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ABSTRACT. This paper focuses on improving the description of the contact between solid 
particles in a fluid flow. The numerical approach used is related to the fictitious domain 
method for the fluid–solid problem. It is associated to a gluey particle model in order to 
improve the behaviour of the particles during their contacts as a Lagrangian method is 
applied for their displacement. The numerical methodology is validated through 2D and 3D 
computations describing interactions of two particles in a shear flow. The results obtained 
show the ability of the scheme to recover the reversibility of the Stokes equations, even for 3D 
configurations. Finally, another example is studied with larger number of particles. 

RÉSUMÉ. On s’intéresse à l’amélioration de la description du contact entre plusieurs 
particules solides dans un écoulement fluide. Le modèle numérique est la méthode des 
domaines fictifs pour la description du problème fluide-solide. Elle est associée à un modèle 
de contact visqueux qui intervient lors du déplacement Lagrangien des particules. Le schéma 
numérique a été validé sur des calculs 2D et 3D décrivant l’évolution de deux particules dans 
un écoulement cisaillé. Les résultats obtenus montrent la capacité du schéma à retrouver la 
réversibilité des équations de Stokes tout en évitant le recouvrement même pour des 
configurations 3D. Enfin, un exemple avec plus de particules est présenté. 
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1. Introduction

Sincethe emergenceof the fictitiousdomain methods in the 2000’s (Glowinski et
al., 1999; Singh et al., 2000; Patankar et al., 2000), lots of multiphase applications
have been treated that way, see for instance (Glowinski et al., 2001; Wachs, 2009;
Coupezet al., 2009). The advantagesof thesemethodsarestraightforward: fluid/solid
or multiphaseproblemscan betreated with an Eulerian approach onthewholedomain
because the rigidity conditioncan be added in theweak formulation.

In this work, we study the displacement of solid particles in a shear flow. For this
purpose, a characteristic function is used to describe the particle domain and there-
fore allows to extend all variables associated to each phase to whole computational
domain thanks to mixing relations. Then the displacement of the particles and the
correspondingcharacteristic function isachieved by usingaLagrangian approach.

As the distancebetween particles can be very small (Meunier et al., 2008), typi-
cally around10−5 timesthe characteristic sizeof particles. Another important point is
to deal with particlesoverlapping. Thiswill be achieved by introducingcontact mod-
els, especially the gluey particle model (Maury, 2007; Lefebvre, 2009) which takes
into account viscouseffectsbetween particles.

2. Numerical Modelli ng

This work is carried out using an immersed domain approach using a level set
function for determining the interfacebetween fluid and solids (Coupezet al., 2009).
The weak formulation of the mixed fluid-solid system is written by mean of a La-
grange multiplier. At last, the displacement of the solid particles is carried out with
a Lagrangian approach, which includes the gluey model. These points are described
hereafter.

2.1. The immersed domain approach

The immersed domain methodis achieved by splitti ng the computational domain
Ω into two subdomainsΩf andΩs for respectively the fluid and solid parts (seeFig-
ure 1). In the case of multiple particles, the solid domain is the union of domain
correspondingto each particle, namely Ωs =

⋃N
i Ωsi for N particles.

The interfaceΓs between the two phases is described by the zero isosurfaceof a
distancefunction:

α(x, t) =

{

> 0 if x ∈ Ωs

< 0 if x /∈ Ωs

[1]
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Ω

Ωf

solid particles

Figure 1. Schematic representation of computational domain

In practice, for aspherical particlei of center Xi andradii ai, the level set function
isdefined from the followingsigned distance:

αi(x) = ai − ‖Xix‖ [2]

Obviously, thesigned distanceα for N spherical particlescan bewritten as:

α(x) = max
i=1,··· ,N

αi(x) [3]

Finally, a "smooth" characteristic function is deduced from the level set function
by taking

I(x, t) =



























= 1 if α(x) > e

=
α

e
if 0 < α(x) < e

= 0 if α < 0

[4]

wheree themixingthicknessdependsonthemesh size aroundtheinterface. Notethat
themixingareais inside thesolid domain. In addition, the viscosity η will bedefined
thanks to mixingrelation:

