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investigate the use of a Neumann-Neumann preconditioner for the linearized problem. In 
particular, it is shown that when this preconditioner is adequately balanced, it tends to the 
Dirichlet-Neumann preconditioner because of the heterogeneity of the fluid-structure 
problem. 
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1. Introduction

Many works devoted to fluid-structure interaction algorithms have been inspired

by domain decomposition techniques. Usually the proposed methods have been de-

vised following the rule “apply domain decomposition to the nonlinear global problem

and then solve on each subdomain the nonlinear problems”. On the contrary, in other

fields – for example nonlinear elasticity (Le Tallec, 1994) – domain decomposition

is usually applied with the rule “linearize first, then solve the tangent problem us-

ing domain decomposition”. The purpose of this paper is to propose a fluid-structure

algorithm based on the last rule.

Fluid-structure algorithms are too numerous to be reviewed exhaustively. A classi-

fication of the various approaches is not obvious either. To begin with, we can consider

two groups of methods: the “strongly coupled” and the “loosely coupled” schemes.

This distinction is quite clear since it corresponds to a precise property: those schemes

which can ensure a well-balanced energy transfer between the fluid and the structure

can be called “strongly coupled”, the other ones are “loosely coupled”. All the meth-

ods presented in this study are strongly coupled. Loosely coupled schemes, which

are very powerful in many applications but can be unstable in others, are not consid-

ered here. We refer, for example, to (Piperno et al., 1995; Felippa et al., 2001; Farhat

et al., 2006) for explicit coupling schemes used in aeroelasticity and to (Guidoboni

et al., 2009; Burman et al., 2009; Fernández et al., 2007; Quaini et al., 2007) for

explicit and semi-implicit schemes recently proposed for blood flows. Explanations

of the numerical difficulties encountered for incompressible flows and in presence of

strong added-mass effect can be found in (Causin et al., 2005; Förster et al., 2006; van

Brummelen, 2009).

We can then distinguish “monolithic” and “partitioned” schemes. For example, an

ad hoc solver whose purpose is to solve simultaneously the fluid and the structure typ-

ically leads to a monolithic scheme (see (Rugonyi et al., 2001; Tezduyar, 2001; Zhang

et al., 2003; Heil, 2004; Bathe et al., 2004; Hübner et al., 2004; Bazilevs et

al., 2006; Badia et al., 2008b; Küttler et al., 2009; Gee et al., 2010), for instance).

When the fluid and the structure software are distinct, the scheme is said to be parti-

tioned. In fluid-structure interaction this kind of schemes dates back at least to (Park

et al., 1977; Felippa et al., 1980). Partitioned scheme can be strongly coupled as soon

as sub-iterations are performed at every time step. The number of subiterations be-

ing very large in some applications, acceleration techniques have been investigated

in several articles: for example a steepest descent approach is proposed in (Le Tal-

lec et al., 2001), an Aitken acceleration based on the two previously computed solu-

tions is used in (Mok et al., 2001b; Küttler et al., 2008), a least-square method which

uses several previously computed solutions is proposed in (Vierendeels, 2006). Let us

also mention the modified-mass method (Tezduyar et al., 2006), the interface-GMRES

method (Michler et al., 2005; Michler et al., 2006) and the partitioning-based multi-

grid methods (Hron et al., 2006; van Brummelen et al., 2008).
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It is well-known, in particular since (Le Tallec et al., 2001) and more recently

(Deparis et al., 2004; Deparis et al., 2006), that fluid-structure problems can be tackled

with domain decomposition approaches. Indeed, a fluid-structure problem can be

viewed as a general continuum mechanics problem set on one domain which is split

into a fluid part and a structure part. The fluid-structure coupling conditions then

appear as the transmission conditions which ensure that the solution of the global

problem is obtained by “sticking” the two sub-problem solutions. This point of view

has been adopted in various studies, either with the so-called “Dirichlet-Neumann”

algorithms, see for example (Mok et al., 2001a; Gerbeau et al., 2003; Fernández et

al., 2005), or with “Neumann-Neumann” algorithms (Deparis et al., 2004; Deparis et

al., 2006).

The algorithm proposed in this paper can be viewed as a monolithic scheme in

the sense that a Newton algorithm is applied to the global fluid-structure problem.

But, it is more conform to the practical implementation to consider it as a partitioned

scheme, since the fluid and the structure are solved with two different solvers, with

their own schemes, and can be run in parallel. In contrast to the methods following

the rule “decompose the nonlinear problem”, these solvers are only used to solve

the tangent problems and to evaluate nonlinear residuals. The use of two different

solvers has well-known advantages (re-usability of existing codes, flexible choice of

the numerical methods adapted to each sub-problem, etc.). In addition, our numerical

experiments show that in some cases – for example when the structure is multilayered

– the approach advocated in this study (“linearize first, then decompose”) is actually

more robust than the usual ones consisting of the iterative resolution of nonlinear

problems.

We investigate Dirichlet-Neumann and Neumann-Neumann algorithms to solve

the tangent problems. The Schur complements defining the Neumann-Neumann pre-

conditioner are then balanced using state-of-the-art methods of structural mechanics.

As a consequence of this balancing, we observe that, for the FSI problem at hand, the

Neumann-Neumann preconditioner actually behaves as a Dirichlet-Neumann precon-

ditioner. To our knowledge, this fact had not been noticed in previous studies about

Neumann-Neumann algorithm for FSI problems.

The remainder of the paper is organized as follows. In Section 2 we review some

standard approaches to solve fluid-structure interaction problems, in particular those

based on domain decomposition arguments. In Section 3 we recall the fluid and solid

models and we set the main notation. In Section 4 we propose a short review on con-

stitutive laws that have been developed recently to model soft tissues, and in particular

the arterial wall. The time scheme is presented in Section 5. In Section 6 the new al-

gorithm is introduced. We propose in Section 6.3 a simplified complexity analysis to

compare the efficiency of the proposed algorithm with other existing approaches. The

conclusion may be sum up as follows: the more expensive the structure problem and

nonlinear the fluid the more competitive is expected this new formulation. Numerical

results and a comparison with existing methods are reported in Section 7. Finally,

some conclusions are given in Section 8.
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2. Classical solution methods

In this section, we briefly review some of the existing algorithms for the numerical

solution of the nonlinear system arising in the time discretization of the fluid-structure

problem with an implicit coupling scheme. These methods are typically based on the

application of a particular nonlinear iterative method to three different formulations of

the nonlinear coupled system.

In general, the time discretization of a fluid-structure problem with an implicit

coupling scheme leads to a coupled nonlinear problem of the type: Find the interface

displacement γ, the fluid state xf and the solid state xs such that

Formulation (I):





F (xf ,γ) = 0,

S (xs,γ) = 0,

I (xf ,xs) = 0.

[1]

Equations [1]1 and [1]2 ensure the equilibrium of momentum when the fluid and the

solid are subjected to an interface displacement γ, whereas the last equation enforces

the equilibrium of mechanical stresses at the interface.

Problem [1] can be reformulated in terms of γ by eliminating the fluid and solid

unknowns xf ,xs. This yields to the so-called Steklov-Poincaré formulation: Find the

interface displacement γ such that,

Formulation (II): Sf (γ) + Ss(γ) = 0. [2]

Here, Sf and Ss stand for the fluid and solid Steklov-Poincaré operators which can

be defined as follows: for a given interface displacement γ, Sf (γ) gives the stress

exerted by the fluid on the interface, and analogously for Ss. This notation will be

made precise below. In Section 5.2, we shall describe the link between [1] and [2].

Finally, the composition of [2] with the inverse operator S−1
s gives rise to the so-

called Dirichlet-to-Neumann formulation:

Formulation (III): S−1
s

(
− Sf (γ)

)
− γ = 0. [3]

Formally speaking, Formulations (II) and (III) are similar. Nevertheless, we prefer

to distinguish them since they correspond to different approaches in the literature.

The denominations “Dirichlet-Neumann formulation” and “Steklov-Poincaré formu-

lation” are purely conventional (both of them clearly involve Steklov-Poincaré opera-

tors).

The three following paragraphs address a brief state-of-the-art on the iterative

methods for the numerical solution of [1], [2] and [3].
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2.1. Dirichlet to Neumann formulations

Formulation (III) reduces problem [1] to the determination of a fixed point of the

Dirichlet-to-Neumann operator γ 7→ S−1
s

(
−Sf (γ)

)
. This motivates the use of fixed-

point based methods (Le Tallec et al., 2001; Nobile, 2001; Mok et al., 2001b; Mok et

al., 1999):

γk+1 = ωkS−1
s

(
− Sf (γ

k)
)
+ (1− ωk)γk, [4]

with ωk a given relaxation parameter which is chosen in order to enhance conver-

gence (Mok et al., 2001b; Mok et al., 1999; Deparis, 2004; Küttler et al., 2008).

