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ABSTRACT. This paper focuses on improving the description of the contact between solid
particles in a fluid flow. The numerical approach used is related to the fictitious domain
method for the fluid—solid problem. It is associated to a gluey particle model in order to
improve the behaviour of the particles during their contacts as a Lagrangian method is
applied for their displacement. The numerical methodology is validated through 2D and 3D
computations describing interactions of two particles in a shear flow. The results obtained
show the ability of the scheme to recover the reversibility of the Stokes equations, even for 3D
configurations. Finally, another example is studied with larger number of particles.

RESUME. On s’intéresse a [’'amélioration de la description du contact entre plusieurs
particules solides dans un écoulement fluide. Le modéle numérique est la méthode des
domaines fictifs pour la description du probléeme fluide-solide. Elle est associée a un modéle
de contact visqueux qui intervient lors du déplacement Lagrangien des particules. Le schéma
numérique a été validé sur des calculs 2D et 3D décrivant |’évolution de deux particules dans
un écoulement cisaillé. Les résultats obtenus montrent la capacité du schéma a retrouver la
réversibilité des équations de Stokes tout en évitant le recouvrement méme pour des
configurations 3D. Enfin, un exemple avec plus de particules est présenté.
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1. Introduction

Sincethe emergenceof the fictitious domain methodsin the 2000s (Glowinski et
al., 1999 Singhet al., 2000 Patankar et al., 2000, lots of multiphase gplicaions
have been treaed that way, seefor instance (Glowinski et al., 2001, Wadhs, 2009
Coupezet al., 2009. The advantages of these methods are straightforward: fluid/solid
or multi phase problems can be treaed with an Eulerian approach onthewhole domain
because the rigidity condtion can be added in the wed formulation.

In this work, we study the displacement of solid particlesin a shea flow. For this
purpose, a charaderistic function is used to describe the particle domain and there-
fore dlows to extend all variables associated to ead phase to whole computational
domain thanks to mixing relations. Then the displacement of the particles and the
correspondng charaderistic functionis achieved by wsing a Lagrangian approach.

As the distance between particles can be very small (Meunier et al., 2008, typi-
cdly around10~° timesthe charaderistic size of particles. Another important point is
to ded with particlesoverlappng. Thiswill be adieved byintroducing contad mod-
es, espedally the gluey particle model (Maury, 2007 Lefebvre, 2009 which takes
into acourt viscous eff eds between particles.

2. Numerical Modelling

This work is carried out using an immersed domain approach using a level set
functionfor determining the interfacebetween fluid and solids (Coupezet al., 2009.
The week formulation d the mixed fluid-solid system is written by mean of a La-
grange multiplier. At last, the displacement of the solid particlesis carried out with
a Lagrangian approadh, which includes the gluey model. These points are described
heredter.

2.1. Theimmersed damain approach

The immersed damain methodis achieved by splitti ng the computational domain
Q into two subdamains 2y and €2 for respedively the fluid and solid parts (seeFig-
ure 1). In the case of multiple particles, the solid domain is the union o domain
correspondngto ead particle, namely Q; = UZJ.V s, for N particles.

The interfacel’s between the two phases is described by the zeo isosurfaceof a
distancefunction:

(1]

if Q,
a(x,t) = {>0| X €

<0ifx ¢ Qs
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()
S ‘ solid particles

Figure 1. Schematic representation of computationd domain

In pradice for asphericd particlei of center X; andradii a;, theleve set function
is defined from the foll owing signed distance

i(x) = a; — || Xix|| (2]
Obvioudly, the signed distance« for NV sphericd particles can be written as:

afx) = _max a;(x) 3

Finally, a "smooth" charaderistic function is deduced from the level set function
by taking

=1if alz)>e
I(z,t) = :% it 0<az)<e [4]

=0if a<0

where e the mixingthicknessdependsonthe mesh size aoundthe interface Notethat
the mixing areais inside the solid damain. In additi on, the viscosity  will be defined
thanksto mixingrelation:

n=1Ins + (E—-Dns (5]

wheren isthefluid viscosity andns ~ rny thesolid viscosity (or penali sationfador)
usually taken much bigger than n; (r =~ 103).
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2.2. Governing set of equations and weak formulation

Negledinginertia and gravity, the fluid-solid problem can be written with the fol-
lowing set of equations:

V.o = 0
V.u = 0
o = 21y é(u) — pE

6
[ully,, = 0 L6}
[lom]]r, = 0
u = wur onthe externa boundry T’

where u is the fluid velocity, é(v) the rate of strain tensor, o the stresstensor, p the
presaure, 7 the fluid viscosity (the symbdl [[ f]] -, meansthe jump of scdar f aaoss
theinterfacel’,). Patankar et al. (Patankar et al., 2000 have propcsed to extend the
above Stokes equation to the solid damain thanks to a Lagrange multiplier by using
the rigidity condtioné(v) = 0 on{,. In this way, the motion in solid damain 2,
correspondsto afluid motionwith an additional stressfield. Thisis equivalent to take
the stresstensor ¢ inside the solid damain of the form

o =2nsé(u) —pE+é(N) (7]

Dueto the rigid motion constraint the two first terms are zeo; 7, can play therole
of apenalizationfador of the constraint é¢(u) = 0, andthe symmetricd tensor é(\) is
the Lagrange multi pli er associated to this constraint.

If we consider Dirichlet boundary condtions, the wea formulation o the fluid—
solid problem can be written as follows: find (u, p, ) such that V (v, ¢, ) €
HH(Q) x L3(2) x HM(R):

0 = /9277 é(u) : €(v)dQ — /QpV.VdQJr/ E(N) : é(v)dS2

Qs

0 = /QqV.udQ (8]

0 = /é(u):é(v)dQ

Q.

where H1(Q) and £3(2) are respedively the Sobdev and L ebesgue spaces.

The system of Equations [8] is 0lved using the augmented Lagrangian method
and an Uzawa dgorithm (Fortin et al., 1983 where the field A has been extended to
the whole domain Q2 by using the charaderistic function.



Particlesinashea flow 517

Hencethe weak formulation o the problem reads, at step & of the Uzawa procedure
(Laureet al., 200%):

/92” é(uP) s ¢(v)dQ — /ka.VdQ

— / I7s €A1 2 é(v)dQ
Q Q

(9]

/qV.ude =0
Q

whereas the update of Lagrangian multiplier reads

AP = N 4w [10]

2.3. Particle displacements

Solving Equations [8] gives the velocity field that al ows us to compute the new
particle positions (at time t" 1 = ¢ 4+ At) with a Lagrangian approach. Many differ-
ent choices are posdble ; the most straightforward is the Euler explicit scheme:

X, (1" = X (1) + At u(X; ("), ") [11]

But this first order scheme can lead to inacairate displacanents espedally for rotat-
ing velocity fields, that is why the second ader Adams-Bashforth scheme is usually
preferred:

X (") = X (t") + % [3u(X;(t"),t") — u(Xi(t"_l),t"_l)] [12]

2.4. Overlappng of particles

In some computational condtions, even for non-dense suspensions, anon-physica
overlappingcan occur between two particles (seeFigure 2). Thisismost often dueto a
largetime step but it can even occur for agoodset of computational parameters. Typ-
icdly, that can be observed when the distances between particles beaomes close to the
computer acaragy. Inthe literature it has been observed that the minimum distance
between two particles can be very small, espedally for 3D spheresin a shea flow
(Meunier et al., 2008. These mnfigurations can leal to overlappingin our numerica
procedure, that is why it is crucial to improve the treament of the cmntad between
particles.

In previousworks, diff erent approaches have been used to prevent the overlapping:

—using a simplified version d the lubricaion force (linea) in the weg formu-
lation of the problem in order to recover the same dfeds. In fad using dredly the
lubricaion force would leal to nonlineaities that are redly difficult and computa-
tionally expensiveto solve,
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up (tn)

u; (tn)

(@ attimet™ (b) attimet™*! after particle
displacements

Figure 2. Overlappng between two particles

— using avdocity corredion. Typicdly, it consistsin moving the particle towards
the normal between two particlesif the distancebetween them beammestoo small with
resped to acairacy of numericd method This corredion has been used in this gudy
andit isexplained in the sequel.

2.5. The glueymodel

As explained in the past sedion, the corredion strategies that have been used in
previous works are nat rigorous enoughto avoid the overlapping prenomenon In or-
der to improve the performance of our numericd scheme, espedally for recvering
the reversibility of the 3D Stokes flow, we implemented a contad model during the
particle displacament with Adams-Bashforth scheme. This model, originally devel-
oped in (Maury, 2007 for the contad between two particles, has been generalized by
Lefebvrefor dry granular flows (Lefebvre, 2009).