η = Iηs + (E− I)ηf [5]

whereηf is thefluid viscosity andηs ≃ rηf thesolid viscosity (or penalisationfactor)
usually taken much bigger than ηf (r ≈ 103).
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2.2. Governing set of equationsand weak formulation

Neglecting inertia and gravity, the fluid-solid problem can be written with the fol-
lowingset of equations:































∇ . σ = 0
∇ . u = 0
σ = 2ηf ǫ̇(u)− pE
[[u]]Γs

= 0
[[σ.n]]Γs

= 0
u = uΓ on the external boundary Γ

[6]

whereu is the fluid velocity, ǫ̇(v) the rate of strain tensor, σ the stresstensor, p the
pressure, ηf thefluid viscosity (thesymbol [[f ]]Γs

meansthe jump of scalar f across
the interfaceΓs). Patankar et al. (Patankar et al., 2000) have proposed to extend the
above Stokes equation to the solid domain thanks to a Lagrange multiplier by using
the rigidity condition ǫ̇(v) = 0 onΩs. In this way, the motion in solid domain Ωs

correspondsto afluid motionwith an additional stressfield. This isequivalent to take
thestresstensor σ inside the solid domain of the form

σ = 2ηs ǫ̇(u)− p E+ ǫ̇(λ) [7]

Dueto the rigid motionconstraint the two first termsare zero; ηs can play the role
of a penalizationfactor of the constraint ǫ̇(u) = 0, and the symmetrical tensor ǫ̇(λ) is
theLagrangemultiplier associated to this constraint.

If we consider Dirichlet boundary conditions, the weak formulation of the fluid–
solid problem can be written as follows: find

(

u, p, λ
)

such that ∀
(

v, q, µ
)

∈
H1(Ω)× L2

0(Ω)×H1(Ωs):






































0 =

∫

Ω

2η ǫ̇(u) : ǫ̇(v)dΩ −

∫

Ω

p∇.vdΩ +

∫

Ωs

ǫ̇(λ) : ǫ̇(v)dΩ

0 =

∫

Ω

q ∇.udΩ

0 =

∫

Ωs

ǫ̇(µ) : ǫ̇(v)dΩ

[8]

whereH1(Ω) andL2
0(Ω) are respectively theSobolev andLebesguespaces.

The system of Equations [8] is solved using the augmented Lagrangian method
and an Uzawa algorithm (Fortin et al., 1983) where the field λ has been extended to
thewholedomainΩ by using the characteristic function.
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Hence,the weak formulation of the problem reads, at step k of the Uzawa procedure
(Laureet al., 2007):

∫

Ω

2η ǫ̇(uk) : ǫ̇(v)dΩ −

∫

Ω

pk∇.vdΩ = −

∫

Ω

I ηs ǫ̇(λ
k−1) : ǫ̇(v)dΩ

[9]
∫

Ω

q ∇.ukdΩ = 0

whereas theupdateof Lagrangian multiplier reads

λk = λk−1 + uk [10]

2.3. Particledisplacements

Solving Equations [8] gives the velocity field that allows us to compute the new
particlepositions(at time tn+1 = tn +∆t) with aLagrangian approach. Many differ-
ent choicesarepossible ; themost straightforward is theEuler explicit scheme:

Xi(t
n+1) = Xi(t

n) + ∆t u(Xi(t
n), tn) [11]

But this first order scheme can lead to inaccurate displacements especially for rotat-
ing velocity fields, that is why the second order Adams-Bashforth scheme is usually
preferred:

Xi(t
n+1) = Xi(t

n) +
∆t

2

[

3 u(Xi(t
n), tn)− u(Xi(t

n−1), tn−1)
]

[12]

2.4. Overlapping of particles

In some computational conditions, even for non-densesuspensions, anon-physical
overlappingcan occur between two particles(seeFigure2). Thisismost often dueto a
largetimestep but it can even occur for agoodset of computational parameters. Typ-
ically, that can beobserved when thedistancesbetween particlesbecomescloseto the
computer accuracy. In the literature it has been observed that the minimum distance
between two particles can be very small , especially for 3D spheres in a shear flow
(Meunier et al., 2008). These configurationscan lead to overlappingin our numerical
procedure, that is why it is crucial to improve the treatment of the contact between
particles.

