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and accuracy of the proposed formulation in the simulation of 2D and 3D examples. 
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1. Introduction

Numerical simulations of fluid-structure interaction (FSI) are of first interest in

numerous industrial problems (aeronautics, heat treatments, aerodynamic, bioengi-

neering...). Because of the high complexity of such problems, analytical study are in

general not sufficient to understand and solve them. Additionally, in spite of the avai-

lable computers performance and the actual maturity of computational fluid dynamics,

several key issues in the domain of computational FSI still prevent simulations from

really helping in solving academic and industrial problems. FSI simulations are then

nowadays the focus of numerous investigations, and various approaches are proposed

to treat them.

Most of the commercial software packages solve FSI problems using an Arbitrary

Lagrangian Eulerian (ALE) formulation (Hirt et al., 1974; Hughes et al., 1981; Donea

et al., 1982). The solid domain is treated with a Lagrangian formulation. The nodes

belonging to the interface between the solid and the fluid are moved with the solid. The

displacement of the nodes in the fluid domain do not depend on the fluid motion, but

only ensures the continuity between the fluid and the solid domain, and a good mesh

quality. ALE methods are robust and accurate, and do not need any extra degrees of

freedom. However, important problems arise if the deformations, displacements and

rotations of the solid becomes very important (Benson, 1989; Souli et al., 2000; van

Loon et al., 2007).

A higher popularity has been gained recently by partitioned approaches which

allow the use specific solver for each domain. The difficulty remains in transfering the

information between the codes. The coupling between the two phases can be enforced

using different schemes : weakly or strongly coupled version. The former approach

manages with just one solution of either field per time step but consequently lack

accurate fulfilment of the coupling conditions. The latter requires sub-iterations. The

predominant approach consists in solving the problem iteratively, using fixed-point

schemes (Le Tallec et al., 2001) or Newton Krylov methods (Fernández et al., 2005;

Gerbeau et al., 2003; Michler et al., 2005; Gerbeau et al., 2005). Actually, the fixed-

point methods with dynamic relaxation seem to be the most interesting variant (Küttler

et al., 2008). This approach allows the use of fluid and solid solvers for each of the two

phases. It is accurate and quite efficient but present an inherent instability depending

on the ratio of the densities and the geometry of the domain (Caussin et al., 2005).

As a result, the numerical cost increase drastically and coupling algorithms may not

converge. For 3D problems, such difficulties become even more severe.

Monolithic approaches have been proposed to overcome these drawbacks. The

whole domain (composed by fluid and solid phases) is considered as a single one,

meshed by a single grid, and solved with an Eulerian framework. The continuity at the

interface is then obtained naturally and there is no need to enforce it, as it was the case

in partitioned methods. If the multi-mesh approaches permit the use of classical fluid

and solid solvers, monolithic approaches impose the use of an appropriated unique

constitutive equation describing both the fluid and the solid domain. Interface tracking,
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between the two different domains, can be completed by Immersed Boundary (IB)

methods (Peskin, 2002) where the interface is convected on a Lagrangian way. Other

methods such as the fictitious domain (Peskin, 2002; Glowinski et al., 1999) treat the

coupling between the domains by applying a constraints across the rigid body using a

Lagrange multiplier.

Here in this work, we use the immersed volume method based on the level-set

approach (Hachem, 2009). Mesh adaptation, and particularly anisotropic mesh adap-

tation is used to track the fluid-solid interface with a good precision and reasonable

computational time (Laure et al., 2007; Hachem, 2009).

The rigid solid is treated using the Navier-Stokes solver under constrains to im-

pose the nullity of the deformations. It can be done by simply penalizing the strain

rate using a very important viscosity in the solid, which can sometimes be sufficient

(Coupez et al., 2010; Ritz et al., 1999; Hachem, 2009). It is also possible to enforce

directly the nullity of the strain by using an Augmented Lagrange Mulptipliers me-

thod (Glowinski et al., 2001; Coquerelle et al., 2008; Janela et al., 2005), solved by

an iterative Uzawa algorithm. The problem is solved by adding an extra-stress tensor

comming from the presence of the structure in the fluid. Linear or harmonic mixture

laws of the mechanical properties characterizing each domain are then applied at the

interface.