2.5.1. Principles of glueymodel

Once ayain, the principle of this methodis based on lubricaion force & shown
in Figure 3. The hydrodynamic lubricaion force for sphericd particle is recdled
heredter:

(uj — ) - ey
i Xl = (ai + a;)

a; aj
a; + a;

(13

F,;j = 6ma’ ns X e;; With a =

where e;; isthe normal vedor towardsthe jth particle

_ XX
(X X |

€
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u;

u;

(a) Repulsion (b) Attraction

— u; uj—ui

Figure 3. Effeds of the lubrication forceon the particle trajedories

Aswe can observein expresson[13], the lubricaionforceis ading in the same
way of theterm (u; — ;) - e;;, as Thematicdly explained in Figure 3. Two diff erent
Situations can typicdly occur:

—when (u; — w;) - e;; < 0, the particles are going closer to eat other, and the
lubricationforce ads like arepulsionforce,

—when (u; — u;) - €;; > 0, the particles are going away to ead other, and the
lubricetionforce adslike an attradion force

With our approadh, that means that the lubrication force will be able to avoid
the overlap that can occur between the particles by adding a repulsive term in our
numericd scheme.

Instead of adding dredly this forceinto the wea formulation o the fluid-solid
problem, the gluey model works like apredictor-correcor scheme. Indeed, addingthe
term correspondngto the hydrodyrnamic forcewould lead to anonlineaity that will
be computationally more compli cated and expensive to solve. The philosophy d the
gluey model can also be summarized as foll ows:

1) inafirst step, the fluid velocity is computed using the weak formulation[8],

2) and in a second step, the velocity would be correded by taking into acount
more acarately the dfeds of lubrication forces in order to prevent the overlapping
between particles.

2.5.2. Corredion d the predicted veocity

The velocity field u* obtained by solving Equation [8] does nat take into acount
of contads, that iswhy it is cdled predicted vdocity. The gap between particlesis
defined by

Dij = IXiX;|| — (ai + a;) [14]
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and hasto be positive. Indedd, in Equation[8], we do nd have any information about
a nonoverlapping condtion. Thisis predsely the first ideaof the gluey model: we
have to indicate which condtions must satisfy the velocity field in order to avoid
overlapping. That isto say D};*' > 0 and afirst order estimation o D" reads

D + At(u} —uj') -ef, >0 [15]
if the particle positions are updated by explicit scheme [11]. Thisis achieved by the
following condtion onthe velocity field u™:

1 2

—ju" —u*|" = i Z v —u*? 1
5 | | veKI(I;éE;y;})2| | [16]

where K isthe spaceof admissble velocity defined by
D + At(vj —v;) - ey > 0if 42 =0 }

K(X", i) = {V (17]

D + At(vj —v;) ey <0if 47 <0

In these @bove constraints, +7; is a new variable which represents the contad be-
tween particles and j asfollows:

< 0if thereis contad between particlesi and j
Vij (18]
Y 1=0¢ese

Let us define the functional J as follows:
1 1
J(V):§|v7u*|2:§Mv~vfMu*~v [19

whereM = diag(...,m;,--- ,m;,---) isthe massmatrix. Then the Lagrangian of
J(u) for two particles: and j which takes into acount of contad constraints has the
foll owing form (omitti ng the superscript » for legibilit y):

L(v,)}) J(v) = AL (Dyj + At(vj = vi) - e;)
— )\Z] (7Dij — At(Vj — Vi) . eij) [20]
n _ - ) . oL
where \/; and \;; are Lagrange multipliers. Finally, by solving v, 0 and
g—ﬁ = 0, we obtain the two following relations:
Vi
miu? = ’I?’Liljl;< — ()\:_ — )\Z_)At €;;
7o [21]
mjuy = myui + (A — A At ey

under the condtions:
A5 (Dyj + At(u] —ulf) - e;;) =0 with AL >0 and A;; <0 [22]

This minimizaion problem is also solved with an Uzawa procedure becaise this
algorithm always converges even if thereis no uriquenessof Lagrange multipliersfor
large numbers of contad.
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2.5.3. Characterisation of the viscous contact