In previousworks, different approacheshavebeen used to prevent theoverlapping:

– using a simplified version of the lubrication force (linear) in the weak formu-
lation of the problem in order to recover the same effects. In fact using directly the
lubrication force would lead to non-linearities that are really difficult and computa-
tionally expensive to solve,
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u1(t
n)

u2(t
n)

(a) at time tn

u1(t
n)

u2(t
n)

(b) at timetn+1 after particle
displacements

Figure 2. Overlapping between two particles

– using a velocity correction. Typically, it consists in moving the particle towards
thenormal between two particlesif thedistancebetween them becomestoosmall with
respect to accuracy of numerical method. This correction has been used in this study
and it isexplained in the sequel.

2.5. The glueymodel

As explained in the past section, the correction strategies that have been used in
previousworksare not rigorousenoughto avoid the overlapping phenomenon. In or-
der to improve the performanceof our numerical scheme, especially for recovering
the reversibilit y of the 3D Stokes flow, we implemented a contact model during the
particle displacement with Adams-Bashforth scheme. This model, originally devel-
oped in (Maury, 2007) for the contact between two particles, hasbeen generalized by
Lefebvrefor dry granular flows (Lefebvre, 2009).

2.5.1. Principlesof glueymodel

Once again, the principle of this method is based on lubrication force as shown
in Figure 3. The hydrodynamic lubrication force for spherical particle is recalled
hereafter:

Fij = 6πa2 ηf
(uj − ui) · eij

‖XiXj‖ − (ai + aj)
eij with a =

ai aj
ai + aj

[13]

whereeij is thenormal vector towards thejth particle

eij =
XiXj

‖XiXj‖
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ui

uj

eij

uj − ui

(a) Repulsion

ui

uj

eij

uj − ui

(b) Attraction

Figure 3. Effectsof the lubrication forceon theparticle trajectories

As we can observe in expression [13], the lubrication forceis acting in the same
way of the term (uj − ui) · eij , as schematically explained in Figure3. Two different
situationscan typically occur:

– when (uj − ui) · eij < 0, the particles are going closer to each other, and the
lubricationforce acts like arepulsionforce,

– when (uj − ui) · eij > 0, the particles are going away to each other, and the
lubricationforce acts like an attraction force.

With our approach, that means that the lubrication force will be able to avoid
the overlap that can occur between the particles by adding a repulsive term in our
numerical scheme.

Instead of adding directly this force into the weak formulation of the fluid-solid
problem, thegluey model workslike apredictor-corrector scheme. Indeed, addingthe
term correspondingto the hydrodynamic forcewould lead to anon-linearity that will
be computationally more complicated and expensive to solve. The philosophy of the
gluey model can also besummarized as follows:

1) in afirst step, thefluid velocity is computed using theweak formulation[8],

2) and in a second step, the velocity would be corrected by taking into account
more accurately the effects of lubrication forces in order to prevent the overlapping
between particles.

2.5.2. Correction of thepredicted velocity

The velocity field u∗ obtained by solvingEquation [8] doesnot take into account
of contacts, that is why it is called predicted velocity. The gap between particles is
defined by

Dij = ‖XiXj‖ − (ai + aj) [14]
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and has to bepositive. Indeed, in Equation[8], wedo not have any informationabout
a non-overlappingcondition. This is precisely the first ideaof the gluey model: we
have to indicate which conditions must satisfy the velocity field in order to avoid
overlapping. That is to say Dn+1

ij ≥ 0 anda first order estimation of Dn+1
ij reads

Dn
ij +∆t(un

j − un
i ) · e

n
ij ≥ 0 [15]

if the particle positions are updated by explicit scheme [11]. This is achieved by the
followingcondition onthevelocity fieldun:

1

2
|un − u∗|2 = min

v∈K(Xn,γn
ij
)

1

2
|v − u∗|2 [16]

whereK is thespaceof admissiblevelocity defined by

K(Xn, γn
ij) =







v

∣

∣

∣

∣

∣

∣

Dn
ij +∆t(vj − vi) · e

n
ij ≥ 0 if γn

ij = 0

Dn
ij +∆t(vj − vi) · e

n
ij ≤ 0 if γn

ij < 0







[17]

In these above constraints, γn
ij is a new variable which represents the contact be-

tween particles i and j as follows:

γn
ij

{

< 0 if there is contact between particles i and j

= 0 else
[18]

Let usdefine the functional J as follows:

J(v) =
1

2
|v − u∗|2 =

1

2
Mv · v −Mu∗ · v [19]

whereM = diag(. . . ,mi, · · · ,mj, · · · ) is the massmatrix. Then the Lagrangian of
J(u) for two particles i and j which takes into account of contact constraintshas the
following form (omitting thesuperscript n for legibilit y):

L(v, λ±

ij) = J(v) − λ+
ij (Dij +∆t(vj − vi) · eij)

− λ−

ij (−Dij −∆t(vj − vi) · eij) [20]

where λ+
ij and λ−

ij are Lagrange multipliers. Finally, by solving
∂L

∂vi

= 0 and

∂L

∂vj

= 0, weobtain the two followingrelations:







miu
n
i = miu

∗
i − (λ+

ij − λ−

ij)∆t eij

mju
n
j = mju

∗
j + (λ+

ij − λ−

ij)∆t eij
[21]

under the conditions:

λ±

ij(Dij +∆t(un
j − un

i ) · eij) = 0 with λ+
ij ≥ 0 and λ−

ij ≤ 0 [22]

This minimization problem is also solved with an Uzawa procedure because this
algorithm alwaysconvergeseven if thereisno uniquenessof Lagrangemultipliers for
largenumbersof contact.



Particles in a shear flow 521

2.5.3. Characterisation of the viscouscontact

In this section, we explain how wedeal to characterisetheviscouscontact, namely
how the variableγij is computed. In previouspapers (Maury, 2007; Lefebvre, 2009),
for 3D spherical particlesdriven byexternal forces(likegravity), γij is defined as the
limit valueof

γη,ij = 6πη ln(Dij)

as the the viscosity tends to zero. In fact γη,ij describes the distance at microscopic
level whereasDij is the macroscopic distancebetween particles i and j. That means
that if Dij isbelow aspecific valuewhich dependsontimestep, mesh sizeor accuracy
of numerical method, the two particles are assumed to be stuck. It is shown that
the duration of this contact depends weakly on the viscosity and the evolution of the
limit value γij is sufficient to get the total contact time (Lefebvre, 2007; Lefebvre,
2009). The relation between Lagrange multipliers and γij is achieved by using the
Fundamental Principleof Dynamicswith thelubricationforcesfor spherical particles:

mi

dui

dt
= −a2

dγij
dt

eij +mig [23]

In their papers, u∗ is the solution of the above equationwithout short range lubri-
cation force andsomebasic calculus lead to the followingrelationship:

dγij
dt

= −
1

a2
λij with λij = λ+

ij − λ−

ij . [24]

For solid particles in shear flow, thegravity and the inertia areusually neglected if
theparticlesandfluid havesamedensity. However by takingfirst order approximation
of hydrodynamic force and assuming that u∗ is solution of the Stokes equation for
which the lubrication forceis not taken into account carefully, one can gets the same
relation [24] for γij = ln(Dij) and M = ∆t diag(. . . , ai, · · · , aj, · · · ) (Verdonet
al., 2010). Moreover the reversibilit y of the Stokes equations implies that the time
for which the Lagrange multiplier λij is positive ( that means that particle i tends to
go inside particle j) is the same that the time for which λij is negative ( particle i
tends to go outsideparticlej). Thereforethe contact functionγij can be connected to
Lagrangemultiplier by a simple relationship

dγij
dt

= −λij [25]

The case of inelastic colli sion is recovered by imposing a null contact function at
any time andtherefore theLagrangian multiplier will beonly positive.