However, in the presence of high discontinuity materials properties at the interface

between the fluid and solid, numerical oscillations appear at the interface and pollute

the global solutions. Therefore, we propose an extension of the multiscale-stabilized

Navier-Stokes solver (Hachem, 2009; Hachem et al., 2010) taking into account the

solid constraint as an extra tensor. Recall that the classical finite element approxi-

mation for the flow problem must verifies two criterias : the compatibility condition

known by the inf-sup or ’Brezzi-Babuska’ condition which required an appropriate

pair of the function spaces for the velocity and the pressure (Franca et al., 1988; Co-

dina et al., 2008; Codina, 2001) and the stablility in the convection dominated flows

(Hachem et al., 2010; Codina, 2000). For these reasons, a robust monolithic Navier-

Stokes solver is extended with a stabilization procedure for rigid body motion. It uses a

multiscale stablilized finite element method based on the enrichment of the functional

spaces for the velocity, the pressure and the stress.

An outline of the paper is as follow. The Immersed Volume Method is introduced

in Section 2. Section 3 is dedicated to present the strong and weak form of the equa-

tions of motion. The stabilizing schemes from a variational multiscale point of view

is described in Section 4. Then, in Section 5, the numerical scheme is presented. Sec-

tion 6 presents some benchmark problems to validate the method, and the numerical

simulation of a falling disk in a channel is examined.
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2. Immersed volume method

The immersed volume method is based on solving the single set of equations by

differentiating the subdomains and refining the mesh at this interface using the level-

set method. This section presents the complete description of the method, which is

structured into three subsections : immerse the solid using level-set function, mix the

physical properties and finally apply the anisotropic mesh adaptation at the vicinity of

the interface (Hachem, 2009).

2.1. Level-set approach, mixing laws

A signed distance function of an interface Γi is used to localize the interface of the

immersed body Ωi and initialize the desirable properties on both sides of this latter.

At any point x of the computational domain Ω, the level-set function αi corresponds

to the distance from Γi. In turn, the interface Γi is then given by the iso-zero of the

function αi :







αi(x) = ±d(x, Γi),x ∈ Ω,

Γi = {x, αi(x) = 0} [1]

In this paper, a sign convention is used : αi ≥ 0 inside the solid domain defined by

the interface Γi and αi ≤ 0 outside this domain. Further details about the algorithm

used to compute the distance are available in (Bruchon et al., 2009).

2.2. Mixing laws

The geometry and mechanical properties of each subdomain are characterized by

one signed distance function. Once all the sub-domains are defined, the mechanical

properties can then be determined on the whole domain in function of the level-set

function. For the elements crossed by the level-set functions and the their neighbours,

fluid-solid mixtures are used to determine the element effective properties.

A heaviside function H(α) for each level-set function is defined by :

H(α) =

{

1 if α > 0

0 if α < 0
[2]
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In order to achieve a better continuity at the interface (van der Pijl et al., 2005),

the heaviside function can be smoothed using :

Hε(α) =



















1 if α > ε

1

2

(

1 +
α

ε
+

1

π
sin

(πα

ε

)

)

if |α| ≤ ε

0 if α < −ε

[3]

where ε is a small parameter such that ε = O(hi), known as the interface thickness,

and hi is the mesh size in the normal direction to the interface. In the vicinity of the

interface, it can be computed using the following expression :

hi = max
j,l∈K

∇α · xjl [4]

where xjl = xl − xj and K is the mesh element.

According to the chosen approximations, the heaviside function is then approxi-

mated using linear interpolations P1 between fluid and solid properties or a piecewise

constant interpolation P0.

2.3. Anisotropic mesh adaptation

Accurate calculation of the velocities, strains and stresses along the fluid-solid

interface is critical for a correct modelling of industrial applications. The difficulty

arises due to the discontinuity of the properties of the material across the interface. If

this latter is not aligned with the element edges, it may intersect the element arbitrarily

such that the accuracy of the finite element approach can be compromised. In order

to circumvent this issue, the level-set process is thus coupled to an anisotropic mesh

adaptation as described in (Gruau et al., 2005). The idea of this method is to pre-adapt

the mesh at the interface. The mesh becomes locally refined, elements are streched,

which enables to sharply define the interface and to save a great number of elements

compared to classical isotropic refinement. This anisotropic adaptation is performed

by constructing a metric map that allows the mesh size to be imposed in the direction

of the distance function gradient. Let us briefly described the main principles of this

technique. First of all, one has to resort to a so-called metric which is a symmetric

positive defined tensor representing a local base that modify the distance computation,

such that :

||x||M =
√

T x · M · x , < x,y >M=T x · M · y . [5]