Alternatively, one can use Newton based methods (Gerbeau et al., 2003; Fernández et

al., 2005) for a fast convergence towards the solution of [3]. This requires the solution

of a tangent problem of the type

(J(γk)− I)δγ = −
(
S−1
s

(
−Sf (γ

k)
)
− γk

)
, [5]

where J(γ) stands for the Jacobian, or approximated Jacobian (Gerbeau et al., 2003),

of the composed operatorγ 7→ S−1
s

(
−Sf (γ)

)
. It is worth noticing that exact Jacobian

computations require shape derivative calculus for the fluid (Fernández et al., 2005)

(see also (Dettmer et al., 2006; Bazilevs et al., 2008; van der Zee et al., 2010)). Let us

also stress the fact that these methods are naturally partitioned.

2.2. Symmetric Steklov-Poincaré formulation

The Dirichlet-Neumann formulations share a common feature: their implementa-

tion is purely sequential. The Steklov-Poincaré formulation [2] may allow to set up

parallel algorithms to solve the interface equation.

Following the presentation of Deparis et al. (Deparis et al., 2006), the nonlinear

problem [2] can be solved through nonlinear Richardson iterations:

P (γk+1 − γk) = ωk(−Sf (γ
k)− Ss(γ

k)), [6]

for an appropriate choice of the preconditioner P , namely

P−1
k = αk

[
S′
f (γ

k)
]−1

+ (1− αk)
[
S′
s(γ

k)
]−1

, [7]

where λ 7→ S′
f (β) · λ is the differential of Sf at β, and

[
S′
f (β)

]−1
its inverse. This

choice generalizes the standard preconditioners of linear domain decomposition meth-

ods (for which S′ = S). If αk is 0, 1 or 0.5 we retrieve, respectively, Dirichlet-

Neumann, Neumann-Dirichlet or Neumann-Neumann preconditioners. On the other

hand, since equation [2] is nonlinear, one can apply a Newton method,

(
S′
f (γ

k) + S′
s(γ

k)
)
(γk+1 − γk) = −Sf (γ

k)− Ss(γ
k), [8]
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which corresponds to the nonlinear Richardson iteration [6] preconditioned withPk =
S′
f (γ

k) + S′
s(γ

k) and ωk = 1. This linear equation can be solved, for example, by

an operator-free GMRES algorithm, with or without preconditioning. For instance, in

(Deparis et al., 2006) the authors propose to use the preconditioners [7].

The Newton method applied to the Dirichlet-Neumann formulation is not equiva-

lent to the Newton method applied to the Steklov formulation, since the roles played

by the fluid and by the structure are not symmetric in the first approach, whereas they

are in the second. After linearization, one cannot compose [5] with Ss to retrieve [8].

Finally [7] is not equivalent to [8] since in general (A+B)−1 6= A−1 +B−1.

The advantage of formulation (II) compared to formulation (III) is that the fluid

and the structure sub-problems can be solved simultaneously and independently for

the residual computation (right-hand sides of [6]) and the application of the precon-

ditioner (S′
f and S′

s) as soon as α /∈ {0, 1}. However, as we shall see in Section 6.3,

a simplified complexity analysis shows that the overall computational costs of both

methods might be of the same order, for instance, whenever the cost of the fluid sub-

problem solution is cheaper.

2.3. Fully monolithic formulation

A common approach in the numerical solution of nonlinear systems, arising in

implicit coupling, consists in applying a Newton based algorithm to the global formu-

lation [1]. This requires the repeated solution of a tangent (or approximated tangent)

problem with the following block structure:



Dxf
F (xf ,γ) 0 Dγ F (xf ,γ)
0 Dxs

S (xs,γ) Dγ S (xs,γ)
Dxf
I (xf ,xs) Dxs

I (xf ,xs) 0





δxf

δxs

δγ


 = −



F (xf ,γ)
S (xs,γ)
I (xf ,xs)


 . [9]

Newton algorithms based on the numerical solution of [9] (or re-arrangements of it) in

a monolithic fashion, i.e. using global direct or iterative methods, have been reported

in (Tezduyar, 2001; Zhang et al., 2003; Heil, 2004; Bathe et al., 2004; Heil et al.,

2008; Küttler et al., 2009; Gee et al., 2010). This way to solve [9] is not partitioned.

Alternatively, system [9] can be solved in a partitioned manner through a block-Gauss

elimination of δxf , which leads to the so called block-Newton methods (Matthies et

al., 2002; Matthies et al., 2003).

The formulations recalled in Sections 2.1 and 2.2 are first based on the coupling

conditions, giving rise to a nonlinear equation on the interface, which involves nonlin-

ear sub-problems. The formulation is therefore partitioned at the nonlinear level (and

therefore at the linear level too). The formulation recalled in Section 2.3 linearizes

the full problem first, the associated linear problem being solved by a monolithic ap-

proach. This formulation is therefore monolithic at the nonlinear and linear levels.

The algorithm we introduce in Section 6 turns out to combine both approaches: It first

treats the nonlinearity of the whole problem through a Newton method (which makes
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it monolithic at the nonlinear level), and then it uses a Steklov-Poincaré formulation

on the tangent problem (which makes it partitioned at the linear level).

3. Mechanical setting

Let Ω̂ = Ω̂f ∪ Ω̂s be a reference configuration of the system, see Figure 1. We

introduce the motion of the solid medium

ϕ̂s : Ω̂s × R+ −→ R3.

The current configuration of the structure is then denoted by

Ωs(t) = ϕ̂s(Ω̂s, t).

We introduce the deformation gradient F̂s(x̂, t)
def
= ∇x̂ϕ̂s(x̂, t), and its determi-

nant Ĵs(x̂, t)
def
= det F̂s(x̂, t). The displacement of the solid domain is given by

d̂s(x̂, t)
def
= ϕ̂s(x̂, t) − x̂. The fluid domain Ωf (t) is parametrized by the Arbitrary

Lagrangian Eulerian ALE mapping (see (Donéa et al., 1982), for instance),

Â : Ω̂f × R+ −→ R3,

such that Ωf (t) = Â(Ω̂f , t). In the sequel we will use the notation Ât
def
= Â(·, t), and

the superscript ̂ will be related to fields defined on the reference configuration Ω̂f or

Ω̂s. In addition, for a given Eulerian fluid quantity q (i.e. defined in Ωf (t) for t > 0)

we will denote its ALE description by q̂, as a field defined in Ω̂f × R+ as

q̂(x̂, t) = q
(
Ât(x̂), t

)
, ∀x̂ ∈ Ω̂f . [10]

We introduce the deformation gradient of the fluid domain

F̂f (x̂, t)
def
= ∇x̂Â(x̂, t),

and its determinant Ĵf (x̂, t)
def
= det F̂f (x̂, t). The displacement of the fluid domain

is given by d̂f (x̂, t)
def
= Â(x̂, t)− x̂ and its velocity by

ŵ
def
=

∂Â

∂t
.

The fluid-structure interface, namely ∂Ωf (t) ∩ ∂Ωs(t) is denoted by Σ(t), and Γf =
∂Ωf (t)\Σ(t) stands for the portion of the fluid boundary that is not shared with the

boundary of the structure. The surface Γf is assumed to be independent of t. The

boundary ∂Ω̂s of the reference configuration for the structure is divided into three

disjoint parts Γ̂D, Γ̂N and Σ̂, with Σ(t) = Ât(Σ̂). We denote by n the outward unit

normal on the fluid boundary in the current configuration, and by n̂s the outward unit

normal on the reference structure boundary.
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Σ̂Ω̂f

Ωf (t)
Σ(t)

Ωs(t)

Ât

Ω̂s
ϕ̂s(·, t)

Γ̂N

Γ̂D

Γf

Figure 1. Parametrization of the domains Ωf (t) and Ωs(t)

3.1. The coupled problem

We consider a homogeneous, Newtonian viscous, incompressible fluid with den-

sity ρf and dynamic viscosity µ. Its state is described by its Eulerian velocity u and

pressure p. The constitutive law for the Cauchy stress tensor is given by the following

expression:

σ(u, p) = −pI + 2µǫ(u),

with ǫ(u)
def
=
[
∇u+ (∇u)T

]
/2. In absence of body forces, these unknowns satisfy

the incompressible Navier-Stokes equations in an ALE formulation:





ρf
∂u

∂t

∣∣∣
x̂

+ ρf (u−w) ·∇u− div
(
2µǫ(u)

)
+∇p = 0, in Ωf (t),

divu = 0, in Ωf (t),

σ(u, p) · n = g, on Γf ,

[11]

where
∂

∂t

∣∣∣
x̂

stands for the ALE time derivative, w
def
= ŵ ◦ Â−1

t , and g a given density

of surface force. We recall that Γf is the complement of Σ on ∂Ωf . Obviously,

Dirichlet boundary conditions could also be considered, up to slight modifications in

the presentation.