Inthis £dion, we explain how we ded to charaderise the viscous contad, namely
how the variable v;; is computed. In previous papers (Maury, 2007 Lefebvre, 2009,
for 3D sphericd particles driven by external forces (like gravity), +;; is defined as the
limit value of

Vn,ij = 6mnIn(D;;)

as the the viscosity tends to zero. In fad v, ;; describes the distance & microscopic
level wherees D;; is the maaoscopic distance between particles: and j. That means
that if D;; isbelow aspedfic value which depends ontime step, mesh sizeor acaracy
of numericd method, the two particles are assumed to be stuck. It is shown that
the duration d this contad depends wedkly on the viscosity and the evolution o the
limit value v,; is sufficient to get the total contad time (Lefebvre, 2007, Lefebvre,
2009. The relation between Lagrange multipliers and ;; is achieved by wsing the
Fundamental Principle of Dynamicswith the lubricaionforcesfor sphericd particles:

dui - _a2 d’yij
dt dt

In their papers, u* isthe solution o the above equation withou short range lubri-
cdionforce and some basic cdculusleal to the following relationship:

e + Mg [23]

For solid particlesin shea flow, the gravity andthe inertia are usually negleded if
the particles andfluid have same density. However by takingfirst order approximation
of hydrodynamic force axd asauming that u* is lution o the Stokes equation for
which the lubricaionforceis not taken into acourt carefully, one can gets the same
relation [24] for v;; = In(D;;) and M = At diag(...,a, -+ ,a;,---) (Verdonet
al., 2010. Moreover the reversibility of the Stokes equations implies that the time
for which the Lagrange multiplier A;; is positive ( that meens that particle ¢ tends to
go inside particle j) is the same that the time for which \;; is negative ( particle 4
tendsto go ouside particle j). Therefore the contad functiony;; can be conreded to
Lagrange multi plier by a simple relationship

d’)’ij
— = =\ 2
dt J [ 5]

The case of inelastic collisionisrecvered by imposing a null contad function at
any time and therefore the Lagrangian multi plier will be only positive.
2.6. Final algorithm of the numerical procedure

In this £dion we finaly sum up the whole numericd procedure, including the
gluey particle model.
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1) Initialization
n = 0 (index for time step) : initialize X;, I and;; for &l contads

2) Flow solver
The we& formulation o the problem is lved with an augmented Lagrangian
methodand an Uzawa dgorithm:

a) The velocity field u is computed by wsing a stable/stabili zed finite dement
methodfor solving the weak formulation o the problem at step & of the Uzawa pro-
cedure:

/277 é(uP) : é(v)dQ — /ka.VdQ = f/]Ins N L E(v)d  [26]
Q Q Q
/qV.ude = [27]
Q
b) update of Lagrangian multiplier
DU L [29]

) at convergence, we have the predicted velocity u*.

3) Corredion of vdocity for an Adam-Bashforth scheme
The predicted velocity u* is correded by the following Uzawa dgorithm

a) let w° be defined w” = u* and chocse abitrarily 67; and p > 0.
b) For all k > 0, we compute u**+! and 6" asfollows:
* At —

whtl = u* + LM B!,
H n k+1 _ n A
if 4 <0, &5t =0k — p(Dy + 2EBwh!) [29]
H n k+1 _ k n 3At k
if Vij 2 0, 5ij = max(0, 5ij - p(Dij + TBW +1))

where B = ( —ej; e}’ ), M = diag(a;, a;) and

At
D = D} — ?(u;hl - u?il) -ej

C) a convergence, we have corredted velocity u™ and Lagrange multiplier A7

4) Update of contact functions -;;
For gluey contact

7;;.“ =5 — AN [30]

If 7{}“ < 0 then we have montad between particlesi and j at next time step.

If 4/i*! > 0, thereisnomore contadt and ;"' = 0.

,
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For inelastic collision : 7/} ! = 0.

5) Updae of particle position
it is dorethanksto an Adams-Bashforth scheme (Hwanget al., 2004):

X, (") = X, (t") + % (Bu"—u") 31

3. Results

In this part we present the numericd improvements obtained by using the gluey
particle model. As mentioned before, the main problem of previous results concerned
the nonreversibility of the Stokes equations due to bad description of contad. That
induces either an overlapping between particles, or a non-physicd changein the tra-
jedories coming from corredionforces.

Asillustrated in Figure 4, the problematic is ched<ed onthe evolution o particles
in a shea flow. The shea flow is obtained by impased velocities on the upper and
lower walls (the shea rate isequal to 1in all computations).