2.6. Final algorithm of the numerical procedure

In this section we finally sum up the whole numerical procedure, including the
gluey particlemodel.
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1) Initialization

n = 0 (index for timestep) : initializeXi, I andγij for all contacts

2) Flow solver

The weak formulation of the problem is solved with an augmented Lagrangian
methodandan Uzawa algorithm:

a) The velocity field u is computed by using a stable/stabili zed finite element
methodfor solving the weak formulation of the problem at step k of the Uzawa pro-
cedure:

∫

Ω

2η ǫ̇(uk) : ǫ̇(v)dΩ −

∫

Ω

pk∇.vdΩ = −

∫

Ω

I ηs ǫ̇(λ
k−1) : ǫ̇(v)dΩ [26]

∫

Ω

q ∇.ukdΩ = [27]

b) updateof Lagrangian multiplier

λk = λk−1 + uk [28]

c) at convergence, wehave thepredicted velocity u∗.

3) Correction of velocity for an Adam-Bashforth scheme

Thepredicted velocity u∗ is corrected by the followingUzawa algorithm

a) let w0 bedefinedw0 = u∗ andchoose arbitrarily δ0ij andρ > 0.

b) For all k > 0, we computeuk+1 and δk+1
ij as follows:

wk+1 = u∗ + 3∆t
2 M−1Btδkij

if γn
ij < 0, δk+1

ij = δkij − ρ(Dn
ij +

3∆t
2 Bwk+1)

if γn
ij ≥ 0, δk+1

ij = max(0, δkij − ρ(Dn
ij +

3∆t
2

Bwk+1))

[29]

whereB = ( −enij enij ), M = diag(ai, aj) and

Dn
ij = Dn

ij −
∆t

2
(un−1

j − un−1
i ) · enij

c) at convergence, wehave corrected velocity un andLagrangemultiplier λn
ij

4) Updateof contact functionsγij
For gluey contact

γn+1
ij = γn

ij −∆tλn
ij [30]

If γn+1
ij < 0 then wehave contact between particles i and j at next timestep.

If γn+1
ij ≥ 0, there isnomore contact andγn+1

ij = 0.
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For inelastic colli sion : γn+1
ij = 0.

5) Updateof particleposition

it i sdonethanks to an Adams-Bashforth scheme(Hwanget al., 2004):

Xi(t
n+1) = Xi(t

n) +
∆t

2

(

3 un − un−1
)

[31]

3. Results

In this part we present the numerical improvements obtained by using the gluey
particlemodel. Asmentioned before, themain problem of previousresultsconcerned
the non-reversibilit y of the Stokes equations due to bad description of contact. That
induces either an overlapping between particles, or a non-physical change in the tra-
jectoriescoming from correctionforces.

As ill ustrated in Figure 4, theproblematic is checked onthe evolution of particles
in a shear flow. The shear flow is obtained by imposed velocities on the upper and
lower walls (theshear rate isequal to 1 in all computations).

u

−u

dinit

Figure 4. Two particles in ashear flow

In the following, we present results obtained with this configuration for both 2D
and 3D flows. The computations are made with particles of radius a = .05 in an
unitary box. It should be noted that particles must be seen rather as infinite cylinders
for 2D computations. The last paragraph is devoted to examples of multi -particle
computations.