The structure is supposed to be hyperelastic under large displacements and defor-

mations. Its density is denoted by ρs. Its state is described by its displacement d̂s and

its first Piola-Kirchoff stress tensor T̂ . The latter is related to d̂s as the gradient of

an internal stored energy function W (F̂s). The choice of the internal stored energy

will depend on the problem under consideration and will not change the setting of the

fluid-structure problem. Assuming that the structure is clamped on ΓD and under no

body and surface forces, these unknowns are driven by the following elastodynamic

equations





Ĵsρs
∂2d̂s

∂t2
− div x̂T̂ = 0, in Ω̂s,

d̂ = 0, on Γ̂D,

T̂ · n̂s = 0, on Γ̂N .

[12]
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The coupling between the solid and the fluid, namely equations [11] and [12], is

realized through standard boundary conditions at the fluid-structure interfaceΣ(t) that

ensure the balance of the mechanical energy over the whole domain. This is achieved

by imposing three interface conditions:

– A geometrical condition enforcing the matching between ϕs and Â on the inter-

face

d̂f = d̂s, on Σ̂. [13]

Inside Ω̂f , the fluid domain displacement d̂f can be defined as an arbitrary (suitable)

extension of d̂s over the domain Ω̂f , namely,

d̂f = Ext(d̂
s|Σ̂) [14]

(see Remark 3.1 below).

– A kinematic condition enforcing the continuity of the velocities at the interface

u =
∂d̂s

∂t
◦ Â−1

t , on Σ(t). [15]

– And a kinetic condition imposing the stress continuity at the interface

T̂ n̂s = −Ĵf σ̂(u, p)F̂
−T
f n̂, on Σ̂. [16]

To sum up, the fluid-structure system involving an incompressible viscous fluid and a

hyperelastic structure is described in terms of the unknowns (u, p, d̂f , d̂s) satisfying

the coupled problem [11]-[16].

REMARK. — In practice, we can choose as operator Ext a harmonic extension opera-

tor, by solving a Laplace equation





−div (κ∇d̂f ) = 0, on Ω̂f ,

d̂f = d̂s, on Σ̂,

d̂f = 0, on Γ̂f ,

[17]

where κ > 0 is a given “diffusion” coefficient, that may depend on d̂s. Alternative

extensions can be found, for instance, in (Batina, 1990; Thomas et al., 1979).

REMARK. — The combination of [13] and [15] enforces u = w on Σ(t). This

requirement is not strictly necessary but simplifies the construction of the ALE map.

In general we could replace [14] by
∂d̂s

∂t
◦ Â−1

t · n = w · n on Σ(t).

REMARK. — For simplicity, we have only prescribed Neumann boundary conditions

in [11]. In practice we may use Dirichlet conditions on some part of the boundary.
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3.2. Weak formulation

Problem [11]-[16] can be reformulated in a weak variational form using appropri-

ate test functions, performing integrations by parts and taking into account the bound-

ary and interface conditions.

In what follows, we will make explicit the dependence of Ωf (t) and Σ(t) on d̂f

by introducing the notation

Ωf (d̂f )
def
= Ωf (t), Σ(d̂f )

def
= Σ(t).

The global weak formulation of problem [11]-[16] (derived in Appendix A) reads:

Find û : Ω̂f×R
+ → R3, p̂ : Ω̂f×R

+ → R, d̂f : Ω̂f×R
+ → R3, d̂s : Ω̂s×R

+ → R3

and γ : Σ̂× R+ → R3 such that

d

dt

∫

Ωf (d̂f )

ρfu · vf dx+

∫

Ωf (d̂f )

div
[
ρfu⊗

(
u−w

(
d̂f

))]
· vf dx

+

∫

Ωf (d̂f )

σ(u, p) : ∇vf dx−

∫

Γin−out

g · vf da−

∫

Ωf (d̂f )

q divudx

+

∫

Ω̂s

ρ0
∂2d̂s

∂t2
· v̂s dx̂+

∫

Ω̂s

∂W

∂F
(I +∇d̂s) : ∇v̂s dx̂

+

∫

Ω̂f

(
d̂f − Ext(γ)

)
· τ̂ dx̂+

∫

Σ̂

(d̂s − γ) · ζ̂ dâ

+

∫

Σ̂

(
û− ŵ(d̂f )

)
· ξ̂ dâ = 0,

[18]

with u(·, t) = û(·, t)◦Â−1
t , p(·, t) = p̂(·, t)◦Â−1

t , and for all (v̂f , q̂) ∈ [H1(Ω̂f )]
3×

L2(Ω̂f ), v̂s ∈ [H1
Γ̂D

(Ω̂s)]
3 with v̂f = v̂s on Σ̂, τ̂ ∈ [L2(Ω̂f )]

3, ζ̂ ∈ [L2(Σ̂)]3 and

ξ̂ ∈ [L2(Σ̂)]3, where [H1
Γ̂D

(Ω̂s)]
3 denotes the subspace of functions of [H1(Ω̂s)]

3

vanishing on Γ̂D.

4. Constitutive laws for artery walls

4.1. Three dimensional constitutive laws

In an extensive survey article (Holzapfel et al., 2000), Holzapfel et al. have an-

alyzed and compared existing constitutive models for arterial walls. They have also

introduced a new framework to take into account anisotropy and various mechanical

effects such as inflation and torsion. Their model is based on a thick-walled nonlin-

early elastic tube consisting of two layers. Another model has been introduced by van

Oijen in his PhD thesis (Oijen, 2003). More microscopically based, it uses the mixing
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theory to take into account the fibers in the layers. Even more precise at the micro-

scopic level, Caillerie et al. have introduced a nonlinear homogenization approach to

fiber-reinforcement in soft tissues (Caillerie et al., 2003).

These three models have two common features: they are three-dimensional and

anisotropic. Previous approaches, such as the Fung model in (Fung et al., 1979), are

based on geometrical simplifications, such as membrane, and more generally on thin

shell. However, as pointed out in (Holzapfel et al., 2000), such simplifications are

not suitable for the analysis of the through-thickness stress distribution in an artery or

for the treatment of shearing deformations. In addition, the combination of inflation

and torsion effects cannot be reproduced by such simplified models. This may explain

why three-dimensional constitutive laws are needed to correctly handle the passive

mechanical behavior of artery walls.

From a physiological point of view, the arterial wall is made of three layers (the

intima, the media and the adventitia). For a healthy artery, only the media and the

adventitia have a significant mechanical role. In addition, their mechanical behav-

ior is highly anisotropic due to the presence of fibers (collagenous components). In

(Holzapfel et al., 2000), Holzapfel et al. propose a model based on two layers model-

ing the media and the adventitia. For both layers, the material is supposed to be three-

dimensional, thin, hyperelastic, in finite deformation, incompressible, anisotropic (in

the fiber directions) and pre-stressed.

The elastic assumption is well satisfied in some vessels, as the aorta, the iliac and

carotid arteries. For other arteries, including the femoral, celiac and cerebral arteries,

viscoelastic models are needed.

As a consequence of the above assumptions, the free energy of a layer can be

written as

W (F̂s) = Ψiso(I1, I2, J) + Ψfib(I4, I5), [19]

where F̂s is the deformation gradient, I1, I2 and J its three principal invariants and

I4 and I5 its pseudo-invariants related to the reinforcement direction. The first part

of the energy Ψiso is isotropic, typically a neo-Hookean, Mooney-Rivlin or Ciarlet-

Geymonat type of energy. The second part Ψfib is anisotropic and involves an ex-

ponential term in order to reproduce the strong stiffening effect of each layer at high

pressure.

From a computational point of view, the above combination of mechanical prop-

erties gives rise to two major difficulties: the treatment of incompressibility in finite

deformation and the treatment of bad aspect ratios for thin three-dimensional struc-

tures. Both phenomena lead to locking problems ((Chapelle et al., 2003a),(Chapelle

et al., 2003c)) if not correctly treated. Incompressibility issues are classically dealt

with using a mixed finite element method, whereas locking phenomena in thin

three-dimensional structures are treated using re-interpolation techniques (Chapelle

et al., 2003b; Chapelle et al., 2003c; Chapelle et al., 2004) as presented in the follow-

ing subsection.
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4.2. 3D shell elements

A general structural model of the blood flow with complex and realistic geometries

has to be three-dimensional and handle large displacements.

