assume that in

the case of FE simulations, a MC simulation is inconceivable.

4.1. Preliminary check

Before going further, a preliminary check is done using a trivial performance func-

tion in order to guarantee that the method is able to find the right chaos order. Let us

consider a quadratic performance function:

G(x1, x2) = x21 −
x22
2

+ 2 [17]

x1 and x2 are supposed to be standard Gaussian variables. The reference value is

βMC = 1.2591 and we focus on the ratio β̃k,p/βMC . Numerical results are given

Figure 3 and Table 1. As we can see, the RPCM approach gives the right chaos order

for theG function and for the reliability index as the confidence interval width is 0 for

a chaos of order 2.

4.2. Exponential limit-state

This first academic example is an exponential limit-state function:

G(x1, x2) = exp (0.2x1 + 1.4)− x2 [18]

There are two random variables, x1 and x2 which are supposed to be standard Gaus-

sian variables. The reference value, βMC = 3.388, is deduced from crude Monte

Carlo sampling (1,000,000 samples). RPCM is initialized with a chaos of order p = 1,

a confidence level α = 0.95 and B = 1000 resamples. The size of the first DOE is
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Figure 3. Quadratic limit-state - Top: Plot of the convergence of the ratio β̃k,p/βMC

following the DOE number p - Bottom: Plot of the evolution of the convergence test

ǫβ following the DOE number p
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Table 1. Quadratic limit-state - Results synthesis. Results are presented in terms of:

lower bound
(
β̃k,p
min
/βMC

)
, estimation

(
β̃k,p/βMC

)
, upper bound

(
β̃k,p
max
/βMC

)

DOE p N (p) Max chaos order p Order k=1

β̃k,p
min
/βMC β̃k,p/βMC β̃k,p

max
/βMC

1 6 1 -0,757 1,849 4,455

2 12 2 1,099 3,889 6,679

3 20 3 1,636 5,066 8,496

DOE p N (p) Max chaos order p Order k=2

β̃k,p
min
/βMC β̃k,p/βMC β̃k,p

max
/βMC

1 6 1 NA NA NA

2 12 2 1,000 1,000 1,000

3 20 3 1,000 1,000 1,000

DOE p N (p) Max chaos order p Order k=3

β̃k,p
min
/βMC β̃k,p/βMC β̃k,p

max
/βMC

1 6 1 NA NA NA

2 12 2 NA NA NA

3 20 3 1,000 1,000 1,000

N (1) = 6. As the reference value βMC is known, we focus on the ratio β̃k,p/βMC .

If β̃k,p/βMC = 1, then the model perfectly approximates the limit-state. The con-

vergence of the reliability index and the convergence of the width of the confidence

interval are plotted Figure 4. Numerical results are summed up Table 2. From a

graphic analysis of Figure 4, one can conclude that a chaos of order 1 is unable to

estimate the limit-state when chaos of order 2, 3 fit well the limit-state and chaos of

order 4 gives the expected solution. This statement is confirmed by numerical results

(Figure 4). A chaos of order 3 with a sample of size 30 gives a very good approxima-

tion (β̃3,4/βMC = 0.997 and ǫbeta = 0.0057). Whatever the size of the sample, the

chaos of order 4 perfectly fits the limit-state and gives the reference value of β. Using

a polynomial chaos of order 4, the size of the confidence interval is 0. It means that

β̃k,p = βMC and that the approximation gives the expected value of β. This way, the

size of the confidence interval may be a good indicator of the quality of the approxi-

mation and a relevant stop criterion for the method. This example clearly shows the

interest of the method in terms of decision-making according to the level of accuracy.