The metric M can be regarded as a tensor whose eigenvalues are related to the

mesh sizes, and whose eigenvectors define the directions for which these sizes are

applied. For instance, using the identity tensor, one recovers the usual distances and

directions of the Euclidean space. In our case the direction of mesh refinement is given
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by the unit normal to the interface which corresponds to the gradient of the level-set

function : x = ∇α/||∇α||. A default mesh size, or background mesh size, hd is

imposed far from the interface and it is reduced as the interface comes closer. A likely

choice for the mesh size evolution is the following :

h =







hd if |α(x)| > e/2

2hd(m − 1)

m e
|α(x)| + hd

m
if |α(x)| ≤ e/2

[6]

Eventually, at the interface, the mesh size is reduced by a factor m with respect

to the default value hd. Then this size increases until equalling hd for a distance that

corresponds to the half of a given thickness e. The unit normal to the interface x and

the mesh size h defined above, lead to the following metric :

M = C (x ⊗ x) +
1

hd
I with C =







0 if |α(x)| ≥ e/2

1

h2
− 1

h2
d

if |α(x)| < e/2
[7]

where I is the identity tensor. This metric returns to isotropic far from the interface

(with a mesh size equal to hd for all directions) and to anisotropic near the interface

( with a mesh size equal to hi in the direction x and equal to hd in the others). This

method can be assisted by a posteriori anisotropic error estimator, the search of the

optimal mesh (metric) that minimizes the error estimator. As a result, an optimal me-

tric as a minimum of an error indicator function and for a given number of elements

is obtained.

In practice, the mesh is generated in several steps using the MTC mesher and reme-

sher developed by (Coupez, 2000). Further details on the anisotropic mesh generation

can be found in (Gruau et al., 2005). The proposed mesh generation algorithm works

well for 2D or 3D complex shapes. It allows the creation of meshes with extremely

anisotropic elements stretched along the interface. The mesh size is then only refined

in the direction of the high physical and mechanical properties gradients. This allow

both conserving a high precision in the calculus and in the geometry description, in

spite of an important decrease of the total number of degrees of freedom. The grid is

furthermore only modified in the vicinity of the interface which keeps the computa-

tional work devoted to the grid generation low. Note also that the proposed method

can easily handle arbitrary complex geometries. As shown in Figure 1 which presents

a close-up on the interface zone at the end of the anisotropic adaptation process, the

mesh has been gradually refined when approaching the interface. Consequently, only

additional nodes are locally added in this region, whereas the rest of domain keeps the

same background size.

3. Governing equations

This section is devoted to the mathematical formulation for rigid body immer-

sed in an incompressible fluid. The governing equations are considered to be three-
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Figure 1. Zoom on the fluid-solid interface after anisotropic adaptation

dimensional, unsteady. As the proposed approach is monolithic, a unique constitutive

equation will be solved on the whole domain, with a variation of the parameters de-

pending on the phase that should be modelled.

First, each system of equation is presented seperately. Let Ω ⊂ R
n be the spatial

domain at time t ∈ [0, T ], where n is the space dimension. Let ∂Ω denote the boundary

of Ω. Ωf , Ωs and Ωfsi be respectively the fluid domain, the solid domain and the

interface. They verify :

Ωf ∪ Ωs = Ω and Ωf ∩ Ωs = Ωfsi [8]

The dynamic of the flow is given by the classical incompressible Navier-Stokes

equations :

ρf (∂tv + v · ∇v) − ∇ · σ = f in Ωf [9]

∇ · v = 0 in Ωf [10]

v = vΓ on Γ [11]

v = vi on Ωfsi [12]

σ · n = d on Ωfsi [13]

v(x,0) = v0(x) in Ωf [14]

where v is the velocity vector, ρf is the fluid density, , n is the outward normal on

the solid surface, vi is the velocity at fluid-solid interface Ωfsi and f the applied force
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vector. For an incompressible fluid the divergence-free constraint [10] gives rise to the

pressure in the fluid. The stress tensor for a newton fluid is then given by :

σ = 2ηf εεε(v) − p Id [15]

where p is the pressure, Id is the identity tensor, εεε(v) = (∇v +T
∇v)/2 the

deformation-rate tensor and ηf is the dynamic viscosity.