Since the walls of the blood vessels are thin, it is convenient to use shell elements;

they accurately describe its geometry. All finite elements adopted in our simulations

are general shell elements. Previously, Gerbeau et al. have used the MITC4 ele-

ments (Gerbeau et al., 2003; Gerbeau et al., 2005). This element is a 4 node quadran-

gle (5 degrees of freedom per node) with a 3D constitutive law for which the transver-

sal stress is null and a kinematic constraint is needed to make the model compatible

with a Reissner-Mindlin shell model. This restricts the choice of the energy. The

MITC technique is used to avoid locking (Chapelle et al., 2003a).

We consider here 3D shell elements (Chapelle et al., 2003b; Chapelle et al., 2003c;

Chapelle et al., 2004). Geometrically, these elements appear as standard 27 nodes

three-dimensional elements. Thus it is very easy to couple them to other three-

dimensional formulations through the nodes on the faces, whereas the quadratic ap-

proximation in the shell’s thickness allows one to deal with standard 3D energies, such

as generalized Hook or any hyperelastic stored energy, defined by using the Cauchy-

Green tensor’s invariants, such as in [19]. Yet, since the hexahedra are very elongated

in the plane orthogonal to the thin direction, standard 3D Q2 shape functions with a

standard integration rule would exhibit locking as the meshsize vanishes. The element

considered here, called MI3D, uses standard 3D Q2 shape functions but a specific in-

tegration rule. The idea introduced and analyzed in (Chapelle et al., 2003b; Chapelle

et al., 2003c; Chapelle et al., 2004) consists in using the reinterpolation technique

specifically developed for shell elements in (Chapelle et al., 2003a). This produces

a locking-free FE method. This strategy is in the same spirit as the use of methods

designed for incompressible materials (mixed finite elements, or subintegration) to

prevent locking for quasi-incompressible materials.

r

z

s

Figure 2. 3D shell element

In order to be able to apply MITC techniques to stabilize the formulation, it is

necessary to compute the first and second derivatives of the stored energy with respect
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to the Green-Lagrange tensor, defined hereafter, in local coordinates (r, s, z), as it is

usually done for shell elements (see Figure 2):

eij(~U)
def
=

1

2
(~gi · ~U,j + ~gj · ~U,i + ~U,i · ~U,j), [20]

where ~gi is a covariant basis.

The first and second order infinitesimal variations are given by

δeij =
1

2
(~gi · δ~U,j + ~gj · δ~U,i + ~U,i · δ~U,j + ~U,j · δ~U,i),

dδeij =
1

2
(d~U,i · δ~U,j + d~U,j · δ~U,i).

When dealing with elastodynamics, at each time step of, say, a Newmark time-

discretization, a nonlinear problem has to be solved. The bilinear form appearing in

this algorithm is the following:

A = AL +ANL,

with

AL(d~U, δ~U)
def
=

∫

Ω

∂2W

∂eij∂ekl
deklδeij dV, [21]

ANL(d~U, δ~U)
def
=

∫

Ω

∂W

∂eij
dδeij dV, [22]

and the corresponding nonlinear right-hand side

FNL(δ~U)
def
=

∫

Ω

∂W

∂eij
δeij dV. [23]

In practice, the values of the deformation are not directly computed by [20], but

are re-interpolated at the tying points defined by MITC methods. The first and second

order infinitesimal variations in [21]–[23] have to be re-interpolated using the same

rules in order to obtain a consistent tangent problem.

Both the MITC4 and the MI3D elements can be employed in actual computations.

The MITC4 with 4 nodes and 5 degrees of freedom per node has 20 degrees of free-

dom per element, the MI3D with 27 nodes and 3 degrees of freedom per node has

81 degrees of freedom per element. The MI3D is indeed more expensive than the

MITC4, but it is also more practical for realistic models of the arteries, as recalled at

the beginning of this section.

In Section 7, we present some numerical tests using (from one to three layers of)

MI3D elements with a neo-Hookean constitutive law in finite deformation, thus tack-

ling the two major numerical difficulties for the implementation of the thick-walled

nonlinearly elastic bilayer constitutive laws introduced in (Holzapfel et al., 2000).

This example provides us with a case of interest for which the numerical method de-

veloped in Section 6 may be competitive.
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5. Semi-discretized weak formulation

In this section, the weak coupled formulation [18] is semi-discretized in time using

an implicit coupling-scheme. The resulting nonlinear problem will be turned into an

abstract form. This will allow us to introduce in the next section general nonlinear

iterative solution methods.

5.1. Implicit coupling scheme

We use an implicit Euler scheme for the ALE Navier-Stokes equations, with a

semi-implicit treatment of the nonlinear convective term. Furthermore we use a mid-

point rule for the structural equation. Thus, given a time step δt > 0, for n = 0, 1, . . .,

the time semi-discretized coupled problem writes: Given
(
ûn, p̂n, d̂f

n
, d̂s

n
,γn

)
,

find

(
ûn+1, p̂n+1, d̂f

n+1
, d̂s

n+1
,γn+1

)
∈ [H1(Ω̂f )]

3 × L2(Ω̂f )× [H1(Ω̂f )]
3

× [H1(Ω̂s)]
3 × [H

1
2 (Σ̂)]3,

such that

1

δt

∫

Ωf (d̂
n+1

f
)

ρfu
n+1 · vf dx−

1

δt

∫

Ωf (d̂n
f
)

ρfu
n · vf dx

+

∫

Ωf (d̂
n+1

f
)

σ(un+1, pn+1) : ∇vf dx

+

∫

Ωf (d̂
n+1

f
)

div
[
ρfu

n+1 ⊗
(
un −w

(
d̂f

n+1))]
· vf dx

−

∫

Γin−out

gn+1 · vf da−

∫

Ωf (d̂
n+1

f
)

q divun+1 dx

+

∫

Ω̂f

(
d̂n+1
f − Ext

(
γn+1

))
· τ̂ dx̂

+

∫

Σ̂

(
ûn+1 − ŵ

(
d̂n+1
f

))
· ξ̂ dâ+

2

δt2

∫

Ω̂s

ρ0d̂
n+1
s · v̂s dx̂

−
2

δt2

∫

Ω̂s

ρ0

(
d̂n
s + δt

˙̂
dn
s

)
· v̂s dx̂

+

∫

Ω̂s

∂W

∂F

(
I +

1

2
∇(d̂n

s + d̂n+1
s )

)
: ∇v̂s dx̂

+

∫

Σ̂

(
d̂n+1
s − γn+1

)
· ζ̂ dâ = 0,

[24]
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for all (v̂f , q̂, ξ̂, τ̂ , ζ̂, v̂s) ∈ [H1(Ω̂f )]
3×L2(Ω̂f )×[L

2(Σ̂)]3×[L2(Ω̂f )]
3×[L2(Σ̂)]3×

[H1
Γ̂D

(Ω̂s)]
3 such that v̂f = v̂s on Σ̂, and with un = ûn ◦ (I + d̂f

n
)−1 (analogously

for pn) and
˙

d̂n+1
s =

2

δt

(
d̂n+1
s − d̂n

s

)
−

˙̂
dn
s .

5.2. Abstract formulations

Problem [24] can be rewritten in a more compact form in terms of the fluid, solid

and interface state operators.

Based on the discrete weak formulation [24] we introduce the fluid operator

F : [H1(Ω̂f )]
3 × L2(Ω̂f )× [H1(Ω̂f )]

3 × [H
1
2 (Σ̂)]3

−→
(
[H1

Σ̂
(Ω̂f )]

3 × L2(Ω̂f )× [L2(Σ̂)]3 × [L2(Ω̂f )]
3
)′

,

defined by
〈
F
(
û, p̂, d̂f ,γ

)
,
(
v̂f , q̂, ξ̂, τ̂

)〉
=

1

δt

∫

Ωf (d̂f )

ρfu · vf dx

−
1

δt

∫

Ωf (d̂n
f
)

ρfu
n · vf dx

+

∫

Ωf (d̂f )

div
[
ρfu⊗

(
un −w

(
d̂f

))]
· vf dx

+

∫

ΩF (d̂f )

σ(u, p) : ∇vf dx−

∫

Γin−out(d̂f )

gn+1 · vf da

−

∫

Ωf (d̂f )

q divu dx+

∫

Σ̂

(
û− ŵ

(
d̂f

))
· ξ̂ dâ

+

∫

Ω̂f

(
d̂f − Ext(γ)

)
· τ̂ dx̂,

[25]

for all (v̂f , q̂, ξ̂, τ̂ ) ∈ [H1(Ω̂f )]
3 × L2(Ω̂f )× [L2(Σ̂)]3 × [L2(Ω̂f )]

3.