4.3. Bending beam with uniform load

This application deals with a bi-supported bending beam (length L between sup-

ports, rectangular cross section b × h) with a uniform load q. Using the strength of
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Table 2. Exponential limit-state - Results synthesis. Results are presented in terms of:

lower bound
(
β̃k,p
min
/βMC

)
, estimation

(
β̃k,p/βMC

)
, upper bound

(
β̃k,p
max
/βMC

)
and

convergence test (ǫβ)

DOE p N (p) Max chaos order p Order k=1

β̃k,p
min
/βMC β̃k,p/βMC β̃k,p

max
/βMC ǫβ

1 6 1 0,643 0,966 1,288 0,6677

2 12 2 0,894 0,944 0,994 0,1057

3 20 3 0,887 0,923 0,958 0,0772

4 30 4 0,896 0,925 0,954 0,0633

5 42 5 0,909 0,937 0,965 0,0603

6 56 6 0,905 0,938 0,971 0,0702

7 72 7 0,908 0,937 0,966 0,0619

DOE p N (p) Max chaos order p Order k=2

β̃k,p
min
/βMC β̃k,p/βMC β̃k,p

max
/βMC ǫβ

1 6 1 NA NA NA NA

2 12 2 0,787 0,905 1,022 0,2600

3 20 3 0,984 1,005 1,025 0,0405

4 30 4 0,997 1,005 1,013 0,0157

5 42 5 0,997 1,005 1,012 0,0153

6 56 6 0,997 1,005 1,012 0,0150

7 72 7 1,000 1,006 1,011 0,0116

DOE p N (p) Max chaos order p Order k=3

β̃k,p
min
/βMC β̃k,p/βMC β̃k,p

max
/βMC ǫβ

1 6 1 NA NA NA NA

2 12 2 NA NA NA NA

3 20 3 0,882 0,941 1,000 0,1252

4 30 4 0,994 0,997 1,000 0,0057

5 42 5 0,997 0,998 1,000 0,0035

6 56 6 0,998 0,999 1,000 0,0023

7 72 7 0,998 0,999 1,000 0,0021

DOE p N (p) Max chaos order p Order k=4

β̃k,p
min
/βMC β̃k,p/βMC β̃k,p

max
/βMC ǫβ

1 6 1 NA NA NA NA

2 12 2 NA NA NA NA

3 20 3 NA NA NA NA

4 30 4 1,000 1,000 1,000 0,0000

5 42 5 1,000 1,000 1,000 0,0000

6 56 6 1,000 1,000 1,000 0,0000

7 72 7 1,000 1,000 1,000 0,0000
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Figure 4. Exponential limit-state - Top: Plot of the convergence of the ratio

β̃k,p/βMC following the DOE number p - Bottom: Plot of the evolution of the conver-

gence test ǫβ following the DOE number p

material theory, the beam stress at the midpoint with a constant b×h rectangular cross

section could be calculated:

σ =
qhL2

16I
=

3qL2

4bh2
[19]

There are three random variables, the section height h, the load q and the beam width

b. All these variables are modeled by a lognormal density (Table 3). Confidence



RPCM 813

level α is equal to 95% and the number B of resampling is set to 1000. According

to a fatigue approach, the reliability index related to the probability that the stress σ
exceeds the yield strength limit σD is computed:

Pf = Prob [σ > σD]

β = −Φ−1(Pf )

The limit-state function reads:

G = σD − σ (q, h, b) [20]

The reference reliability index is exact and calculated analytically because of

the linearity of the performance function in the ξ-space. The reference value is

βexact = 2.592. We focus on the ratio β̃k,p/βexact. The convergence of the estima-

tion of the reliability index and of the confidence interval width is shown Figure 5

and numerical results Table 4. As we can see, from 112 experiments chaos of order

3, 4 and 5 converge to βexact. The polynomial chaos of order 2 is unable to correctly

estimate the reliability index. However, the reference value is inside the confidence

interval. The best choice is the polynomial chaos of order 5 with 112 experiments

because the length of the confidence interval is zero and β̃k,p/βexact = 1: the

expected value of β has been reached. However, the chaos of order 5 with 112

experiments is not necessarily the optimal choice. If we go into more details, the

optimal choice is not obvious. Looking at Figure 5, the chaos of order 3 with 40

experiments is good enough to approximate the reliability index. Nevertheless,

the analysis of statistical moments leads to a different conclusion. Concerning the