In the present formulation we treat the rigid body as a continuous domain subjected

to an addictionnal rigidity constraint. The governing equations for particle motion are

then given by :

ρs (∂tv + v · ∇v) − ∇ · σ = f in Ωs [16]

∇ · v = 0 in Ωs [17]

εεε(v) = 0 in Ωs [18]

v = vi on Ωfsi [19]

σ · n = −d on Ωfsi [20]

v(x,0) = v0(x) in Ωs [21]

where ρs the solid density. In a rigid body there is no deformation εεε(u) = 0 (u is

the displacement field) and ∂tu = v. These two equations implies a null value of the

deformation-rate tensor [18]. From another part the rigidity constraint [18] ensure that

the velocity field is a divergence-free. Hence Equation [17] is a redundant equation.

Nevertheless we choose to keep this constraint to account the pressure term. As noted

earlier Equation [17] gives rise to a pressure fluid. Similarly, Equation [18] gives rise

to a stress field τ . The stress tensor is then given by :

σ = −p Id + τ s [22]

Adding both systems, the strong form for the whole domain reads :











































ρ (∂tv + v · ∇v) − ∇ · (2η εεε(v) + τ − p Id) = f

∇ · v = 0

εεεs(v) = 0

v = vb on ∂Ω

v(x,0) = v0(x)

[23]
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where εεεs(v) = H(α)εεε(v) , η = (1 − H(α))ηf , ρ = ρsH(α) + ρf (1 − H(α)) and

τ = H(α)τ s. Once the object is immersed inside the computational domain using the

proposed technique, the equations at the fluid-solid interface are naturally satisfied. As

a consequence, the boundary conditions [12]-[13]-[19]-[20] are no longer needed. The

boundary velocity vb results from Equation [11]. If the solid boundary intersect with

the domain boundary, vb can be easily adapted.

Weak form

Multiplying by the test functions and integrating by parts, the associated standard

weak form of the system (23), can be stated as : Find v ∈ V =
(

H1
0 (Ω)

)n
, p ∈ Q =

L2(Ω) and τ ∈ T = L2(Ω)n×n such that :































ρ (∂tv,w) + ρv · ∇v,w) − (p ∇ · w) + (2ηεεε(v) : εεε(w)) + (τ : εεε(w))

= (f ,w)

(∇v, q) = 0

(εεεs(v) : τ
∗) = 0

[24]

A penalization factor ηs will be added to this formulation, so that η = H(α)ηs +
(1 − H(α))ηf . As a consequence an extra term is added (2ηsεεε(v) : εεε(w)). This can

be done as long as εεε(w) belongs to the functional space of τ .

4. Stabilized finite-element method (SFEM)

In this section, we describe briefly the Galerkin finite-element approximation and

the corresponding stabilization method for the resulting discrete system of Equations

[24]. Based on a mesh Kh of Ω into set of Nel elements K, the functional spaces

for the velocity, the pressure and the stress are approached by the finite dimensional

spaces spanned by Vh, Ph and Th. As it is well known, the stability of the discrete for-

mulation depends on appropriate compatibility restrictions on the choice of the finite

element spaces, as stated by the inf-sup condition. According to this, standard Ga-

lerkin mixed elements with continuous equal order linear/linear interpolation for the

three fields are not stable. Lack of stability shows as uncontrollable oscillations that

pollute the solution. Fortunately, the strictness of the inf-sup condition can be avoided

by modifying the discrete variational form, for instance, by means of introducing ap-

propriate numerical techniques that can provide the necessary stability to the desired

choice of interpolation spaces. The objective of this work is precisely to present sta-

bilization methods which allow the use of equal order continuous interpolations for

velocites and pressures and piecewise constant interpolation for stressess. The basic
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idea of the sub-grid scale approach is to consider that the unknowns can be split in two

components, e.g. coarse and fine, corresponding to different scales or levels of reso-

lution (Hachem et al., 2010). First, we solve the fine scale and then we replace their

effect into the large scale. This means approximating the velocity, pressure, stress so-

lution space as Vh⊕V ′, Ph⊕P ′ and Th⊕T ′. To this end, v, p, τ will be approximated

as :


















v = vh + v′ ∈ Vh ⊕ V ′

p = ph + p′ ∈ Qh ⊕ Q′

τ = τh + τ
′ ∈ Th ⊕ T ′

[25]