3.1. Computations for two particles in 2D shear flow

As emphasized in previous works, the minimal distancebetween particles in 2D
shear flow remains larger than for 3D configuration (Meunier et al., 2008; Verdonet
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al., 2010). However, for a very small i nitial distancebetween two particles, the two
particlesrotatetogether and theminimal distanceremainsbelow a× 10−3. Therefore
for large time step ∆t, an overlapping can occur. For this purpose, we choose the
followingset of initial coordinates:

X1 =

(

0.451
0.51

)

and X2 =

(

0.549
0.49

)

which corresponds to Dinit = 2 · 10−5. With these initial values, the different ap-
proachescan be checked:

– without correction, that is to say that thereisnocorrection on velocity to prevent
theoverlapping between particles,

– with inelastic colli sionmodel, that is to say that γij = 0 at each time step,

– with gluey model, that is to say that γ̇ij = −λij as explained in the previous
section.

0 5 10 15 20 25 30 35 40
t

10-5

10-4

10-3

10-2

10-1

100

D a

Figure 5. Two particles in 2D shear flow: evolution of normalized distances |D/a|
between particles for the threedifferent strategies(namely gluey contact (–), inelastic
colli sion (- -) andwithout velocity correction (- .). For this latter case, the negative
distanceis also plotted

The computations are carried out by using a time step equal to ∆t = 0.025, and
the resultsare summarized in Figures5 and 6. From these figureswe can makesome
important observations:

– the curve correspondingto the computationwithout correction(- .) isdiscontin-
uousbecausethe absolutevalueof thenegativedistanceisplotted (logarithmicscale).
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�1.5 �1.0 �0.5 0.0 0.5 1.0 1.5
X/a

�1.5

�1.0

�0.5

0.0

0.5

1.0

1.5

Y
/
a

Gluey contact
Inelastic collision

No correction

(a) Trajectories

0.0 0.5 1.0 1.5 2.0 2.5
|X2�X1 |

a

0.0

0.5

1.0

1.5

2.0

2.5

|Y 2

�

Y
1
|

a

Gluey contact
Inelastic collision

No correction

(b) Relativetrajectories

Figure 6. Two particles in 2D shear flow: trajectories for gluey contact (–), inelastic
colli sion (- -) andwithout velocity correction (- .)

When the distance is positive, the distance is the same as that given by the gluey
model. When thedistanceisnegative, theoverlappingisrather important (bigger than
a× 10−2) but thanksto Adam-Bashforth scheme, theparticlesdo not remain sticked,

– with thegluey model, werecover thetheoretical li mit trajectory for a zero initial
distancebetween two particles, namely a circle. When the gluey procedure is active,
the distance between particle can be bigger than a × 10−2 because the constraint
cancels only the first order expansion of Dn+1 and the term of order ∆t2 gives this
positivedistance. Thesevaluewill decreasewith the time step∆t,

– without correction, the trajectories of particles are similar to a circle, but with
small fluctuationsbecauseof discrepancy due to overlapping,

– with the inelastic model, the particles change their trajectories, so they jump to
a new orbit that is more elli psoidal.

Theresultsobtained by numerical schemeusing gluey particlemodel indicatethat
circular trajectories are preserved, but at the same time the particles do not overlap.
Hencewerecover the theoretical trajectorieswithout overlapping.
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3.2. Two particles in a 3D shear flow

For spherical particles in a3D shear flow, we choose a casefor which theminimal
distancebetween isvery small . Two sphereswith thesameradiusareplaced in thesu-
perior and inferior mid-plane andmovetoward theright and the left side respectively.
The timestep isequal to ∆t = 0.05 and the initial positionsare

X1 =





0.3
0.525
0.5



 and X2 =





0.7
0.475
0.5





4 5 6 7 8 9 10 11 12
t

0.00

0.02

0.04

0.06

0.08

0.10

D a

Gluey contact

Inelastic collision
No correction

(a) Normalised distancebetween particles

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0
X/a

�1.0

�0.5

0.0

0.5

1.0

Y
/
a Gluey contact

Inelastic collision
No correction

(b) Particle trajectories

Figure 7. Two particles in a 3D shear flow: comparison of colli sionstrategies (gluey
contact (–), inelastic colli sion(- -) andwithout velocity correction(- .)
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The Figures 7 show results obtained with the three different strategies already
described. Once again, we observe a large overlapping if there is no correction on
velocity field. The inelastic model avoids the overlapping but modifies significantly
the trajectories: the reversibilit y is no more satisfied (it is both seen onthe trajectory
and thedistancebetween theparticles). With gluey contact, the reversibilit y isalmost
recovered but without overlapping(abetter accuracy can beobtainedwith smaller time
step). In addition, therelative error between the computed distance andthetheoretical
onewhen reversibilit y occursis (at the end of thesimulation) equals to 6.5% which is
quite fair for 3D computations.