estimation of the mean of the G function, from Figure 6 one can deduce that the

chaos of order 3 is still a good choice but with 70 experiments. This statement is the

same for the standard deviation (Figure 6). A closer look at the skewness and the

kurtosis (Figure 6) shows that the polynomial chaos of order 4 with 70 experiments

is an optimal choice. Finally, for this example, the optimal choice is the chaos of

order 4 with 70 experiments. This way, the estimated value for the reliability index

is β̃k,p = 2.5919 and the 95% confidence interval is [2.5909, 2.5928]. Now, in the

case where βexact is unknown if we look at Figure 5 the optimal choice is the chaos

of order 4 with 70 experiments.

REMARK. — In practice, the more the probability of failure is low, the more a fine

approximation of the limit-state over a large domain is needed. This could involve an

increase of the order of the PCE in the case of a low probability. From this statement

of fact, we assume that the possibilities and limitations of the method are the ones

inherent to the PCE. Besides, the analytical examples shows that the order of the PCE

is correlated with the non-linearity of the limit-state and the level of probability.
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Table 3. Bending beam - Input variables

Variable PDF Mean c.o.v

σD Deterministic 235 MPa

L Deterministic 6000 mm

q Lognormal 5 N/mm 0.2

b Lognormal 102 mm 0.05

h Lognormal 100 mm 0.05

Figure 5. Bending beam - Top: Plot of the convergence of the ratio β̃k,p/βexact fol-

lowing the DOE number p - Bottom: Plot of the evolution of the convergence test ǫβ
following the DOE number p
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Figure 6. Bending beam - Plot of the convergence of punctual estimation of the four

first statistical moments on G
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Figure 7. Bending beam - Plot of the convergence of 95% confidence interval size on

each moments of G
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Table 4. Bending beam - Results synthesis. Results are presented in terms of: lower

bound
(
β̃k,p
min
/βexact

)
, estimation

(
β̃k,p/βexact

)
, upper bound

(
β̃k,p
max
/βexact

)
and

convergence test (ǫβ)

DOE p N (p) Max chaos order p Order k=2

β̃k,p
min
/βexact β̃k,p/βexact β̃k,p

max
/βexact ǫβ

2 20 2 0,963 1,002 1,041 0,0782

3 40 3 1,000 1,020 1,040 0,0401

4 70 4 0,998 1,018 1,038 0,0394

5 112 5 0,997 1,013 1,028 0,0307

6 168 6 0,998 1,013 1,028 0,0292

7 240 7 1,000 1,013 1,027 0,0273

DOE p N (p) Max chaos order p Order k=3

β̃k,p
min
/βexact β̃k,p/βexact β̃k,p

max
/βexact ǫβ

2 20 2 NA NA NA NA

3 40 3 0,995 0,999 1,004 0,0090

4 70 4 0,998 1,002 1,006 0,0078

5 112 5 0,999 1,001 1,003 0,0039

6 168 6 0,999 1,000 1,001 0,0023

7 240 7 0,999 1,001 1,002 0,0024

DOE p N (p) Max chaos order p Order k=4

β̃k,p
min
/βexact β̃k,p/βexact β̃k,p

max
/βexact ǫβ

2 20 2 NA NA NA NA

3 40 3 NA NA NA NA

4 70 4 1,000 1,000 1,000 0,0007

5 112 5 1,000 1,000 1,000 0,0005

6 168 6 1,000 1,000 1,000 0,0004

7 240 7 1,000 1,000 1,000 0,0004

DOE p N (p) Max chaos order p Order k=5

β̃k,p
min
/βexact β̃k,p/βexact β̃k,p

max
/βexact ǫβ

2 20 2 NA NA NA NA

3 40 3 NA NA NA NA

4 70 4 NA NA NA NA

5 112 5 1,000 1,000 1,000 0,0000

6 168 6 1,000 1,000 1,000 0,0000

7 240 7 1,000 1,000 1,000 0,0000

4.4. Academic examples: stop criterion definition

The academic examples permit to assess the relevance of the criterion based on

confidence interval length. In this example we can see that the precision on the relia-

bility index is low if the confidence interval width on β is lower than 1% of the middle

value. This value will be taken into account to stop the algorithm in the industrial

example where no β reference value are available.
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5. Application to finite elements models