Introducing the splitting, the system of equations (24) is : Find (v, p, τ ) such that

∀ w ∈ V 0
h ⊕ V ′, q ∈ Qh ⊕ Q′ et τ

∗ ∈ Th ⊕ T ′



















































ρ (∂t(vh + v′), wh + w′) + ρ((vh + v′) · ∇(vh + v′), wh + w′)

−(ph + p′,∇ · (wh + w′)) + (2ηεεε(vh + v′) : εεε(wh + w′))

+((τh + τ
′) : εεε(wh + w′)) = (f , wh + w′)

(∇ · (vh + v′), qh + q′) = 0

(εεεs(vh + v′) : (τ∗
h

+ τ
∗
h

′))Ωs
= 0

[26]

At this stage, three important remarks have to be made :

i) when using linear interpolation functions, the second derivatives vanish.

ii) the subscales are not tracked in time, therefore, quasi-static subscales are

considered here ; however, the subscale equation remains quasi time-dependent.

iii) the convective velocity of the non-linear term may be approximated using

only large-scale part so that (vh + v′)∇ · (vh + v′) ≃ vh · ∇(vh + v′).

Consequently, the coarse scale problem reduces to the following :







































ρ(∂tvh, wh) + ρ(vh · ∇(vh + v′), wh) − (ph + p′,∇ · wh)

+(2ηεεε(vh) : εεε(wh)) + ((τh + τ
′) : εεε(wh)) = (f , wh)

(∇ · (vh + v′), qh) = 0

(εεεs(vh + v′) : τ
∗
h
)Ωs

= 0

[27]
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and the fine scale problem :







































w′ + ρ(vh · ∇(vh + v′), w′) − (ph + p′,∇ · w′) + (2ηεεε(v′) : ε(w′))

+((τh + τ
′) : εεε(w′)) = (f , w′)

(∇ · (vh + v′), q′) = 0

(εεεs(vh + v′) : τ
∗′) = 0

[28]

Rearranging the terms of Equation [28] the fine scale problem reads to :



























ρ(vh · ∇v′, w′) + ((2ηεεε(v′) : εεε(w′)) + (τ ′ : εεε(w′)) + (∇p′, w′) = (R, w′)

(∇ · v′, q′) = −(∇ · vh, q′)

(εεεs(v
′) : τ∗′) = −(εεεs(vh) : τ

∗′)

[29]

with R the momentum residuals :

R = f − ρ∂tvh − ρvh · ∇vh −∇ph + ∇ · τh [30]

Following the lines in (Badia et al., 2010) and using exactly the same procedure ,

it can be shown that v′, p′ and τ
′ may be approximated within each element by :























v′ =
∑

K∈Kh
τkP̃v(R)

p′ = −
∑

K∈Kh
τcP̃p(∇ · v)

τ
′ = −∑

K∈Kh
τtP̃τ (εεε(vh))

[31]

where the so called stabilization parameters τk, τc and τt can be computed as (Cereva

et al., 2010) :

τk =

(

(

2

∆t

)2

+

(

4η

ρh2

)2

+

(

2 ‖ v ‖k

h

)2
)−1/2

,

τc =

(

(

η

ρ

)2

+

(

c2 ‖ vk ‖k
c1h

)2
)1/2

,

τt = c3
h

L
. [32]
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The constants c1, c2 and c3 are independant from h, h being the characteristic

length of the element, L the characteristic lenght of the domain and ‖ v ‖k the norm

of the velocity in the center of the element. The simplest choice is to take P̃v, P̃p

and P̃τ as the identity when applied to the residuals. As a hindrance of choosing a

piecewise constant interpolation for τh, the last term in the momentum residuals R is

not adequately represented. To this end, one can employ either of the two strategies :

a simplified recovery using the least squares approach or the DEVSS approach. A

reconstruction of τh in the sabilization term would be made as the difference of the

projected value on the continuous piecewise space τ̃h and τh. Considering the coarse-

scale sub problem [27] and substituting v′, p′ and τ
′ in terms that contain the fine scale

velocity we get :



































































