Analogously, from [24], the solid operator

S : [H1(Ω̂s)]
3 × [H

1
2 (Σ̂)]3 −→ ([H1

ΓD∪Σ̂
(Ω̂s)]

3 × [L2(Σ̂)]3)′,

is given by

〈
S(d̂s,γ), (v̂s, ζ̂)

〉
=

2

δt2

∫

Ω̂s

ρ0d̂s · vs dx̂−
2

δt2

∫

Ω̂s

ρ0

(
d̂n
s + δt

˙̂
dn
s

)
· vs dx̂

+

∫

Ω̂s

∂W

∂F

(
I +

1

2
∇
(
d̂n
s + d̂s

))
: ∇v̂s dx̂+

∫

Σ̂

(d̂s − γ) · ζ̂ dâ, [26]



494 EJCM – 19/2010. Fluid-structure interaction

for all (v̂s, ζ̂) ∈ [H1
ΓD

(Ω̂s)]
3 × [L2(Σ̂)]3.

Finally, let

Lf : [H
1
2 (Σ̂)]3 → [H1

Γin−out
(Ω̂f )]

3

and

Ls : [H
1
2 (Σ̂)]3 → [H1

∂Ω̂s\Σ̂
(Ω̂s)]

3

be two given continuous linear lift operators. The interface operator

I : [H1(Ω̂f )]
3 × L2(Ω̂f )× [H1(Ω̂f )]

3 × [H1(Ω̂s)]
3 −→ [H− 1

2 (Σ̂)]3,

is then defined by

〈
I
(
û, p̂, d̂f , d̂s

)
,µ
〉
=
〈
F
(
û, p̂, d̂f ,γ

)
, (Lfµ, 0,0,0)

〉

+
〈
S
(
d̂s,γ

)
, (Lsµ,0)

〉
, [27]

for all µ ∈ [H
1
2 (Σ̂)]3.

REMARK. — The interface operator does not depend on γ since, due to the choice

of the test functions, the terms involving γ vanish in the right-hand side of [27].

According to the above definitions, problem [24] is equivalent to

Formulation (I):





F
(
ûn+1, p̂n+1, d̂n+1

f ,γn+1
)
= 0,

S
(
d̂n+1
s ,γn+1

)
= 0,

I
(
ûn+1, p̂n+1, d̂n+1

f , d̂n+1
s

)
= 0.

[28]

5.3. Steklov-Poincaré operators

In order to describe partitioned methods for the numerical solution of [24], we now

introduce the nonlinear fluid and solid Steklov-Poincaré operators.

The nonlinear fluid Steklov-Poincaré operator

Sf : [H
1
2 (Σ̂)]3 −→ [H− 1

2 (Σ̂)]3,

is defined by

〈Sf (γ),µ〉 =
〈
I
(
û(γ), p̂(γ), d̂f (γ),0

)
,µ
〉
,

for all γ,µ ∈ [H
1
2 (Σ̂)]3, where (û(γ), p̂(γ), d̂f (γ)

)
is the solution of the Dirichlet

fluid problem:

F
(
û(γ), p̂(γ), d̂f (γ),γ

)
= 0.
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In an analogous way, we introduce the nonlinear solid Steklov-Poincaré operator

Ss : [H
1
2 (Σ̂)]3 −→ [H− 1

2 (Σ̂)]3,

given by 〈
Ss(γ),µ

〉
=
〈
I
(
0, 0,0, d̂s(γ)

)
,µ
〉
,

for all γ,µ ∈ [H
1
2 (Σ̂)]3 and where d̂s(γ) is the solution of the Dirichlet solid prob-

lem:

S
(
d̂s(γ),γ

)
= 0.

From the above definitions, it follows that problem [24] (or [28]) is equivalent to

Formulation (II): Sf (γ) + Ss(γ) = 0. [29]

The composition of [29] with the inverse operators S−1
s gives rise to the Dirichlet-to-

Neumann formulation, namely

Formulation (III): S−1
s

(
− Sf (γ)

)
− γ = 0. [30]

We could also consider the Neumann-to-Dirichlet formulation

S−1
f

(
− Ss(γ)

)
− γ = 0

by composing [29] with S−1
f . Nevertheless it is rarely used in practice and it is known

to lead to poor algorithms in some cases, as pointed out in (Causin et al., 2005).

6. A partitioned Newton method

In what follows, we skip the upper script n since the time step is fixed. The method

presented here consists in solving [28] by a Newton method: given an initial guess

(û0, p̂0, d̂f

0
, d̂s

0
,γ0), the algorithm reads

1) Evaluate the nonlinear residual of problem [28].

2) Solve the tangent problem (see [31] below) by a domain decomposition method.

3) Update solution:

(
û, p̂, d̂f , d̂s,γ

)
←
(
û, p̂, d̂f , d̂s,γ

)
+
(
δû, δp̂, δd̂f , δd̂s, δγ

)
.

4) repeat until convergence.

Compared to the known fluid-structure algorithms presented in Section 2.2, this

partitioned Newton method amounts to switching the domain decomposition and the

linearization in the resolution of the coupled problem. We provide the tangent problem

in the following sections, as well as details for the domain decomposition resolution.
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6.1. Abstract formulation

In this section, we present an abstract formulation making use of the derivative of

the fluid, structure and interface operators of Section 5.2 with respect to their argu-

ments. The derivation uses shape derivative calculus for the differentiation of integral

terms with respect to their supports. The precise formulae are given in Appendix B,

and we refer the reader to (Fernández et al., 2005) where this issue is addressed (see

also (Dettmer et al., 2006; Bazilevs et al., 2008; van der Zee et al., 2010)).

We thus introduce a linearized fluid operator at state (û, p̂, d̂f ,γ) ∈ [H1(Ω̂f )]
3 ×

L2(Ω̂f )× [H1(Ω̂f )]
3 × [H

1
2 (Σ̂)]3, denoted by

DF(û, p̂, d̂f ,γ) : [H
1(Ω̂f )]

3 × L2(Ω̂f )× [H1(Ω̂f )]
3 × [H

1
2 (Σ̂)]3 −→

(
[H1

Σ̂
(Ω̂f )]

3 × L2(Ω̂f )× [L2(Σ̂)]3 × [L2(Ω̂f )]
3
)′

.

The same way, the linearized solid operator at state (d̂s,γ) ∈ [H1
ΓD

(Ω̂s)]
3 ×

[L2(Σ̂)]3 is denoted by

DS(d̂s,γ) : [H
1
ΓD

(Ω̂s)]
3 × [H

1
2 (Σ̂)]3 −→ ([H1

ΓD∪Σ̂
(Ω̂s)]

3 × [L2(Σ̂)]3)′.

And we finally introduce the linearized interface operator at state (û, p̂, d̂f , d̂s)

D I(û, p̂, d̂f , d̂s) : [H
1(Ω̂f )]

3×L2(Ω̂f )× [H1(Ω̂f )]
3× [H1(Ω̂s)]

3 −→ [H− 1
2 (Σ̂)]3.

In terms of the operators introduced above, the tangent problem associated with

[28] reads




DF
(
û, p̂, d̂f ,γ

)
·
(
δû, δp̂, δd̂f , δγ

)
= −F

(
û, p̂, d̂f ,γ

)
,

DS
(
d̂s,γ

)
·
(
δd̂s, δγ

)
= −S

(
d̂s,γ

)
,

D I
(
û, p̂, d̂f , d̂s

)
·
(
δû, δp̂, δd̂f , δd̂s

)
= −I

(
û, p̂, d̂f , d̂s

)
.

[31]

Once the linear fluid, solid and interface operators DF , DS and D I are defined,

we can introduce the linear Steklov-Poincaré operators SF,l and SS,l using the for-

mulae of Section 5.3 with the linearized operators instead of the nonlinear operators.

It may be noted that the linear Steklov-Poincaré operators are different from the lin-

earization of the nonlinear Steklov operators of Section 5.3.

6.2. Implementation issues

In this subsection, we briefly describe the general domain decomposition algo-

rithm used to solve the linear problems introduced above, namely both the Dirichlet-

Neumann and the Neumann-Neumann algorithms (see Figures 3 and 4). Note that
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other choices for preconditioners are possible, e. g. using the Robin transmission con-

ditions proposed by Badia et al. in (Badia et al., 2008a; Badia et al., 2009) for linear

problems.

6.2.1. General algorithm

Following the practical implementation, we decompose the algorithm according to

three distinct solvers: the master (which, roughly speaking, solves the third equation

of [31] by a GMRES method), the fluid solver (which solves the first equation of [31])

and the solid solver (which solves the second equation of [31]).