-

u
Q\ dinit :
—u

-«

Figure 4. Two particlesin ashear flow

In the following, we present results obtained with this configuration for both 2D
and 3D flows. The computations are made with particles of radius a = .05 in an
unitary box. It shoud be noted that particles must be seen rather as infinite ¢ylinders
for 2D computations. The last paragraph is devoted to examples of multi-particle
computations.

3.1. Computationsfor two particlesin 2D shear flow

As emphasized in previous works, the minimal distance between particles in 2D
shea flow remains larger than for 3D configuration (Meunier et al., 2008 Verdonet
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al., 2010. However, for avery small initial distance between two particles, the two
particles rotate together and the minimal distanceremainsbelow a x 10~3. Therefore
for large time step At, an overlapping can occur. For this purpose, we chocse the
following set of initial coordinates:

0.451 0.549
X1< 0.51 ) a”dx2< 0.49 >

which corresponds to Di,i; = 2 - 107°. With these initial values, the different ap-
proaches can be chedked:

— withou corredion, that isto say that thereis no corredion on \elocity to prevent
the overlapping between particles,

— with inelastic colli sion mode!, that isto say that v;; = 0 at ead time step,

—with gluey model, that is to say that 7;; = —\;; as explained in the previous
sedion.

10°

10*

5 L L L L L L L
1079 5 10 15 20 25 30 35 40

Figure 5. Two particlesin 2D shear flow: ewolution of normalized distances |D/a|
between particles for the threedifferent strategies (namely gluey contact (-), inelastic
collision (- -) andwithou vdocity corredion (- .). For this latter case, the negative
distanceis also plotted

The computations are caried ou by using atime step equal to At = 0.025, and
the results are summarized in Figures 5 and 6. From these figures we can make some
important observations:

—the aurve correspondngto the computationwithou corredion (- .) is discontin-
uous because the ebsolute value of the negative distanceis plotted (logarithmic scae).
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— G.uey contact — G.uey contact
-+ .ne.astic co.ision --+ .neastic co.ision
- No correction ++No correction

1.0

0.5

Y/a
°
o

-1.0

Y5 =0 05 00 05 10 s 085 05 T

0
X/a x|
.

15 2.0 25
(a) Trajedories (b) Relativetrajedories

Figure 6. Two particlesin 2D shear flow: trajedoriesfor gluey mntact (-), inelastic
collision (- -) andwithout velocity corredion (- .)

When the distance is positive, the distance is the same &s that given by the gluey
model. When the distanceis negative, the overlappingis rather important (bigger than
a x 10~2) but thanks to Adam-Bashforth scheme, the particles do na remain sticked,

— with the gluey model, we recver the theoreticd li mit trgjedory for a zeoinitial
distance between two particles, namely a drcle. When the gluey procedure is adive,
the distance between particle can be bigger than a x 10~2 becaise the constraint
cancds only the first order expansion of D™ *! and the term of order At? gives this
pasitive distance These value will deaease with the time step At,

—withou corredion, the trgjedories of particles are similar to a drcle, but with
small fluctuations because of discrepancy dueto overlapping,

—with the inelastic model, the particles change their trgjedories, so they jump to
anew orbit that is more dli psoidal.

Theresultsobtained by numericd scheme using duey particle model i ndicate that
circular tragjedories are preserved, but at the same time the particles do na overlap.
Hencewe remver the theoreticd trajedories withou overlapping.
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3.2. Two particlesin a 3D shear flow

For sphericd particlesin a 3D shea flow, we choase a cae for which the minimal
distancebetween isvery small. Two sphereswith the same radius are placed in the su-
perior andinferior mid-plane and move toward the right and the | eft side respedively.
Thetime step isequal to At = 0.05 andtheinitial positions are

0.3 0.7
X;=| 0525 and X, = | 0.475
0.5 0.5

0.1

— G.uey contact

- .ne.astic co..ision
0.08 No correction
0.06
als
0.04
0.02
0.00
4 5 6 7 ? 9 10 11 12