ρ(∂tvh, wh) + ρ(vh · ∇(vh), wh) − (ph,∇ · wh) + (2ηεεε(vh) : εεε(wh))

+(τh : εεε(wh)) − (f , wh)

+
∑

K∈Kh
τk (ρ(∂tvh + vh · ∇vh)k + ∇ph −∇ · τ̃h − f , ρvh∇wh)k

+
∑

K∈Kh
τc(∇ · vh,∇ · wh)k

−
∑

K∈Kh
τt(εεε(vh), εεε(wh))k = 0

(∇vh, qh)

+
∑

K∈Kh
τk (ρ(∂tvh + vh · ∇vh) + ∇ph −∇ · τ̃h − f ,∇qh)k = 0

(εsεsεs(vh) : τ
∗
h
)

+
∑

K∈Kh
τk

(

ρ(∂tvh + vh · ∇vh) + ∇ph −∇ · τ̃h − f ,∇ · τ∗
h

)

k
= 0

[33]

5. Numerical scheme

Three equation with three primary variables requires larger computational coast.

To circumvent this issue an agmentated Lagragian method and Uzawa’s algorithm

would be used to solve the system without increasing the size of linear system. In the

same iteration, the problem of non-linearity, time integration and computation of the

Lagrange multiplier would be solved. An implicit time scheme with a Newton method

for the non linear term is used. At each time step tn the procedure is the following :

1. Initialization with values obtained at the previous time step :

vh = vh(tn−1), ph = ph(tn−1), τ
0
h

= 0, τ̃h = 0 [34]
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2. At step k find vk
h and pk

h with system :



































































































ρ
(

vk
h

∆t + vh · ∇vk
h, wh

)

− (pk
h,∇ · wh) + (2ηεεε(vk

h), εεε(wh))

+
∑

K∈Kh
τk

(

ρ
(

vk
h

∆t + vh · ∇vk
h

)

+ ∇pk
h, ρvh∇wh

)

k

+
∑

K∈Kh
τc(∇ · vk

h,∇ · wh)k

−
∑

K∈Kh
τt(εεε(vh), εεε(wh))k

= −(τk

h
: εεε(wh)) +

(

f + vh

∆t , wh

)

+
∑

K∈Kh
τk

(

ρ vh

∆t + ∇ · τ̃k

h
+ f , ρvh∇wh

)

k

(∇ · vk
h, qh) +

∑

K∈Kh
τk

(

ρ
(

vk
h

∆t + vh · ∇vk
h

)

+ ∇pk
h,∇qh

)

k

=
∑

K∈Kh
τk

(

ρ vh

∆t + ∇ · τ̃k

h
+ f ,∇qh

)

k

[35]

3. update τ̃h and τh :















τ
k+1

h
= τ

k

h
+ ηuεεε(vk

h) where ηu = H(α)ηs.

τ̃
k+1

h |i =
1

∑

k∈K(i) | K |
∑

∑

k∈K(i)|K|

τ
k+1

h |i
| K | [36]

where K(i) set of nodes connected to node i.

4. Check ‖ Re(vk
h) ‖< e1 to stop the loop on k, where Re(vk

h) is the residual

of the inner uzawa’s iterrations compared to the initial residual of the global iterations.

5. Calculate the rigid body motion : Once vh(tn) is computed of a point with

x as coordinates, the optimal angular velocity ω
n and tranlational velocity Vn are

calculated by minimizing ϕ(Vn,ωn) defined by :

ϕ(Vn, ωn) =

∫

Ωs

| Vn + ω
n ∧ x − vh(tn) |2 dx [37]

the minimum is atteint once














∂ϕ(Vn, ωn)

∂Vn = 0

∂ϕ(Vn, ωn)

∂ω
n

= 0

[38]

6. Update the rigid body position, compute X(tn+1) :

X(tn+1) = X(tn) + ∆t (Vn + ω
n ∧ X(tn)) [39]
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A more accurate scheme for updating the rigid body position would be the Adams-

Bashfort scheme (Hwang et al., 2004). This scheme will be investigated in a furture

work.