The iterative algorithm is as follows:

1) Evaluate the Newton residual (right-hand sides of [31]).

2) Initialization of the Domain Decomposition method:

a) Lifting of the external load and boundary conditions, that is solve the first

and second equations of [31] with δγ = 0.

b) Computation of the right-hand side of the Schur complement by the master,

insert the residuals received from the fluid and from the solid into the third equation

of [31]. This step evaluates how far the solution with zero on the interface is from the

true solution of the coupled problem [31].

c) Preconditioning the right-hand side of the Schur complement.

3) Iteration until convergence of the GMRES algorithm on the Schur complement

by the master, which updates the displacement δγ, sends it to the fluid and solid

solvers in order to

a) Evaluate the new residual

b) Preconditioning the residual

4) End of the domain decomposition algorithm.

The detailed description of these steps for both the Dirichlet-Neumann and

Neumann-Neumann algorithms is given in Figures 3 and 4, which are commented

in the following two paragraphs. Note that the steps [2a] and [4] do not depend on the

preconditioner.

6.2.2. Dirichlet-Neumann preconditioner (Figure 3)

The Dirichlet-Neumann preconditioner amounts to preconditioning the Schur

complement using the solid problem only, namely the exact tangent problem of the

solid (second equation of [31]) with Neumann boundary conditions. It is worth notic-

ing that the preconditioning step is not performed in parallel since only the structure

problem is used to precondition the residual. For each iteration [3] of the GMRES al-

gorithm on the Schur complement, the master sends δγ in Step [3a] to the fluid solver

only, which returns a residual to the master. In Step [3b], the master sends this residual

to the solid solver, which applies the preconditioner and returns a displacement δγ̃.

The master then sums the displacements 1
2 (δγ + δγ̃) and computes a new displace-
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send δγk

Fluid: receive δγ

if k = 0

compute preconditioner (Dirichlet)
external BC

GMRES (Dirichlet)

else

homogeneous external BC
GMRES (Dirichlet)

send linear residual

receive linear residual

send residual

receive residual

if k = 0

matrix factorization (Neumann)
homogeneous external BC

forward/backward substitution

else

homogeneous external BC
forward/backward substitution

send δγk+1
s

receive δγk+1
s

Figure 3. Detailed description of the domain decomposition algorithm: Dirichlet-

Neumann

ment using the update formula of the GMRES algorithm. At convergence, the final

value of δγ is known and the solutions in the fluid and in the solid can be computed.

Let us point out that the Dirichlet-Neumann algorithm described above is a purely

sequential algorithm.

6.2.3. Neumann-Neumann preconditioner (Figure 4)

The Neumann-Neumann preconditioner uses both the tangent fluid problem and

the tangent solid problem (first and second equations of [31]) with Neumann bound-

ary conditions. This algorithm is fully parallel since both the preconditioning steps
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send δγk

Solid: receive δγk

if k = 0

matrix construction (Dirichlet & Neumann)
matrix factorization (Dirichlet)

else

homogeneous external BC
forward/backward substitution

external BC
forward/backward substitution

send linear residual

Fluid: receive δγk

if k = 0

compute preconditioner (Dirichlet)
external BC

GMRES (Dirichlet)

else

homogeneous external BC
GMRES (Dirichlet)

send linear residual

receive linear residuals

Assemble and send global residual

receive residual

if k = 0

matrix factorization (Neumann)
homogeneous external BC

forward/backward substitution

else

homogeneous external BC
forward/backward substitution

send δγk+1
s

receive residual

if k = 0

compute preconditioner (Neumann)
external BC

GMRES (Neumann)

else

homogeneous external BC
GMRES (Neumann)

send δγk+1

f

receive δγk+1
s and δγk+1

f

Assemble global residual αkδγ
k+1
s + (1 − αk)δγk+1

f

Figure 4. Detailed description of the domain decomposition algorithm: Neumann-

Neumann

[2c] and [3b] and residual evaluation steps [3a] can be done simultaneously by the

fluid and solid solvers. Although for the tangent solid problem, considering Neumann

boundary conditions is standard, for the tangent fluid problem this is not the case.

In particular, shape derivative terms (that depend on the lifting w(δd̂f ) of the fluid

domain displacement, and thus on the solution δd̂f itself on the interface) enter the

stiffness matrix (see [35] in the Appendix) when Neumann boundary conditions are

considered. Yet, the lifting matrix of [17] is never constructed and neither is the fluid
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tangent matrix. Therefore, each iteration of the GMRES algorithm to solve the tangent

fluid problem requires the full solution of [17] by a GMRES algorithm. In practical

implementation, it is easier and less expensive to neglect the shape derivatives terms in

[35]. Doing so, we slightly modify the classical Neumann-Neumann preconditioner.

In order for the Neumann-Neumann preconditioner to be efficient, the weight as-

sociated with each subdomain (that is αk) should be such that the “effective stiff-

ness” matrices (taking into account inertia and stiffness, and the αk in [7] and Fig-

ure 4) of the fluid and structure are spectrally equivalent. In other words, the local

effective stiffness at each degree of freedom on the interface should be of the same

order for the fluid and the structure. To this aim, we follow (Le Tallec, 1994, Sec-

tion 3.3, p. 155) and replace the scalar value αk in [7] by a diagonal matrix where

the coefficient αk(i) depends on the degrees of freedom. In particular, denoting by

DSk(i) and DF k(i) the diagonal elements of the matrices of [31] associated with

the degree of freedom i of the interface, for the solid and fluid respectively, we set

αk(i) = DSk(i)/(DSk(i)+DF k(i)). This choice is optimal. As we will see in Sec-

tion 7, it has drastic effects in the case of fluid-structure interaction. Indeed the stiff-

ness of the structure scales as δt−2 whereas the stiffness of the fluid scales as δt−1.

Hence, we may expect the optimal Neumann-Neumann preconditioner to reduce to

a Dirichlet-Neumann preconditioner (using the structure) as the time step vanishes.

This is confirmed by the numerical tests.

6.3. Complexity analysis

Let us make a formal complexity analysis to have a rough hint on the cost of the

Steklov type, Dirichlet to Neumann formulation based, and partitioned Newton type

methods. We make the following assumptions: the fluid to be solved at each time step

is linear (e.g. semi-implicit Euler scheme for Navier-Stokes equations), the structure

problem is solved by a Newton algorithm and the linearized structure problems by

direct methods. We only take into account the factorization for the resolution of the

structure sub-problem and consider the matrices as already factorized when dealing

with linear domain decomposition methods.

Let us recall that (I) is the algorithm introduced in Section 6 (that is the domain de-

composition method applied on the linearized global problem), (II) refers to the New-

ton method on the symmetric Steklov formulation, and (III), to the Newton method on

the DtoN formulation.

In the following analysis we assume that the number of Newton iterations, ÑFSI ,

for the global problem in formulations (II) and (III) is the same. Let NFSI denote the

number of Newton iterations for the formulation (I). We denote by Ns the number of

iterations for a Newton algorithm in the structure problem. The number of GMRES

iterations G is assumed not to depend on the algorithm if optimal preconditioners (let

say Dirichlet-Neumann) are used. In the sequel Cr and Fa denote respectively the

cost of the construction and factorization of a matrix in the solid, Fl1 the resolution
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cost per time step of the fluid problem, and Fl2 the resolution cost for a tangent fluid

problem. The estimations of costs for the three types of methods are gathered in

Table 1 both for a sequential and a parallel implementation when possible. For the

parallel implementation, we have assumed that Fa+ Cr ≥ Fl and Fl ≥ Fa.

Table 1. Estimation of the computational cost
Method (I) preconditioned (II) preconditioned (III) Newton on

partitioned Newton Newton on Steklov DtoN-formulation

Sequential NFSI [2Fa + Cr ÑFSI [(Ns + 1)(Fa + Cr) ÑFSI [(Ns + 1)(Fa + Cr)
+GFl2 + Fl1] +Fa + GFl2 + Fl1] +Fl1 + GFl2]

Parallel NFSI [2Fa + Cr ÑFSI [(Ns + 1)(Fa + Cr) -
+GFl2] +Fa + GFl2]

Let us comment on Table 1. For the sequential implementation the estimations for

the method (II) and (III) only differ by the factorization cost of a solid tangent matrix,

which is rather small with respect to the whole cost. This is in agreement with the

tests performed in (Deparis et al., 2006) where method (II) is shown to be roughly

equivalent to method (III) in terms of cost. If NFSI ≈ ÑFSI , method (I) should be at

least as efficient as the first two, especially if the structure is nonlinear and expensive.