(a) Normalised distance between particles

— G.uey contact
0.0 ==+ ,ne.astic co.ision
No correction

Y/a

=20 -15 -10 -05

0.0 0.5 1.0 15 2.0
X/a
(b) Particletrajedories
Figure 7. Two particlesin a 3D shear flow: comparison o colli sion strategies (gluey
contact (-), inelastic collision (- -) andwithou veocity corredion (- .)
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The Figures 7 show results obtained with the three different strategies already
described. Once ajain, we observe alarge overlapping if there is no corredion on
velocity field. The inelastic model avoids the overlapping bu modifies dgnificantly
the trajedories. the reversibility is no more satisfied (it is both seen onthe trgjecory
and the distance between the particles). With gluey contad, the reversibility is almost
recmvered but withou overlapping(abetter acaracy can be obtained with small er time
step). In addition, the relative aror between the computed distance and the theoreticd
one when reversibility occursis (at the end o the simulation) equalsto 6.5% whichis
quitefair for 3D computations.

3.3. 2D multi-particle momputations

In this last paragraph, we will present results of multi-particle computations. The
extension o algorithm described in previous sdion to multi-particle cae can be
foundin (Lefebvre, 2009.

We present the motion o three particles in a shea flow. The main aim of this
example is to ched the influence of non-overlapping strategies on particle motions.
Thefirst two particles are locaed in the same position as in the example described in
sedion 31 whereasthethird particle islocaed away from the two others, namely at

0.7
X3 = < 0.49 )

as shown in Figure 8.

0.8,

0.7,
0.6
< 000
0.4

0.3

0.2
6.0 0.2 0.4 ¥ 0.6 0.8 1.0

Figure 8. Initial position o threeparticlesin 2D shear flow

The cmmputations were caried out until ¢ = 30 with atime step equal to At =
0.025. In Figure 9, the rel ative distance between particles D, ; are plotted for the three
different strategies. The evolution d D5 shows that the two first particles remain
together for gluey model andif no corredionis applied. On the other hand, they are
separated with the inelastic colli sions. Moreover without velocity corredion, the third
particleis aso aggregated to thetwo other particlesat timet = 30 asthe distance Do3
becomes smaller than a x 1072,
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10°%;|®—® Dy

Figure 9. Normalised distances D;;/a between the threeparticles for gluey mntact
(-), indlastic collision (- -) andwithou veocity corredion (- .); in the latter case only
positi ve distances are plotted

Thetime evolution o particle positionsisplotted in Figures10and 11 From these
figures we can make once gyain some important remarks:

— the results obtained with the three gproacdhes are quite diff erent, in particular
with inelastic colli sion the threeparticles are no more dose together,

—withou corredion o velocity field, there are overlapping between particles and
therefore the threeparticles remain together at the end df computationtime,

—the trajedories withou velocity corredions and for gluey contads are not the
same because of the overlapping. The differenceis bigger than in the case with two
particles,

— due to the third particle, the flow motion is not symmetric with resped to the
mid-plane. Therefore, the diff erences between trajedories obtained with these three
approacdhes are more important.

Once ajain, the gluey model i s the only model which avoids overlappingand pre-
vents artificial numerica migration o particles in a suspension. These numericd
ill ustrations proves that this algorithm is robust and well-suited for computations of
multi-particle interadionsin afluid flow.
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Figure 10. Evolution o three particles in a 2D shear flow: comparisons between
computationswith gluey mntact () andwithou veocity corredion (- .)
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Figure 11. Evolution o three particles in a 2D shear flow: comparisons between
computationswith gluey mntact (-) andwith inelastic collision (- -)
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4. Conclusion

This article presents the adaptation o gluey particle mode to study perticle mo-
tions of in a shea flow. The gluey modd has shown an improvement, espedally
by avoiding the dasdc overlapping between particles that can occur during the La-
grangian displacement of the particles. The immersed damain method assciated to
this contad model is then redly effedive to reaver the reversibility of the Stokes
equations. Thisresult is particularly important for 3D computations becaise there ae
alot of overlapping and artificial formation of aggregates. With the gluey model, we
are ableto avoid overlappingwhereasthe reversibility is preserved with arather small
relative eror.

Furthermore, multi-particle examples have dso been studied. In particular, the
motion o threeparticlesin a shea flow has been intensively studied. This example
shows that the overlapping can be avoided by wsing the gluey model and that the re-
sultingtrajedories are redly model-dependant. Thereforethe choiceof contad model
hasto be aucia for dense suspension computations.

Hence, future works will be devoted to the maaoscopic impad of these micro-
scopic modificaionsin the case of dense suspensions.
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