6. Validation for 2D cases

In this section, we present relatively simple 2D and 3D test cases in order to vali-

date the proposed formulation and to check the accuracy and the efficiency of the im-

mersed volume method. All the numerical simulations were carried out by using the

C++ CimLib finite element library (see (Digonnet et al., 2003; Mesri et al., 2009)).

The results obtained with the implemented code, referred as IVM, are then compared

with those obtained either by standard solution or by other approaches.

6.1. Immersion of solid bodies in fluid

In the first model problem, we consider a square fluid domain with two immersed

rigid bodies, as shown in Figure 2, induced by an imposed gradient pressure at the

intlet and outlet of the fluid domain, with the following boundary conditions :

v = 0 at ∂Ω2 ∩ Ω4

p = 100 at ∂Ω1

p = 0 at ∂Ω3

[40]

Table 1. Parameter of two rigid bodies in a viscous fluid

Parameter ρf ρs ηf

Unit kg/m3 kg/m3 Pa.s

Value 1000 1000 1000

The objective of this test is to illustrate the formulation and to check implementa-

tion of the proposed method by comparing results to the solution representing only the

fluid domain. The used parameters are tabulated in Table 1. The velocity and pressure

fields computed with the proposed method are shown in Figures 3 and 4 and compared

to results calculated only on the fluid domain. The agreement between the two calcu-

lations shows that the present solver is able to predict accuractely the behaviour of the

fluid and the presence of the solid. The pressure distribution caused by the interaction

is more interesting, which is depicted in Figure 4 on both domains. The effect of the

stabilization is depicted in the zoomed-in view of the pressure near the interface as

shown in Figure 5. The variational multiscale method eliminates the pollution in the

solution especially on the interface.
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Figure 2. Shematic representation of two rigid bodies in an incompressible flow

Figure 3. Norme of the velocity with and without IVM

6.2. Several disks in an imposed flow

For further validation with several small particles immersed in a fluid, fifteen rigid

circular disks and ten rigid semi-circular disks with radius R = 5mm are immersed

in an imposed fluid flow, with a velocity at the intlet u = 0.015m.s−1 (see Figure

6). The no-slip boundary conditions are imposed on the tube wall and bottom of the

domain. The length of the tube is L = 19R and its width is D = 12R. The density and

viscosity of the fluid used in this example are ρf = 1370kg/m3 and ηf = 0.001Pa.s,
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Figure 4. Pressure distribution with and without IVM

Figure 5. Close up view for the pressure at the interface with and without stabilization

and the density of the particule is ρs = 2000kg/m3. The mesh size is h = 0.0005m.

Figure 7 shows the velocity vectors of the flow. The restriction of the velocity profile is

well highlighted in the wake region of the disks. Figures 8 and 9 illustrate the contour

plots for u and v velocity respectively. These figures also show the behaviour of the

fluid flow commonly observed in several obstacles. It can be noticed, the maximum

velocity is attained in the region where the separation distance between the two disks

is minimum. The pressure is presented in Figure 10. As mentioned earlier, only the

real pressure of fluid is highlighted. The same example is repeated in 3D. As shown

in Figure 11, the fluid-solid interface is well captured. The behaviour of the fluid flow

is similar to the 2D case. Once again, The proposed 3D FSI solver exhibits good

stability properties on anisotropic unstructured meshes. The extension of this problem

is to take one of the disks as an elastic body.
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Figure 6. Modelling several rigid disks in an imposed flow

Figure 7. Velocity distribution between the rigid disks (the circles present the zero

isovalue of the level-set)

6.3. Falling disk in a channel

We consider a disk with radius R = 0.125cm falling under the action of

gravitational force inside a channel of dimension [0, 2] × [0, 6]. Parameters used in

this example are tabulated in Table 2. Among these parameters, h denotes the mesh

size.
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Figure 8. u-velocity in an imposed fluid flow (the circles present the zero isovalue of

the level-set)

Figure 9. v-velocity in an imposed fluid flow (the circles present the zero isovalue of

the level-set)