5.1. Fatigue analysis: the Dang Van criterion

5.1.1. Definition of the Dang Van criterion

The Dang Van criterion (DangVan et al., 1989) is a multiaxial fatigue criterion

defined as follow (EDV is the fatigue life time):

EDV = max
t

τpr(t) + αPH(t)

β
[21]

with:

τpr(t) =
1

2
max {|S1a(t)− S2a(t)| , |S2a(t)− S3a(t)| , |S3a(t)− S1a(t)|}

[22]

S1a(t), S2a(t), S3a(t) are the eigenvalues (or principal values) of the alternated devi-

atoric tensor Sija(t). α and β are material constants:

α = 3

(
τ
−1

S
−1

−
1

2

)
, β = S

−1 [23]

τ
−1, S

−1, are respectively the torsion endurance limit and the traction-compression

endurance from uniaxial tests. The validity condition for the Dang Van criterion is:

τ
−1

S
−1

>
1

2
[24]

The fatigue criterion permits to position the multiaxial cycle against the material fa-

tigue limit. If EDV < 1 the criterion forecasts a crack nucleation beyond the fatigue

lifetime of the material. On the contrary, if EDV > 1 the crack initiates before the

reach of the material fatigue limit.

5.1.2. Use of the Dang Van criterion

The use of the Dang Van model (Equation [21]) entails the computation of the

coefficients αNf
and βNf

. These coefficients are computed using the torsion and

bending Wöhler curves for the targeted life time (for computational purpose, Wöhler
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curves are approximated with a Basquin model). Once computed, the structure life

time Nf is found numerically solving the following equation:

τpr + αNf
PH = βNf

[25]

5.2. Academic model: fatigue failure of an angle bracket

A finite element model that represents a steel angle bracket under fatigue loading

is studied in this example. It was developed firstly in (Gayton et al., 2009). The angle

bracket, with its geometrical properties given Figure 8, is loaded by a scalar 106 cycles

fatigue equivalent Feq at its extremity. This parameter is obtained from a preliminary

load sequence analysis. The damage indicator Γ is computed from an ANSYS finite

element model. It is then compared to the value of 1.

The length d is set to 50 mm and material properties are supposed to be determin-

istic because we focus on the influence of the geometric uncertainties and the fatigue

equivalent Feq. The random variables are given Table 5.

Figure 8. Finite element model of the angle bracket under fatigue loading

Reliability analysis Results are computed in terms of the generalized reliability

index:

β = −Φ (Pf )
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Table 5. Angle bracket - Input variables

Variable PDF Mean c.o.v

Feq (N) Normal 110 0.2

L (mm) Normal 70 0.05

e1 (mm) Normal 15 0.05

e2 (mm) Normal 15 0.05

R (mm) Normal 10 0.1

d (mm) Deterministic 50

E (GPa) Deterministic 210

τ
−1 (MPa) Deterministic 200

S
−1 (MPa) Deterministic 300

The probability of failure is defined as the probability that the damage indicator Γ is

greater than 1:

Pf = Prob [Γ > 1] [26]

and the limit-state function G:

G = 1− Γ (Feq, e1, e2, L,R) [27]

For a given realization of the input parameters, a damage indicator Γi is computed

using ANSYS then from Equation [27] the corresponding value Gi of the limit-state

function is evaluated. Once all the mechanical computations ended, G is developed

onto the polynomial chaos using full polynomial chaos whose coefficients are com-

puted by regression (Equation [14]). The resampling procedure is applied on the poly-

nomial chaos followed by sampling in order to compute the reliability index. The

reliability index confidence interval is calculated using bootstrap BCa.