On the contrary, if Fl ≥ Fa + Cr then the parallel implementations of methods (I)

and (II) seem to be completely equivalent in terms of cost, which is only determined

by the fluid. For the parallel implementation, the cost reduction strongly depends

on the number of GMRES iterations, and the method (I) still seems to compete with

method (II). Note that, if NFSI > ÑFSI , method (I) may lose efficiency with respect

to methods (II) and (III).

The condition Fa + Cr ≥ Fl is almost never satisfied if standard shell elements

are used. However, this condition may be satisfied when 3D shell elements are used to

model more realistic constitutive laws for the structure (see Section 4). Let us consider

for instance a mesh with 38000 nodes in the fluid (let say 150000 degrees of freedom).

For MITC4 shell elements, we then have 3300 nodes and 16500 degrees of freedom.

Numerical tests show that in this case, with the same computer, Fl ≃ 45s, Fa ≃ 0.7s
and Cr ≃ 1.7s. Let us now consider 3D shell elements (hexahedra, 27 nodes per

element) on the same mesh. The number of nodes for the structure increases from

3300 to 22100, and the number of degrees of freedom from 16500 to 66300. The

costs for the solid are now Fa ≃ 13s and Cr ≃ 50s. We are thus in the situation

Cr + Fa ≥ Fl and Fl ≥ Fa.

7. Numerical tests

In this section we illustrate the behavior of the linear Domain Decomposition

method (I), with Dirichlet-Neumann and Neumann-Neumann preconditioners, by per-

forming some numerical simulations. As regards efficiency, we make some com-

parisons with the nonlinear Domain Decomposition method (III), reported on in

(Fernández et al., 2005).
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In all the computations the structure is modeled by 3D shell elements, as reported

in Section 4.2, with a neo-Hookean constitutive law in finite deformation. For the

space discretization we use a Q2-finite element (27 nodes) combined with a MITC

interpolation rule in the thin direction of the hexaedra. This allows us to deal with three

dimensional constitutive laws, and several layers of elements (from one to three in the

tests). A mid-point rule is used for the time discretization. For the fluid, we consider

the Navier-Stokes equation with an ALE formulation [11]. The fluid equations are

discretized in space using P1/P1-SUPG-stabilized finite elements, and in time by a

semi-implicit backward-Euler scheme.

7.1. Flow in a compliant straight tube

We consider here the benchmark test described in (Formaggia et al., 2001). The

fluid computational domain is a cylinder of radius R0 = 0.5 cm and of length L =
5 cm. The tube wall has a thickness h = 0.1 cm and the rest of physical parameters

are E = 3 · 106 dynes/cm2, ν = 0.3 and ρs = 1.2 g/cm3. For the fluid we have

µ = 0.035 poise and ρf = 1 g/cm3. The numerical computations are performed

using a fluid mesh with 38400 tetrahedra and a solid mesh with one to three layers (of

160 hexahedra each), the time step size is δt = 10−4 s.

Initially, the fluid is at rest and an over pressure of 1.3332 · 104 dynes/cm2

(10mmHg) is imposed at the inlet boundary during 0.005 s. The results consist of a

pressure wave propagation and is comparable with those obtained with more standard

shell elements (see e.g. (Gerbeau et al., 2003; Fernández et al., 2007) with the MITC4

shell element).

The same numerical computation has been carried out using method (III). A com-

parison of the efficiency of both methods, in terms of the number of layers of 3D shell

elements in the structure, is reported on in Table 2. We observe that, with a mono- or

bi-layered structure, method (III) is slightly faster than method (I), mainly due to the

reduced number of Newton iterations (see Section 6.3). With a three-layered structure,

however, the Newton algorithm of method (III) fails to converge. Method (I) remains

practically insensitive to the numbers of layers. This shows that the complexity of the

solid problem might compromise the effectiveness of Newton’s method when applied

to the non-linear Dirichlet-to-Neumann formulation, whereas method (I) is robust with

respect to the number of layers.

Note that the estimates of Table 1 are in good agreement with the results of Table 2.

Method (I) is outperformed by method (III) for 1 layer because of the number of

Newton iterations: NFSI = 5 > ÑFSI = 2.

7.1.1. Sensitivity to the added-mass effect

In this paragraph we investigate the impact of the added-mass effect on the effec-

tiveness of the Dirichlet-Neumann and Neumann-Neumann preconditioners.
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Table 2. Efficiency over 10 time steps: dimensionless CPU time and mean number of

GMRES and Newton iterations (symbol 5 indicates that the overall algorithm failed

to converge)

Number of solid layers 1 2 3

Method (I) (III) (I) (III) (I) (III)

CPU time 1.2 1 1.7 1.4 2.2 5

GMRES iterations 8.1 10.7 8.5 10.6 8.6 5

Newton iterations 4.7 2.6 4.7 2.8 4.4 5

Table 3. Average number of GMRES iterations for the Dirichlet-Neumann (DD) and

Neumann-Neumann (NN), with αk = 1/2, preconditioners in terms of the tube length

L
P

P
P

P
P

P
PP

Prec.

L
5 (cm) 10 (cm) 15 (cm)

DN 8.5 11.9 14.5

NN 13.0 13.7 14.8

Table 4. Average number of GMRES iterations for the Dirichlet-Neumann (DN) and

Neumann-Neumann (NN), with αk = 1/2, preconditioners in terms of the time-step

length δt
P
P

P
P

P
P

PP
Prec.

δt
10−3 (s) 0.5× 10−3 (s) 10−4 (s) 0.5× 10−4 (s)

DN 5.8 6.7 8.5 9.2

NN 48.5 27.3 8.5 7.3

We first consider the case in which the Neumann-Neumann preconditioner is used

with the homogeneous scaling αk = 1/2. Table 3 reports on the average number of

GMRES interations (over 10 time steps) for differents values of the domain length

L. We observe that for both preconditioners the number of iterations increases with

L. The sensitivity being slightly bigger for Dirichlet-Neumann, but with a reduced

number of iterations. In Table 4 we present the sensitivity with respect to the time

step length δt. We observe that the Dirichlet-Neumann and Neumann-Neumann pre-

conditioners show a complete opposite behavior. For the Dirichlet-Neumann precon-

ditioner the number of GMRES iterations increases by reducing the time step length,

whereas for Neumann-Neumann the number of GMRES iterations increases with δt.
Note that increasing the time step length is dramatic for the Neumann-Neumann pre-
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conditioner. This poor behavior is due to the unphysical balance of the scaling pa-

rameters αk = 1/2, as shown by the results reported in Table 5, using the heteroge-

neous Neumann-Neumann scaling discussed in Section 6.2. These results also show

that, with this automatic scaling and for the physical problem under consideration, the

Neumann-Neumann preconditioner becomes a Dirichlet-Neumann preconditioner.

Table 5. Average number of GMRES iterations for the Dirichlet-Neumann (DN) and

Neumann-Neumann (NN), with the heterogeneous scaling (see Section 6.2), precondi-

tioners in terms of the time-step length δt
P
P

P
P

P
P

PP
Prec.

δt
10−3 (s) 0.5× 10−3 (s) 10−4 (s) 0.5× 10−4 (s)

DN 5.8 6.7 8.5 9.2

NN 5.8 6.7 8.5 9.2

7.2. Flow in a compliant vessel with an aneurysm

We now consider the FSI numerical results reported on in (Salsac et al., 2005)

using in vitro aneurysm geometries. The fluid computational domain is represented in

Figure 5. The geometry correspond to the mock-up of a middle-size aneurysm with

a dilatation ratio D/d = 2.4 (maximum diameter to inlet diameter ratio) and aspect

ratio L/d = 3.9 (length to inlet diameter ratio), with d = 1.7 cm (we refer to (Salsac

et al., 2005; Salsac et al., 2006) for the details). The wall has a uniform thickness h =
0.17 cm and the physical parameters are given by E = 6 · 106 dynes/cm2, ν = 0.3
and ρs = 1.2 g/cm3. For the fluid we have µ = 0.035 poise and ρf = 1 g/cm2. The

fluid and solid meshes are made of 165888 tetrahedra and 640 hexahedra, respectively.

The time step size is δt = 1.68× 10−3 s.
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Figure 5. Aneurysm geometry (a) and in-flow rate data (b)

Initially, the fluid is at rest. The in-flow rate corresponding to a cardiac cy-

cle, see Figure 5(right), is imposed on the inlet boundary. A resistive-like bound-
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Figure 6. Deformation of the structure and fluid velocity field at time 87.36 × 10−3,

218.4× 10−3, 305.76× 10−3 and 584.64× 10−3s

ary condition is prescribed on the outlet boundary, the value of the resistance being

R = 3× 103 dyne/cm3. In Figure 6 we have reported on some snapshots of the wall

deformation and the fluid velocity field at different time instants. These results are in

agreement with those obtained with the MITC4 shell element in (Salsac et al., 2005).