Table 2. Parameter used in the computation of a falling disk in a channel

Parameter ρf ρs ηf △t g h

Unit g/cm3 g/cm3 g/cms s cm/s2 cm

Value 1 1.25 0.1 0.005 980 0.04
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Figure 10. Pression distribution in an imposed fluid flow (the circles present the zero

isovalue of the level-set)

Figure 11. 3D modelling of several rigid disks in an imposed flow a) velocity b) den-

sity c) Level-set
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Figure 12. The vertical velocity a) and the vertical postition b) of the center of a disk

in a channel

Figure 13. u-velocity on the entire domain due to the falling disk in a channel

In (Glowinski et al., 2001) the velocity of particulate flow with rigid circular disks

using fictitious domain method is calculated. We compare our computational results

to this reference. This test case is well documented in the literature and considered as

a challenging benchmark. Close agreements in Figure 12 are found for the velocity

and position of the center of the disk as t goes on. The slight differences noticed in

here are mostly related to the use of a first order time interpolation scheme for the

solid motion. This matter can be adjusted using the Adams-Bashfort scheme. Figures
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Figure 14. v-velocity on the entire domain due to the falling disk in a channel

Figure 15. Excess pressure on the entire domain due to the falling disk in a channel
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13 and 14 illustrate, respectively, the velocity contour plot for u and v at selected

instances. It can be observed from Figure 15 that the pressure computed at different

time is not affected by the presence of the solid and free of any spurious oscillations.

This result endorse the computation of the fluid pressure only.

6.4. Tetris benchmark

Four rigid bodies with different density ρs1
= 3000kg/m3, ρs2

= ρs3
=

8000kg/m3, ρs4
= 8000kg/m3 are falling under the gravitationnal force. When

several rigid bodies in the incompressible fluid channel at the initial time are falling,

the interactive motions of these bodies inside the fluid have an interesting phenomena.

At the beginning, each body has the same acceleration by gravitational force. As time

passes more, the velocity of the upper bodies becomes faster than that of the lowers

since the lowers undergoes more resistance against the fluid comparing to the upper

ones. The rigid bodies are arranged, initially, as shown in Figure 16, together with

the finite element mesh at t = 0. Mesh adaptation is needed to better capture all the

interfaces. The error estimator method is used in this example, with a fixed number

of 26423 elements. The density and viscosity of the fluid used in this example are

ρf = 1kg/m3 and ηf = 0.0005Pa.s.

Figure 16. Immersion of four rigid bodies : geometry and finite element mesh at t = 0

The objective of this test is to show the capability of the method to handle

high discontinuities of the solids and fluid physical properties. The Figures 17 and

18 show, respectively, the finite element mesh and the effect of the anisotropic mesh

adaptation on respecting the geometry of the rigid bodies at different time instants.

While the velocity vectors at different time instants is depicted in Figure 19. All the
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Figure 17. Immersion of four rigid bodies : finite element mesh of four rigid bodies at

different time instants

Figure 18. Density distribution for different time step with anisotropic adapted inter-

faces

vortices behind the solid objects are well computed. The developed solver is able, at

the same time, to take into account different solid bodies in an incompressible fluid

flow with very low viscosity. Interaction between the solids is highlited.
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Figure 19. Immersion of four rigid bodies : velocity vectors at different time instants

7. Conclusion

In this paper we have described an evalutaion of the stabilized three-field velocity-

pressure-stress, designed for the computation of rigid bodies in an incompressible

Navier-Stokes flow. The proposed approach solves one set of equation in both domains

with different materials properties. The presence of the solid is taken into account

as an extra stress in the Navier-Stokes equation. The formulation considered allows

equal-order interpolation for the velocity and pressure. The use of uzawa’s algorithm

to solve the system requires a lower-order interpolation for the stress field, since if not,

the left side of the system will totally changed and another system would be reached. A

new developped monolithic multiscale-stabilized finite element method is presented.

The approach is applied to the numerical simulation of 2D and 3D test cases. The

capability of the model to simulate the fluid-rigid body interaction was demonstrated.

Results are assessed by comparing the predictions with reference or other approaches.

Furhter research will focus on the use of a continous piecewise interpolation for the

stress field. The improvement of this methodology could be also taking a better scheme

for particule discplacement with a higher order time integration schemes. Enlarge the

field of application and tackling deformable solid interaction and more 3D numerical

simulation are considered as perspective work.
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