Simulation and results The parameters τ
−1 and S

−1 are set respectively to 200

MPa and 300 MPa. A Young’s Modulus of 210 GPa and Poisson’s ratio of 0.33 are

selected for this application. The stop criterion is initialized to ǫβ = 1%. Applying

this criterion, the RPCM method stops at a polynomial chaos of order 5 with 924

experiments. Figure 9 shows the convergence of the reliability index β̃k,p: the minimal

size to obtain the convergence is 112. Combining the results of the two graphs, only

the polynomial chaos of order 5 with 924 experiments satisfies the convergence test.

Numerical results are summed up Table 6. Finally, using the RPCM method, the best

representation for the performance function is a polynomial chaos of order 5 with 924

experiments. This way, the estimated value for the reliability index is β = 3.3204
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and the confidence interval is [3.3055, 3.3335]. The reliability index β = 3.3204
corresponds to Pf ≈ 10−4 which requires roughly 106 MC runs. As a result, the

reduction of the cost computation-time is obvious.

� � � � � � �

��	������

��	������

��	������

��	������


�������


�������


�������


�������


�������

��������	
��

�

��
��
	
�
��
�
�
��

�
�
��
��
	



	
��
�
�
��
��
�
��
�
�
	
�
	
�

� � � � � �

�	�

�	�

�	�

�	�

�	�

�	�

�	�

�������


�������


�������


�������


�������

��������	
��

�

�
�
	

�
	
�
�
	
��
	
�
�

Figure 9. Angle bracket - Top: Plot of the convergence of the ratio β̃k,p following the

DOE number p - Bottom: Plot of the evolution of the convergence test ǫβ following

the DOE number p

5.3. Industrial model: Bogie support fixing

The next considered problem is a train Bogie support fixing made of steel S235JR.

The mesh (generated by ANSYS) is composed of 7515 10-Node Tetrahedral elements.
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Table 6. Angle bracket - Results synthesis. Results are presented in terms of: lower

bound
(
β̃k,p
min

)
, estimation

(
β̃k,p

)
, upper bound

(
β̃k,p
max

)
and convergence test (ǫβ)

DOE p N (p) Max chaos order p Order k=1

β̃k,p
min

β̃k,p β̃k,p
max

ǫβ
1 12 1 2,6066 3,5119 4,4172 0,5156

2 42 2 3,5813 3,9027 4,2240 0,1647

3 112 3 3,7231 3,9212 4,1193 0,1010

4 252 4 3,8719 4,0084 4,1449 0,0681

5 504 5 3,8544 3,9753 4,0962 0,0608

6 924 6 3,0920 3,9991 4,0962 0,0486

DOE p N (p) Max chaos order p Order k=2

β̃k,p
min

β̃k,p β̃k,p
max

ǫβ
1 12 1 NA NA NA NA

2 42 2 3,1285 3,3834 3,6382 0,1506

3 112 3 3,2520 3,3289 3,4058 0,0462

4 252 4 3,3070 3,3618 3,4166 0,0326

5 504 5 3,3127 3,3535 3,3943 0,0243

6 924 6 3,3033 3,3418 3,3803 0,0230

DOE p N (p) Max chaos order p Order k=3

β̃k,p
min

β̃k,p β̃k,p
max

ǫβ
1 12 1 NA NA NA NA

2 42 2 NA NA NA NA

3 112 3 3,0586 3,3222 3,5857 0,1587

4 252 4 3,1904 3,2978 3,4052 0,0651

5 504 5 3,2261 3,2798 3,3334 0,0327

6 924 6 3,2997 3,3289 3,3580 0,0175

DOE p N (p) Max chaos order p Order k=4

β̃k,p
min

β̃k,p β̃k,p
max

ǫβ
1 12 1 NA NA NA NA

2 42 2 NA NA NA NA

3 112 3 NA NA NA NA

4 252 4 3,0776 3,2953 3,5130 0,1321

5 504 5 3,1720 3,3177 3,4633 0,0878

6 924 6 3,1878 3,2661 3,3444 0,0480

DOE p N (p) Max chaos order p Order k=5

β̃k,p
min

β̃k,p β̃k,p
max

ǫβ
1 12 1 NA NA NA NA

2 42 2 NA NA NA NA

3 112 3 NA NA NA NA

4 252 4 NA NA NA NA

5 504 5 3,3053 3,3323 3,3593 0,0162

6 924 6 3,3055 3,3204 3,3352 0,0089
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Reliability analysis Results are computed in terms of the generalized reliability

index:

β = −Φ (Pf )

The probability of failure is defined as the probability that the fatigue lifetime is lower

than the 106 target value:

Pf = Prob
[
Nf < 106

]
[28]

and the limit-state function G:

G = Nf −N (P, τ
−1, σ−1) [29]

For a given realization of the input parameters, the fatigue lifetime Ni is computed

using the Dang Van model (Equation [21]) then from equation 29 the corresponding

valueGi of the limit-state function is evaluated. Once all the mechanical computations

ended, G is developed onto the polynomial chaos using full polynomial chaos whose

coefficients are computed by regression (Equation [14]). The resampling procedure

is applied on the polynomial chaos followed by sampling in order to compute the

reliability index. Reliability index confidence interval is calculated using bootstrap

BCa.

Simulation and results Due to data privacy, results are normalized using a ref-

erence value βref which will be considered as unknown. Boundary conditions are

shown Figure 10. There are three boundary conditions:

1) The gravity: g = 9806.6mm/s2;

2) A pressure P = 0.2MPa is applied to the surface in contact with the transverse

part of the Bogie;

3) Displacements are blocked in all directions for each hole.

There are three random variables: the pressure P , the shear fatigue limit τ
−1 and

the tensile fatigue limit σ
−1. τ

−1 and σ
−1 are modeled by a lognormal density and the

pressure P by a truncated lognormal density in the [0.18 0.3] interval (Table 7). The

Young’s modulus is deterministic because its variability does not affect fatigue results

when using the Dang Van criterion (Equation [21]). It is supposed to be constant and

equal to 200 GPa. Load ratio is -1 (symmetric alternated). The confidence level is set

to 95% with B = 1000 resamples. The fatigue limit objective is Nf = 106 cycles. In

this example, the stop criterion is setup to ǫβ = 1%.



824 European Journal of Computational Mechanics. Volume 19 - No. 8/2010

Numerical results are summed up Table 8. Using this level of accuracy, the RPCM

method stops on a polynomial chaos of order 3 with 40 experiments. However, in

order to investigate the behavior of the RPCM method, we did more experiments

increasing the chaos order. The convergence graph of β̃k,p/βref is plotted Figure

11: the polynomial chaos of order 1 never converge when from a DOE of size 40

polynomial chaos of order 2, 3 and 4 converge. Besides, Figure 11 demonstrates that

only chaoses of order 3 and 4 satisfy the convergence test whatever the size of the

DOE. Moreover, Figure 11 shows that an increase of the chaos order does not change

the accuracy and the performance of the RPCM method. To conclude, according to

the RPCM method, with an error of 1%, the best meta-model is a polynomial chaos

of order 3 with 40 experiments.

Table 7. Bogie - Parameters definition

Variable PDF Mean c.o.v Truncation

P (MPa) Lognormal 0.2 0.2 [0.18− 0.3]
σ
−1 (MPa) Lognormal 213 0.1

τ
−1 (MPa) Lognormal 127.8 0.1

E (GPa) Deterministic 200

Figure 10. Bogie - Boundaries conditions
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Table 8. Bogie - Results synthesis. Results are presented in terms of: lower bound(
β̃k,p
min

)
, estimation

(
β̃k,p

)
, upper bound

(
β̃k,p
max

)
and convergence test (ǫβ)