As in the previous experiment, the same numerical simulation has been performed

using method (III). Once again, method (III) performs slightly faster. Nevertheless,

the efficiency gap between both methods has been reduced, due to the increasing in

the computational cost of the structural solver.

8. Conclusion

We have proposed a Newton algorithm for fluid-structure problems. The starting

point of the method is the same as for the so-called monolithic approaches since we

consider the global fluid-structure equations, but the tangent problem is solved with

domain decomposition techniques. The resulting method is therefore partitioned: it is

based on two different solvers for the fluid and the structures and can be parallelized.

As a side remark of this study, we have noticed that the Neumann-Neumann precon-

ditioner actually behaves like a Dirichlet-Neumann preconditioner for this kind of FSI

problems, as soon as the Schur complements of the fluid and the solid are correctly

balanced.
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The proposed approach does not outperform usual partitioned Newton methods

in various test cases. This fact has been explained through a simplified complexity

analysis which showed that the scheme is expected to reach optimal performance when

the structure is expensive. Nevertheless, for more complex structure models, like

multi-layered shells, our numerical tests have shown that our approach can be actually

more efficient and robust than usual nonlinear partitioned schemes.
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Appendix

A. Derivation of the weak formulation [18]

Let (v̂f , q̂) ∈ [H1(Ω̂f )]
3 × L2(Ω̂f ), multiplying the fluid problem [11] by

(vf , q) = (v̂f ◦ Â
−1
t , q̂ ◦ Â−1

t ) integrating over Ωf (d̂f ) and after integrations by

parts we get

d

dt

∫

Ωf (d̂f )

ρfu · vf dx+

∫

Ωf (d̂f )

div
[
ρfu⊗

(
u−w

(
d̂f

))]
· vf dx

+

∫

Ωf (d̂f )

σ(u, p) : ∇vf dx−

∫

Σ(d̂f )

σ(u, p) · vf · n

da −

∫

Γin−out

g · vf da −

∫

Ωf (d̂f )

q divu dx = 0,

where

w
(
d̂f

)
=

∂d̂f

∂t
◦ Â−1

t .

For the structure, multiplying [12] by v̂s ∈ [H1
ΓD

(Ω̂s)]
3, integrating by parts over Ω̂s,

one gets

∫

Ω̂s

ρ0
∂2d̂s

∂t2
·v̂s dx̂+

∫

Ω̂s

∂W

∂F
(I+∇d̂s) : ∇v̂s dx̂−

∫

Σ̂

∂W

∂F
(I+∇d̂s)n̂s ·v̂s dâ = 0,

where ρ0 = Ĵsρs. Therefore, taking into account the coupling condition [16], it

follows that

d

dt

∫

Ωf (d̂f )

ρfu · vf dx+

∫

Ωf (d̂f )

div
[
ρfu⊗

(
u−w

(
d̂f

))]
· vf dx

+

∫

Ωf (d̂f )

σ(u, p) : ∇vf dx−

∫

Γin−out

g · vf da−

∫

Ωf (d̂f )

q divudx

+

∫

Ω̂s

ρ0
∂2d̂s

∂t2
· v̂s dx̂+

∫

Ω̂s

∂W

∂F
(I +∇d̂s) : ∇v̂s dx̂ = 0, [32]

for all (v̂f , q̂) ∈ [H1(Ω̂f )]
3×L2(Ω̂f ) and v̂s ∈ [H1

ΓD
(Ω̂s)]

3 with v̂f = v̂s on Σ̂. The

weak form of the geometry coupling conditions [13] and [14] are rewritten in terms of

the interface displacement γ ∈ [H
1
2 (Σ̂)]3 as

∫

Ω̂f

(
d̂f − Ext(γ)

)
· τ̂ dx̂+

∫

Σ̂

(d̂s − γ) · ζ̂ dâ = 0, [33]
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for all τ̂ ∈ [L2(Ω̂f )]
3 and ζ̂ ∈ [L2(Σ̂)]3. Finally, the continuity of the velocities at

the interface [15] is reformulated as
∫

Σ̂

(
û− ŵ(d̂f )

)
· ξ̂ dâ = 0, [34]

for all ξ̂ ∈ [L2(Σ̂)]3.

The weak formulation [18] follows from the summation of [32]-[34].

B. Weak state operator derivatives

The linearized fluid operator at state (û, p̂, d̂f ,γ) ∈ [H1(Ω̂f )]
3 × L2(Ω̂f ) ×

[H1(Ω̂f )]
3 × [H

1
2 (Σ̂)]3 is denoted by

DF(û, p̂, d̂f ,γ) : [H
1(Ω̂f )]

3 × L2(Ω̂f )× [H1(Ω̂f )]
3 × [H

1
2 (Σ̂)]3 −→

(
[H1

Σ̂
(Ω̂f )]

3 × L2(Ω̂f )× [L2(Σ̂)]3 × [L2(Ω̂f )]
3
)′

,

and is given by

〈DF(û, p̂, d̂f ,γ) · (δû, δp̂, δd̂f , δγ), (v̂f , q̂, ξ̂, τ̂ )〉

=

∫

ΩF (d̂f )

div
[
ρfδu⊗ (un −w(d̂f ))

]
· vf dx

+

∫

ΩF (d̂f )

σ(δu, δp) : ∇vf dx

−

∫

ΩF (d̂f )

q div δu dx+
1

δt

∫

ΩF (d̂f )

(div δd̂f )ρfu · vf dx

+

∫

ΩF (d̂f )

div
{
ρfu⊗ (un −w(d̂f ))

[
I div δd̂f − (∇δd̂f )

T
]}
· vf dx

−
1

δt

∫

ΩF (d̂f )

div(ρfu⊗ δd̂f ) · vf dx

+

∫

ΩF (d̂f )

σ(u, p)
[
I div δd̂f − (∇δd̂f )

T
]
: ∇vf dx

−

∫

ΩF (d̂f )

µ
[
∇u∇δd̂f + (∇δd̂f )

T(∇u)T
]
: ∇vf dx

−

∫

ΩF (d̂f )

q div
{
u
[
I div δd̂f − (∇δd̂f )

T
]}

dx+

∫

Σ̂

(
δû−

δd̂f

δt

)
· ξ̂ dâ

+
ρ

δt

∫

ΩF (d̂f )

δu · vf dx+

∫

Ω̂F

(δd̂f − Ext(δγ)) · τ̂ dx̂
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[35]

for all (v̂f , q̂, ξ̂, τ̂ ) ∈ [H1(Ω̂f )]
3 × L2(Ω̂f )× [L2(Σ̂)]3 × [L2(Ω̂f )]

3.

The linearized solid operator at state (d̂s,γ) ∈ [H1
ΓD

(Ω̂s)]
3 × [L2(Σ̂)]3

DS(d̂s,γ) : [H
1
ΓD

(Ω̂s)]
3 × [H

1
2 (Σ̂)]3 −→ ([H1

ΓD∪Σ̂
(Ω̂s)]

3 × [L2(Σ̂)]3)′,

is given by

〈DS(d̂s,γ) · (δd̂s, δγ), (v̂s, ζ̂)〉 =
2

(δt)2

∫

Ω̂S

ρ0δd̂s · vs dx̂

+
1

2

∫

Ω̂S

∇δd̂s :

(
∂2W

∂F 2
(I +∇d̂s)

)
: ∇vs dx̂+

∫

Σ̂

(δd̂s − δγ) · ζ̂ dâ,

[36]

for all (v̂s, ζ̂) ∈ [H1
ΓD

(Ω̂s)]
3 × [L2(Σ̂)]3.

We finally introduce the linearized interface operator at state (û, p̂, d̂f , d̂s)

D I(û, p̂, d̂f , d̂s) : [H
1(Ω̂f )]

3×L2(Ω̂f )× [H1(Ω̂f )]
3× [H1(Ω̂s)]

3 −→ [H− 1
2 (Σ̂)]3,

defined by

〈
D I(û, p̂, d̂f , d̂s) ·

(
δû, δp̂, δd̂f , δd̂s

)
,µ
〉

=
〈
DF

(
û, p̂, d̂f ,0

)
·
(
δû, δp̂, δd̂f ,0

)
, (Lfµ, 0,0,0)

〉

+
〈
DS

(
d̂s,0

)(
δd̂s,0

)
, (Lsµ,0)

〉
, [37]

for all µ ∈ [H
1
2 (Σ̂)]3.