3.3. 2D multi -particle computations

In this last paragraph, we will present results of multi -particle computations. The
extension of algorithm described in previous section to multi -particle case can be
foundin (Lefebvre, 2009).

We present the motion of threeparticles in a shear flow. The main aim of this
example is to check the influenceof non-overlapping strategies on particle motions.
The first two particlesare located in the same positionas in the exampledescribed in
section 3.1 whereas the third particle is located away from the two others, namely at

X3 =

(

0.7
0.49

)

as shown in Figure8.

0.0 0.2 0.4 0.6 0.8 1.0
X

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Y

Figure 8. Initial position of threeparticles in 2D shear flow

The computations were carried out until t = 30 with a time step equal to ∆t =
0.025. In Figure9, therelativedistancebetween particlesDij areplotted for the three
different strategies. The evolution of D12 shows that the two first particles remain
together for gluey model and if no correction is applied. On the other hand, they are
separated with theinelastic colli sions. Moreover without velocity correction, the third
particle isalso aggregated to thetwo other particlesat time t = 30 asthedistanceD23

becomes smaller than a× 10−2.
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Figure 9. Normalised distancesDij/a between the threeparticles for gluey contact
(–), inelastic colli sion(- -) andwithout velocity correction(- .); in the latter caseonly
positivedistancesareplotted

Thetime evolution of particlepositionsisplotted in Figures10and 11. From these
figureswe can makeonce again some important remarks:

– the results obtained with the three approaches are quite different, in particular
with inelastic colli sion the threeparticlesarenomore close together,

– without correction of velocity field, there are overlapping between particlesand
thereforethe threeparticles remain together at the end of computationtime,

– the trajectories without velocity corrections and for gluey contacts are not the
same because of the overlapping. The differenceis bigger than in the case with two
particles,

– due to the third particle, the flow motion is not symmetric with respect to the
mid-plane. Therefore, the differences between trajectories obtained with these three
approachesaremore important.

Once again, the gluey model is the only model which avoidsoverlappingand pre-
vents artificial numerical migration of particles in a suspension. These numerical
ill ustrations proves that this algorithm is robust and well-suited for computations of
multi -particle interactions in a fluid flow.
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(d) t = 30

Figure 10. Evolution of three particles in a 2D shear flow: comparisons between
computationswith gluey contact (–) andwithout velocity correction(- .)
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(d) t = 30

Figure 11. Evolution of three particles in a 2D shear flow: comparisons between
computationswith gluey contact (–) andwith inelastic colli sion (- -)
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4. Conclusion

This article presents the adaptation of gluey particle model to study particle mo-
tions of in a shear flow. The gluey model has shown an improvement, especially
by avoiding the classic overlapping between particles that can occur during the La-
grangian displacement of the particles. The immersed domain methodassociated to
this contact model is then really effective to recover the reversibilit y of the Stokes
equations. This result isparticularly important for 3D computationsbecausethere are
a lot of overlappingand artificial formation of aggregates. With the gluey model, we
are ableto avoid overlappingwhereasthereversibilit y ispreserved with arather small
relative error.

Furthermore, multi -particle examples have also been studied. In particular, the
motion of threeparticles in a shear flow has been intensively studied. This example
shows that the overlappingcan be avoided by using the gluey model and that the re-
sultingtrajectoriesarereally model-dependant. Thereforethe choiceof contact model
has to be crucial for densesuspensioncomputations.

Hence, future works will be devoted to the macroscopic impact of these micro-
scopic modifications in the case of densesuspensions.
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