DOE p N (p) Max chaos order p Order k=1

β̃k,p
min

β̃k,p β̃k,p
max

ǫβ
2 20 2 0,9083 1,0844 1,2604 0,3248

3 40 3 0,9041 1,0449 1,1858 0,2696

4 70 4 0,9110 1,0215 1,1319 0,2163

5 112 5 0,9654 1,0278 1,0901 0,1213

6 168 6 0,9163 0,9942 1,0721 0,1567

7 240 7 0,9135 0,9792 1,0449 0,1342

DOE p N (p) Max chaos order p Order k=2

β̃k,p
min

β̃k,p β̃k,p
max

ǫβ
2 20 2 0,8338 0,9197 1,0055 0,1867

3 40 3 0,9727 0,9895 1,0063 0,0339

4 70 4 0,9785 0,9913 1,0041 0,0259

5 112 5 0,9811 0,9923 1,0035 0,0226

6 168 6 0,9808 0,9912 1,0015 0,0208

7 240 7 0,9812 0,9914 1,0016 0,0206

DOE p N (p) Max chaos order p Order k=3

β̃k,p
min

β̃k,p β̃k,p
max

ǫβ
2 20 2 NA NA NA NA

3 40 3 0,9953 0,9978 1,0004 0,0051

4 70 4 0,9982 0,9992 1,0002 0,0019

5 112 5 0,9987 0,9994 1,0002 0,0015

6 168 6 0,9989 0,9996 1,0002 0,0013

7 240 7 0,9991 0,9996 1,0002 0,0011

DOE p N (p) Max chaos order p Order k=4

β̃k,p
min

β̃k,p β̃k,p
max

ǫβ
2 20 2 NA NA NA NA

3 40 3 NA NA NA NA

4 70 4 0,9999 1,0000 1,0002 0,0003

5 112 5 0,9999 1,0000 1,0000 0,0001

6 168 6 1,0000 1,0000 1,0000 0,0000

7 240 7 1,0000 1,0000 1,0000 0,0000
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Figure 11. Bogie - Top: Plot of the convergence of the ratio β̃k,p/βref following the

DOE number p - Bottom: Plot of the evolution of the convergence test ǫβ following

the DOE number p

6. Conclusion

Recently, (Blatman et al., 2008) introduced the so-called sparse polynomial chaos

expansion. The goal is to reduce the dimensionality of the PC basis. The strategies

for truncating the PC expansion are inspired by the sparsity-of-effects principle, which

states that most models are principally governed by main effects and low-order inter-

actions. In (Blatman et al., 2010), a new truncation scheme (referred to as hyperbolic)

is proposed which retains in priority the basis terms associated with low-order inter-

actions. The sparse PC expansion consists in an iterative procedure based on stepwise

regression. To assess the meta-model, a leave-one-out error estimator is used. It is

based on cross-validation technique. As the RPCM method is like a wrapper, from our

point of view there are no difficulties to integrate sparse PCE which is a perspective

for future work. Even if the polynomial chaos are very useful for sensitivity analysis,

competing approaches are developed for reliability analysis: Support Vector Machine
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(Deheeger et al., 2007), Kriging (Echard et al., 2009). It will be interesting to quantify

the influence of such techniques onto the confidence intervals on the reliability index.

The proposed approach takes advantage of the use of polynomial chaos expansion

for reliability analysis. It is applied selecting full successive polynomial chaos or-

der and takes advantage of two efficient methods to perform reliability analysis: the

polynomial chaos to build the response and resampling techniques for validation. The

Bootstrap is used to compute confidence intervals which indicate the reliability of an

estimate according to a confidence level. This way, confidence intervals are a nat-

ural complement to the reliability analysis. The originality comes from combining

such methods in an industrial context to improve design taking advantages of existing

DOE. Providing a learning step and an enrichment step, the RPCM method finds the

best chaos order according to the reliability and accuracy goal. The method allows to

explore the database too. The truncation order of the polynomial expansion is linked

to the accuracy on estimating the reliability index. This way, RPCM is a tool to help to

build meta-models taking the available data into account. In the case where the DOE

is known a priori and cannot be modified, the best polynomial chaos degree will be the

one which gives the smallest confidence interval. This way, one can decide if the DOE

contains enough information to give an accurate result. The information provided by

the confidence interval is very important because the knowledge of the reliability in-

dex range gives confidence or not in the result. Such an information helps to make

a decision providing important information on the accuracy of the failure probability

predictions knowing the input randomness. Furthermore, it can help to assess product

life extension or improve the fixing of inspection times.
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